7 APPENDIX

7.1 Derivation of the Jensen-Shannon Regularizer.

The Jensen-Shannon GAN is typically encountered in one of two equivalent parametrizations: the
commonly used “original” GAN parametrization [8],

Ep [In(¢)] + Eq [In(1 —)] 21
and the Fenchel-dual f-GAN parametrization [25], where f¢ = —In(1 — exp),
Ep [¢] —Eq[f“o¢] = Ep[{)] + Eq [In(1 — exp(¢))] (22)

Depending on whether we train the JS-GAN through its Fenchel-dual parametrization or with the
original GAN objective we have to either use the regularizer in the general f-GAN form in Eq. (19),
or in the specific Jensen-Shannon parametrization given in Eq. (20).

We now show how to derive the specific Jensen-Shannon regularizer, which is basically a repetition
of the derivation of the general f-GAN regularizer presented in the main text. Using the same
terminology and following the same line of thought as in section 3.3, i.e. assuming the noise variance
is small, we can Taylor approximate the statistics ¢ around & = 0,

P+) = p(x) +[V o0& + 3 71V p(x)] € + O(E) (3)

Expanding the noise convolved version of the objective in Eq. (21) and making use of the zero-mean
and uncorrelatedness properties of the noise distribution, as well as applying the chain rule, we obtain

Fy(P,Q;¢) = Ep [In(p)] + Eq [In(1 — ¢)]

+ g{EP[;Aw— IV 1n(e)|] + Bq[- t=— ¢ = |V in —W}} +0(%).

(24)
Following the same arguments as in section 3.4, one can again show that the Laplacian terms cancel
at ¢ = ¢* + O() and we arrive at

Fy (P, Q;) = Ep [In(p)] + Eq [In(1 —)]

LB (V)] + Bo [V -)T} + 00,
allowing us to read off the corresponding JS regularizer,
Qs(P,Q;0) = Bp [||VIno(x)|[2] + Eg [|IV In(1 - ¢(x))]|?]
1 2 1 2
= e[o Ve tIP] + Ba [g VeGP (26)
- Ep[mua’w(x))wxmﬂ +E@[mna’<¢<x>>v¢<xm2}

In order to obtain the regularizer in the logit-parameterization, with p(x) = o($(x)), we make use
of the following property of the sigmoid

o'(t) =o(t)(1—o(t) 27
which allows us to write
Qs(P,Q;0) = Ep [(1 - 0(x))*|[Vo(x)|[*] + Eq [¢(x)*]|Vé(x)|?] (28)
Let us finally also show that these two parametrizations are indeed equivalent at the optimum:
exp(?) " * ©* ©* p*?
o) = e (In(g") = - + (29)
O = T enn)? W)=y = 1 Ty
Thus,
* *2
cll * *\ 12 _ ® ' *\ (2
£ (e NIV I 2@ = (7 + oy IV nfe)P0 (30)
= [V n(e")|PdP + |2 Vine)Pa@ @D
= IVIn(¢")[[*dP + |V In(1 — ¢%)||*dQ (32)

12

7.2 Further Considerations Regarding the Regularizer

Following-up on our discussion of the regularizer in section 3.4: Due to a support or dimensionality
mismatch we may have sup F'(P, Q; 1) = +oc and ¢* may not exist. However, with ¢} being the
maximizer of F, (which is guaranteed to exist for any ¢ > 0), we get

F (P N (0, 1), Q « N (0, D)) = F.(P,Q;67) — 205(Q N(0,eD);47) + O(%) . (33)

As € — 0, F. may diverge and so may ||V¢?||. The sequence of regularizers Q(Q * N(0, eI); -),
however, converges (at least pointwise) to a well defined limit, which is €4 (Q; -). This shows that
the regularizer is well-defined even under dimensional misspecifications.

We can also justify the approximation in Eq. (18) more rigorously. Starting from the Taylor approxi-
mation of f¢ at ¢)*, we get pointwise

flrov=f" o+ f o (¥ —v") + O(lv — ¢*) G4

So in first order of [|1) —1)* ||, the approximation error is A := Eq [(f" o (¥ — ¢*)) - Ay]. Using
Green’s identity, we can derive the following bound, A < O(LJ), where we assume |f¢"”’| < L and
(V. — V|| < 0. However, as this result only gives a formal guarantee for (¢, V) sufficiently
close to (1*, Vi)*), we refrain from presenting further technical details.

7.3 2D Submanifold Mixture of Gaussians in 3D Space

Experimental Setup. The experimental setup is inspired by the two-dimensional mixture of Gaus-
sians in [20]. The dataset is constructed as follows. We sample from a mixture of seven Gaussians
with standard deviation 0.01 and means equally spaced around the unit circle. This 2D mixture
is then embedded in 3D space (x,y) — (z,v,0), rotated by /4 around the axis (1, —1,0)/v/2
and translated by (1,1,1)/+/3. As illustrated in Fig. 5, this yields a mixture distribution that lives
in a tilted 2D submanifold embedded in 3D space. It is important to emphasize that the mixture
distribution is by design degenerate with respect to the base measure in 3D as it does not have full
dimensional support. This precisely represents the dimensional misspecification scenario for GANs
that we aim to address with our regularizer.

