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7 Estimating covariance A for fMRI data

We estimate the temporal covariance A for each subject using the voxels contained in the regions of
interest. The results for several example subjects are shown in Figure 5, along with the correspond-
ing sample covariance 1

nX
TX and its eigenvalues. We choose τB as the lower “asymptote” of the

eigenvalues of 1
nX

TX , as in the high sample regime it is an upper bound on τB .

The sample covariance matrix 1
nX

TX is significantly diagonally dominant, supporting our subtrac-
tion of a τB = tr(B)/n scaled identity matrix. Note the evident sparsity in the inverse. Many of the
sparsity patterns indicate local AR-type behavior as assumed in (Qiu et al., 2016), but this pattern is
not stationary, and in fact tends to group in blocks. Hence, the assumptions in (Qiu et al., 2016) do
not fully capture the richness of the data.

7.1 Choosing tr(A)

Due to the nonidentifiability of tr(A) and tr(B) when a single copy of the data is observed, we
assume that the tr(A) parameter is either known (Rudelson & Zhou, 2017), or chosen as a tuning
parameter. If A corresponds to a “signal” component in a physical system, then as the mean signal
strength tr(A)/m may be known by design or may be estimated directly by running an experiment
with the “noise” component involving the covariance parameter B(t) to be set at 0 for a certain
period of time.

The first step of relaxation is by assuming only one entry of diag(A), for example, a11 is known.
This is feasible when we assume we can observe for a short period of time onlyX0 := Z1A

1/2 so as
to obtain the knowledge of a single element in diag(A). It is our conjecture that there is an interesting
tradeoff between the number of covariates in X0 we are allowed to observe with no measurement
errors and the rate of convergence we can obtain for estimating A and B. Moreover, even when no
covariate X0 is observed directly, we can rely on the recent progress on high dimensional regression
and signal reconstruction to help establish theoretical limits on recovering tr(A) and tr(B(t)), when
replicates are available. For example, if a second sample of eitherZB orX0 = Z1A

1/2 (cf. Equation
(5)) is available, the corresponding tr(B(t)) or tr(A) can be estimated directly without needing to
specify any of tr(A) or tr(B(t)). We leave these as future directions.

We now use two experimental settings to illustrate how robust the estimation procedure for covari-
ance A is with respect to the misspecification of tr(A). We consider the case in which m = 400,
n ∈ {200, 400}, τA = tr(A)/m = 1, τB = 0.5, and A is generated using the AR(1) or Star-Block,
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Figure 5: Estimated A covariance for three example subjects. Left: A part sample covariance
1
nX

TX . Center: Eigenvalues of 1
nX

TX , showing estimate of τB factor. Right: Estimated A−1

graphical model. Note the sparsity in the inverse, and that the eigenvalue spectra are consistent with
the additive model.

while B follows random ER graph. We estimate the inverse of A using τ̂A ∈ {0.4, 0.5, · · · , 1.4}
and λA ∈ (0, 0.7), and use MCC to measure the performance of edge selection.

As shown in Figures 6-7, we observe that when the topology is sophisticated (e.g., Star-Block) and
the misspecification error of τ̂A does not approach 0, although joint tuning of λ and τ̂A can not
resolve the edge selection inconsistency, as expected, although it appears to give certain improve-
ments.

When the topology is relatively simple, e.g., like the chain graph correspondong to the AR(1) model,
the edge selection performance is robust to the misspecification of τ̂A; in this case, joint tuning of λ
and tr(A) is not even necessary, as illustrated in Figures 6-7).

8 Additional analysis of ADHD-200 data

In addition to the plots showing the relationship between brain connectivity and age in the main text,
in this section we reproduce those plots using only healthy subjects and only using ADHD subjects.
The results are shown in Figure 8.

Observe that the leftmost plots (those with the narrowest kernel) are quite rough. This is caused by
the reduction in the number of available subjects as compared to the plots in the main text that used
all the subjects, increasing the effect of the noise. Shown in Figure 9 are the age histograms for all
patients, healthy patients only, and ADHD patients. Note the nonsmooth age ranges in the plots of
Figure 8 correspond to regions with fewer available subjects, as expected.

