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P1: Multi-modal Objective and Single Constraint

We first consider the optimization problem proposed in [2] with d = 2 design variables on X = [0, 6]2
and I = 1 constraint function. The objective function f and the constraint g are defined by:

f(x) = cos(2z1) cos(x2) + sin(zy), (1)
g(x) = cos(x1) cos(xe) — sin(xq) sin(xz) + 0.5, (2)
where x = [x1,---,24]" is a vector of design variables. This problem has five local solutions

including a unique global one. The feasible space is composed of two disjoint regions.

We run every algorithm with a budget of N = 40 evaluations. Each algorithm is initially given one
training point. We repeat 500 times the experiment with independent initial conditions uniformly
sampled from the design space (experiments may start without a feasible training point). The penalty
value is set to ¥ = 2.
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Figure 1: Mean (top left), 75% quantile (top right), median (bottom left) and 25% quantiles of the
utility gap for P1.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



P2: Linear Objective and Multiple Constraints

We now consider the problem introduced in [3], where the goal is to minimize a linear objective f on
X = [0,1]? subject to two constraints:

f(x) =21 + 22, 3)
g1(x) = 0.5sin(27 (2w — x7)) — x1 — 229 + 1.5, )
g2(x) = x% + x% — 1.5. 5)

This problem is characterized by three local solutions including a unique global one. The feasible
space is connected. We allocate a budget of N = 40 evaluations and repeat the experiment with 500
independent initial conditions for all the algorithms. The penalty value is set to ¥ = 1.
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Figure 2: Mean (top left), 75% quantile (top right), median (bottom left) and 25% quantiles of the
utility gap for P2.



P3: Multi-modal 4-dimensional Objective and Constraint

We now consider a 4-dimensional problem defined over X = [—5, 5]* with one inequality constraint:

d

f(x) = % ;(xf — 1627 + 5z;), (6)
g(x) = —0.5 + sin(xzy + 225) — cos(x3) cos(2x4). 7

Both the Styblinski-Tang functiorﬂ f and the constraint g are multi-modal functions. Each algorithm
is given a budget of NV = 60 evaluations and the experiment is repeated 500 times. The penalty value
is set to the maximum value of f over X': ¥ = 1000.
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Figure 3: Mean (top left), 75% quantile (top right), median (bottom left) and 25% quantiles of the
utility gap for P3.

"Function from https://www.sfu.ca/~ssurjano/stybtang.html,


https://www.sfu.ca/~ssurjano/stybtang.html

P4: Reacting flow problem

Finally, we consider the problem of maximizing the heat released by a reacting flow while preventing
the maximum temperature from exceeding a threshold 7,,,,, = 1800 K. We use the reacting
flow model described in [[1]], with the following 4 design variables: equivalence ration ¢ € [0, 2],
inlet velocity v € [40,80] cm/sec, inlet temperature 7; € [850,1000] K and wall temperature
T, € [200,400] K. Computing the heat released and the maximum temperature requires numerically
solving a system of partial differential equations (PDE). Given the cost of evaluating the objective
function and the constraint, we only run the algorithms for 50 independent initial conditions. The
penalty value is set to ¥ = 500 K and the budget is N = 60 evaluations.
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Figure 4: Mean (top left), 75% quantile (top right), median (bottom left) and 25% quantiles of the
utility gap for P4.
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