Figure 5: 2D submanifold mixture of Gaussians in 3D, obtained by embedding a two-dimensional
mixture with means equally spaced around the unit circle in 3D ambient space. For visualization
purposes, the standard deviation of the shown mixture components is 10x larger than the one used
in the experiments. Samples are colored proportional to their density which we estimated from a
Gaussian KDE with bandwidth selected using Scott’s rule [29].

Architecture. The architecture corresponds to the one used in [20] with one notable exception. We
use 2 dimensional latent vectors z, sampled from a multivariate normal prior, (whereas [20] uses 256
dimensional z), as we found lower dimensional latent variables greatly improve the performance of
the unregularized GAN against which we compare. We did all experiments also for latent vectors of
dimension 15: the obtained results are in accordance with those presented in the main text and below.

Both networks are optimized using Adam with a learning rate of 1e — 3 and standard hyper-parameters.
We trained on batches of size 512. Ten batches were generated to produce one image of the mixture
at given time steps. The generator and discriminator network parameters were updated alternatively.

13

step O step 5000 step 10000 step 15000 step 20000 step 25000 step 30000

R DODDO
L LE Y
Lo LL e

| - L Y R L) 1)
2 Y ¥ y Y)) s » 1 . «

' {vb -.v- -.y' a.,. ...; i.-
Figure 6: 2D submanifold mixture. The first row shows one of several unstable unregularized
GANS s trying to learn the dimensionally misspecified mixture distribution. The remaining rows show
regularized GANs (with regularized objective for the discriminator and unregularized objective for
the generator) for different levels of regularization . Even for small but non-zero noise variance, the
regularized GAN can essentially be trained indefinitely without collapse. The color of the samples is

proportional to the density estimated from a Gaussian KDE fit. The target distribution is shown in
Fig. 5. GANs were trained with five discriminator updates per generator update step (indicated).

7.4 Image Datasets and Network Architectures

We trained on CelebA [18], CIFAR-10 [15] and LSUN [32]. All datasets were trained on minibatches
of size 64. The respective GAN architectures are listed below.

DCGAN. For the CIFAR-10 experiments, we used the DCGAN (Deep Convolutional
GAN) architecture of [26] implemented in Tensorflow by https://github.com/carpedm20/
DCGAN-tensorflow.

For the LSUN experiments, we used the DCGAN architecture of [26] implemented in Tensorflow by
https://github.com/igul222/improved_wgan_training.

In both cases, the discriminator uses batch normalization [12] in all but the first and last layer (except
where explicitly stated otherwise). The generator uses batch normalization in all layers except the last
one. The latent code is sampled from a 100-dimensional uniform distribution over [0, 1] (carpedm20)
resp. 128-dimensional normal-(0,1) distribution (Gulrajani).

Both networks were trained using the Adam optimizer [13] (with hyper-parameters recommended
by the DCGAN authors) for various different learning rates in the range [0.001,0.0001]. The
recommended learning rate 2 x 10~ was found to perform best.

ResNet GAN. For the CelebA and LSUN experiments, we used a deep residual network
ResNet [11] implemented in Tensorflow by https://github.com/igul222/improved_wgan_
training (implementation details can be found in [10]).

The ResNets use pre-activation residual blocks with two 3 x 3 convolutional layers each and ReLU
nonlinearities. The generator has one linear layer, followed by four residual blocks, one deconvolu-
tional layer and tanh output activations. The discriminator has one convolutional layer, followed by
four residual blocks and a linear output layer (the discriminator logits are then fed into the sigmoid
GAN loss).

14

https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training

We use batch normalization [12] in the generator and discriminator (except explicitly stated otherwise).
Both networks were optimized using Adam with learning rate 2 x 10~* and standard hyperparameters.
For further architectural details, please refer to [10] and the excellent open-source implementation
referenced above.

7.5 Further Experimental Results.

=

RESNET DCGAN NO NORMALIZATION TANH

Figure 7: Unregularized GANs (with alternative generator loss) accross various architectures: ResNet,
DCGAN, DCGAN without normalization and DCGAN with tanh activations. Samples were produced
after 200k generator iterations on the LSUN dataset. Samples for the regularized architectures can
be found in the main text. Some of these architectures are known to be hard to train.

Figure 8: Regularized ResNet GAN. Full-resolution 64 x 64 images generated by the regularized
ResNet GAN after 200k generator iterations on the LSUN dataset. The initial level of regulariza-
tion o = 2.0 was exponentially annealed to vy = 0.01.

15

Figure 9: DCGAN trained with explicitly added noise. Top 3 rows: discriminator and generator
trained with noise. Bottom 3 rows: discriminator is trained with noise while generator is trained
without noise. White normal noise is added to images from the dataset as well as to samples from the
generator during training. The generator was trained through the alternative loss. The level of noise
v is shown in the left most column, the different noise-to-signal ratios (NSR) above each column of
images. Samples were produced after 50 training epochs.

16

	Introduction
	Background
	Noise-Induced Regularization
	Noise Convolution
	Convolved Discriminants
	Analytic Approximations
	Efficient Gradient-Based Regularization

	Regularizing GANs
	Training Algorithm
	Annealing

	Experiments
	2D submanifold mixture of Gaussians in 3D space
	Stability across various architectures
	Training time
	Regularization vs. explicitly adding noise
	Cross-testing protocol

	Conclusion
	APPENDIX
	Derivation of the Jensen-Shannon Regularizer.
	Further Considerations Regarding the Regularizer
	2D Submanifold Mixture of Gaussians in 3D Space
	Image Datasets and Network Architectures
	Further Experimental Results.