While the sample size is such that we cannot make definitive conclusions on the exact form of
the differences between healthy and ADHD brain development, the fact that we observe significant
differences is not surprising given the nature of ADHD and its effects on childhood development. In
particular, note the lower rate of development among teenage ADHD subjects as opposed to healthy
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Figure 6: The figures are MCC of the estimators Â with respect to the true A as a function of λ for
each t̂r(A) ∈ {0.6, · · · , 1.4}; m = 400 and n = 200; From left to right: A is AR(1) and Star-Block
model.

teenage subjects. We hypothesize that this corresponds to the common observation that ADHD
patients face additional developmental challenges in the teenage years.

9 Technical assumptions

9.1 Assumptions

In this section, we repeat the assumptions that we required in the main text.

Assumption A1 There exists a positive constant cA such that

1

cA
≤ λmin(A) ≤ λmax(A) ≤ cA.

Assumption A2 The diagonal elements Aii are constant across all i, and the trace tr(B(t)) is con-
stant over time.

Assumption A3 A−1 has at most sa = o(n/ logm) nonzero off-diagonal elements.
Assumption B1 B(t) is a symmetric and positive definite matrix for all t, and its entries have

bounded second derivatives on [0, 1].
Assumption B2 There exists a positive constant cB such that for all t ∈ [0, 1]

1/cB ≤ λmin(B(t)) ≤ λmax(B(t)) ≤ cB .

Assumption B3 B(t)−1 has at most sb + n = o((m/ logm)2/3) nonzero off-diagonal elements.

Note that two conditions in Assumption A2 can be relaxed, we include them only to make statement
of the estimators easier. In the nonnormalized cases the appropriate modifications are easy to derive.

We make the following assumptions on the smooth kernel function K(·) used to create the Ŝm(t):

Assumption K1 K(·) is non-negative, symmetric, twice differentiable, and has compact support
[−1, 1].
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Figure 7: The figures are MCC of the estimators Â with respect to the true A as a function of λ for
each t̂r(A) ∈ {0.6, · · · , 1.4}; m = 400 and n = 400; From left to right: A is AR(1) and Star-Block
model.

Assumption K2
∫
K(u)du = 1.

Assumption K3
∫
u2K(u)du <∞.

Assumption K4 supu∈[−1,1]K(u) ≤ K1.

Assumption K5 supu∈[−1,1]K
′′ (u/h) = O(h−4).

These are satisfied for most common smooth kernel functions, including the Gaussian kernel (Zhou
et al., 2010).

10 Comparison of our method and Kronecker PCA

In this section, we compare our time-varying Kronecker sum model (4) to the sum of Kronecker
products (KronPCA) model of Tsiligkaridis & Hero (2013); Greenewald & Hero (2015)

Σ =

r∑
i=1

Ai ⊗Bi.

Both our method and KronPCA are a sum of Kronecker products, KronPCA is a more general
model, but our method exploits sparsity while KronPCA cannot. Consider data generated from a
time-varying Kronecker sum model (4), where A−1 ∈ R60×60 is a random ER graph and B(t)−1 ∈
R20×20 is a time-varying random ER graph as in Section 4 in the main text. The sizes ofA,B where
chosen to be relatively small since the computational complexity of KronPCA is O(min(m6, n6))
(compared to the O(m3 + n3) complexity of our method). Figure 10 shows Frobenius norm results
for our L1-penalized method, KronPCA, and for comparison, the baseline sample covariance. Note
that due to the sparsity of the true model, our method performs significantly better than KronPCA,
especially when the number of available replicates is small. Since in a time-varying setting the
number of replicates is small or even 1, this is a significant advantage. Additionally, our method
provides interpretable graph estimates, while the factors Ai, Bi of KronPCA are nonsparse and not
interpretable Tsiligkaridis & Hero (2013); Greenewald & Hero (2015).
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(a) Our proposed additive method, trained on healthy subjects only.
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(b) Our proposed additive method, trained on ADHD subjects only.

Figure 8: Number of edges in the estimated B−1(t) graphical models across 90 brain regions as a
function of age. Shown are results using three different values of the regularization parameter λ, and
from left to right the kernel bandwidth parameter used is h = 1.5, 2, and 3 for both methods. Note
the consistently increasing edge density in our estimate, corresponding to predictions of increased
brain connectivity as the brain develops, and the difference in teenage development rates between
healthy and ADHD patients.
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(a) Histogram of the ages of
all subjects in the ADHD-200
dataset.
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(b) Histogram of the ages of
healthy subjects in the ADHD-
200 dataset.
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(c) Histogram of the ages of sub-
jects diagnosed with ADHD in
the ADHD-200 dataset.

Figure 9: Histograms showing the age distributions of all patients, healthy patients, and ADHD
diagnosed patients in the ADHD-200 dataset. A set of subjects in the dataset have no diagnosis,
these left out of both the healthy and ADHD groups.

11 Additional experiments using alternate graph topologies

11.1 A star-block and MA

In Figure 11, we repeat the experiments of main text Figure 2, showing results for A changed to a
star-block graph (edge weights defined as for ER), andA an moving average (MA) covariance (band
width 15). The results confirm the trends found for the AR case. Similarly, in Figure 12, we show
the results for the A estimator when A is a star-block graph.

11.2 B(t) random grid graph

In this section, we use a random grid graph which is produced in the same way as the random ER
graph, except edges are only allowed on between adjacent nodes in a square 2 dimensional grid
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Figure 10: Comparison of our method with KronPCA and the sample covariance. Shown is a
logarithmic plot of the Frobenius norm error as a function of available replicates, with data generated
using A−1 ∈ R60×60, B(t)−1 ∈ R20×20 random ER graphs.
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Figure 11: MCC, Frobenius, and L2 norm error curves for B a random ER graph and n = 100.
From top to bottom: A is star-block covariance, and MA covariance.

(Figure 13). We replace the random ER model for B(t) used in the main text with the random grid
graph model, and repeat the main text experiments using this alternate B(t) topology.

Random grid graph results for the experiments shown in main text Figure 2 are shown in Figure 14,
showing similar results as expected. Similarly, random grid graph results for the experiments shown
in Figure 11 are shown in Figure 15.

For the A part, Figure 16 repeats the experiments of main text Figure 3, and Figure 17 repeats the
experiments of Figure 12, both using the random grid graph for B(t).

12 Estimation error bound for B part: Proof of Theorem 3

12.1 Preliminary results

Define B̃(t0) to be the expected value of the kernel-smoothed estimator Ŝm(t0) at time t0:

B̃(t0) = E[Ŝm(t0)] =

m∑
i=1

wt(t0)B(i/m). (31)
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Figure 12: MCC, Frobenius, and L2 norm error curves forA a Star-Block graph whenB is a random
ER graph. From top to bottom: m = 400, m = 800, and m = 1600.

Using this notation, the estimator bias can be bounded via
Lemma 5 (Bias). Suppose there exists C > 0 such that maxi,j supt |B′′i,j(t)| ≤ C. Then for a
kernel K(·) satisfying assumptions (K1-K5) we have

sup
t∈[0,1]

max
i,j
|B̃(t0, i, j)−B(t0, i, j)| = O

(
h+

1

m2h5

)
.

This lemma is proved in Section 15.

The variance of the estimator Ŝm(t0) can be bounded as:
Lemma 6 (Variance). Suppose mh > n. Define event A

max
i,j
|Ŝm(t0, i, j)− B̃(t0, i, j)| ≤ C

√
logmh

mh
, (32)

for some C > 0. Then P(A) ≥ 1− c
m4h4 .

The proof of this result is based on an application of the Hanson-Wright inequality, and is found
in the supplementary material. We emphasize that this bound holds for both the diagonal and off-
diagonal elements simultaneously. Using a similar approach, in Section 12.6 we can also show that
the estimator Ŝm(t0) is positive definite with high probability:
Lemma 7 (Positive definiteness). Suppose mh > n. Define the event B

(1 + δ)B̃(t0) � Ŝm(t0) � (1− δ)B̃(t0) � 0. (33)

for some fixed
√

c logmh
mh ≤ δ < 1. Then P(B) ≥ 1− c

m4h4 .
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Figure 13: Example sequence of B−1(t) = Θ(t) random grid graphs used in the experiments. At
each time point, the 50 edges connecting n = 100 nodes are shown. Changes are indicated by
red and green edges: red edges indicate edges that will be deleted in the next increment and green
indicates new edges.
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Figure 14: MCC, Frobenius, and L2 norm error curves for B a random grid graph and n = 100.
From top to bottom: A is AR covariance with ρ = .5, AR covariance with ρ = .95.

12.2 Proof of Theorem 3

In this section, we derive the elementwise bound on the estimator Ŝm(t0) of the spatial covariance
B(t0) at time t0, and show that it is positive definite with high probability. To obtain the elementwise
bound, we will first bound the bias and variance of Ŝm(t0, i, j) and then combine the bounds.
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Figure 15: MCC, Frobenius, and L2 norm error curves for B a random grid graph and n = 100.
From top to bottom: A is star-block covariance, and MA covariance.
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Figure 16: MCC, Frobenius, and L2 norm error curves for A a AR(1) with ρ = 0.5 when B is a
random grid graph. From top to bottom: m = 200 and m = 800.

12.3 Estimator bias bound

Recall that B̃(t0) = E[Ŝm(t0)]. By Lemma 5 with p = 1 (proof in Section 15), we have

sup
t0

max
i,j
|B̃(t0, i, j)−B(t0, i, j)| = O

(
h+

1

m2h5

)
.
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Figure 17: MCC, Frobenius, and L2 norm error curves forA a Star-Block graph whenB is a random
grid graph. From top to bottom: m = 200 and m = 800.

12.4 Estimator variance bound (Lemma 2)

Lemma 2 (Variance). Suppose mh > n. Define event A

max
i,j
|Ŝm(t0, i, j)− B̃(t0, i, j)| ≤ C

√
logmh

mh
, (34)

for some C > 0. Then

P(A) ≥ 1− c

m4h4
. (35)

Proof. Recall that

Ŝm(t0) :=

m∑
i=1

wi(t0)

(
XiX

T
i −

tr(A)

m
In

)
. (36)

and

wi(t0) =
1

mh
K

(
i/m− t0

h

)
.

Then

Ŝm(t0)− B̃(t0) =

m∑
`=1

w`(t0)(X`X
T
` − EX`X

T
` ).

Let Ŝ = vec(X)vec(X)T ∈ Rmn×mn be the overall sample covariance. Then observe that for fixed
i, j, t0 there exists a vector wij(t0) with

∑
t w

(ij)
t (t0) = 1 and ‖w(ij)(t0)‖2 ≤ c/

√
mh such that

Ŝm(t0, i, j)− B̃(t0, i, j) = [w(ij)(t0)]Tvec(Ŝ − Σ).

By the triangle inequality, ‖Σ‖ ≤ ‖A‖ + maxt ‖Bt‖, so ‖Σ‖‖w(ij)(t0)‖2 ≤ O(1/
√
mh). We can

thus apply Lemma 7 in Section 14, giving for fixed i, j

P(|Ŝm(t0, i, j)− B̃(t0, i, j)| ≥ ε‖Σ‖‖w(ij(t0)‖2) = P

(
[w(ij)(t0)]Tvec(Ŝ − Σ) ≥ εC

√
1

mh

)

≤ 2 exp

(
−c ε

2

K4

)
.

10



Using the union bound over i, j (cardinality n2), the concentration bound Lemma 7 implies

P

(
max
i,j
|Ŝm(t0, i, j)− B̃(t0, i, j)| ≥ εC

√
1

mh

)
≤ n22 exp

(
−c ε

2

K4

)
= 2 exp

(
2 log n− c ε

2

K4

)
.

Setting ε = c′
√

logmh, for large enough c we have 2 log n − c ε
2

K4 ≤ 2 log n − c logmh/K4 ≤
−c′′ logmh

K4 since mh > n and that

max
i,j
|Ŝm(t0, i, j)− B̃(t0, i, j)| ≤ C

√
logmh

mh
(37)

with probability at least 1− c
m4h4 .

12.5 Total error

Putting the bias and variance together, we can bound the total error of the estimator. By the triangle
inequality,

|Ŝm(t0, i, j)−B(t0, i, j)| ≤ |Ŝm(t0, i, j)− B̃(t0, i, j)|+ |B̃(t0, i, j)−B(t0, i, j)|.
Hence,

max
i,j
|Ŝm(t0, i, j)−B(t0, i, j)|

= Op

(
h+

1

m2h5
+

√
logm

mh

)
.

Optimizing over the order of h, we set h �
(

logm
m

)1/3

, giving

max
i,j
|Ŝm(t0, i, j)−B(t0, i, j)| ≤ C

(
logm

m

)1/3

. (38)

for some C.

This completes the bound on the estimator error of Ŝm(t0). It remains to show that Ŝm(t0) is
positive definite with high probability.

12.6 Positive definiteness of Ŝm(t0) (Proof of Lemma 7)

Proof. Let u ∈ Sn−1. Then

uT Ŝm(t0)u = vecT (uuT )vec(Ŝm(t0))

= vecT (uuT )
[
w(1,1), . . . , w(n,n)

]T
vec

(
Ŝ − tr(A)

m
I

)
.

Observe that ‖vecT (uuT )
[
w(1,1), . . . , w(n,n)

]T ‖2 ≤ c/
√
mh, since the w(ij) have disjoint sup-

port. Thus by Lemma 7

P
(
uT (Ŝm(t0)− E[Ŝm(t0)])u > ε

√
c

mh

)
≤ 2 exp(−Cε2) (39)

Recall that E[Ŝm(t0)] = B̃(t0).

Then by a standard argument using the union bound over an ε net of Sn−1, which has cardinality
≤ exp(n log(3/ε)),

P
(
∃u ∈ Sn−1|uT

(
Sm(t0)− B̃

)
u ≤ cε

)
≤ exp(n log(3/ε))2 exp(−Cε2mh) (40)

≤ C exp
(
−c′ε2mh

)
11



This holds for c large enough, since n < mh.

Suppose that the event in (40) holds. Then for all u ∈ Sn−1,

uTSm(t0)u ≥ uT B̃(t0)u− cε
≥ uT B̃(t0)u(1− δ)

where δλmin(B̃(t0)) ≥ cε. Note that since B̃(t0) is a positively-weighted average of matrices Bi
with minimum eigenvalues ≥ 1/cb (assumption A4), λmin(B̃(t0)) ≥ 1/cb. By a similar argument,
the upper bound holds. We thus have

(1 + δ)B̃(t0) � Ŝm(t0) � (1− δ)B̃(t0) (41)

with probability at least 1 − c′

m4h4 , for some fixed
√

c logmh
mh ≤ δ ≤ 1. Note that when (41) holds,

Sm(t0) is positive definite.

12.7 Theorem 3

By the union bound the probability that the events A and B hold is P(A ∩ B) = 1 − c
m4h4 . Thus,

combining the bound (38) and the proof of positive definiteness in the previous subsection, the proof
of Theorem 3 in the main text results.

Theorem 3. Suppose that the conditions of Lemma 2 hold and h �
(

logm
m

)1/3

. Then with proba-

bility at least 1− c′′

m8/3 ,

max
ij
|Ŝm(t0, i, j)−B(t0, i, j)| ≤ C

(
logm

m

)1/3

for some C, and Ŝm(t0, i, j) is positive semidefinite.

13 Estimation error bound for A part: Proof of Theorem 6

13.1 Trace Estimator

We first bound the error for the estimator

t̂r(B) =

m∑
i=1

wi‖Xt‖22 −
n

m
tr(A), wi =

1

m
. (42)

of the constant trace of B, tr(B).
Lemma 4. Suppose that ‖A‖ ≤ cA and ‖B(t)‖ ≤ cB for all t,m, and tr(B(t)) is constant over
time. We have with probability 1− 3

m5 ,

1

n
|t̂r(B)− tr(B)| ≤ C(cA + cB)

√
logm

mn
.

Proof. The bias of t̂r(B(t0)) is zero since tr(B(t)) is constant. To bound the variance, we can
rewrite (42) as

t̂r(B(t)) = ‖XWt‖2F −
n

m
tr(A),

Wt = diag(w).

Note that

E‖XWt‖2F =

m∑
i=1

witr(B) +
n

m
tr(A) (43)

= t̃r(B) +
n

m
tr(A). (44)

12



Also note that ‖XWt‖2F = tr(vec(X)(Wt ⊗ In)vecT (X)). Thus,

1

n
t̂r(B(t)) =

1

n
tr
(
vec(X)(Wt ⊗ In)vecT (X)

)
− 1

m
tr(A).

Hence, by Lemma 7, with w̃ = 1
n (w(t) ⊗ 1n) on the mn indices corresponding to the diagonal

elements of Ŝ = vec(X)vec(X)T , we have for ε√
mn

= o(1),

P
(
|w̃Tvec(Ŝ − Σ)| ≥ ε(cA + cB)‖w̃‖2

)
≤ 2 exp

(
−c ε

2

K4

)
and thus

P
(∣∣∣∣ 1n (t̂r(B)− tr(B))

∣∣∣∣ ≥ ε(cA + cB)
1√
mn

)
≤ 2 exp

(
−c ε

2

K4

)
since ‖w‖2 ≤ 1√

mn
. Set ε = C

√
logm with C such that with probability at least 1− 3

m5 ,

1

n
|t̂r(B(t))− tr(B(t))| ≤ C(cA + cB)

√
logm

mn
.

This concludes the proof.

13.2 Elementwise error (Proof of Theorem 6)

We can now prove the error bound for Ã.
Theorem 6. Suppose Assumptions [B2, A1] hold. Then

max
i,j
|Ãij −Aij | ≤ C(cA + cB)

√
logm

n

with probability 1− c
m4 for some constants C, c > 0.

Proof. Recall that

Ã =
1

n
XTX − 1

n
diag{t̂r(B(1/m)), . . . , t̂r(B(1))}. (45)

Recall that Ŝ = vec(X)vec(X)T . For i 6= j, by (45) and the definition of Kronecker products we
can then write

Ãij =
1

n
XT
i Xj

=
1

n

n∑
`=1

Ŝ`+(i−1)m,`+(j−1)m

where Xi is the ith column of X . Thus, we can write

Ãij = wTvec(Ŝ)

for some w ∈ Rm2n2

with n nonzero elements all equal to 1/n. Clearly ‖w‖2 = 1/
√
n. We can

then apply Lemma 7 with w as the weight vector. Using the union bound over i, j and assuming
‖A‖, ‖B(t)‖ are bounded by ca, cb respectively, Lemma 7 thus gives

max
i 6=j
|Ãij −Aij | ≤ C(cA + cB)

√
logm

n
(46)

with probability at least 1− c
m4 for absolute constants C, c.

For the diagonal elements, Lemma 4 shows that with probability 1− 3
m5 ,

1

n
|t̂r(B(t))− tr(B(t))| ≤ C(cA + cB)

(
logm

mn

)1/2

,

13



and thus by Lemma 7 and the union bound

max
i=j
|Ãij −Aij | ≤ C(cA + cB)

√
logm

n
+ C1(cA + cB)

(
logm

mn

)1/2

≤ C(cA + cB)

√
logm

n

with probability at least 1− 3
m4 − c

m4 > 1− c
m4 , since m > n.

Using the union bound gives

max
i,j
|Ãij −Aij | ≤ C(cA + cB)

√
logm

n
(47)

with probability at least 1− c
m4 .

14 Concentration bound (Lemma 7)

We use the following concentration bound to bound the error of the A and B(t) estimates. Note that
it also gives the corresponding A part and B part bounds in (Rudelson & Zhou, 2017) as special
cases.

Lemma 7 (Concentration bound). Let w ∈ Rm2n2

and let x = Σ1/2z be a subgaussian random
vector where zi are independent, zero mean, unit variance, and have ‖zi‖ψ2 ≤ K. Let Ŝ = xxT .
Then if ε‖Σ‖‖w‖2 = o(1)

P(|wTvec(Ŝ − Σ)| ≥ ε‖Σ‖‖w‖2) ≤ 2 exp

(
−c ε

2

K4

)
(48)

where c is an absolute constant.

Proof. By the definition of the vectorization operator and letting xt(i) = [xt,(i−1)p̄1+1, . . . , xt,ip̄1 ],

wTvec(Ŝ) = wTvec(xxT ) = xTWx = zTΣ1/2WΣ1/2z, (49)

where W = vec−1(w) and vec−1(·) is the inverse of the vectorization operator, mapping Rm2n2

to
Rmn×mn.

Thus, by the Hanson-Wright inequality,

P(|wTvec(Ŝ − Σ)| ≥ t) ≤ 2 exp

(
−cmin

(
t2

K4‖Σ1/2WΣ1/2‖2F
,

t

K2‖Σ1/2WΣ1/2‖

))
≤ 2 exp

(
−cmin

(
t2

K4‖Σ‖2‖W‖2F
,

t

K2‖Σ‖‖W‖

))
≤ 2 exp

(
−cmin

(
t2

K4‖Σ‖2‖w‖22
,

t

K2‖Σ‖‖w‖2

))
so

P(|wTvec(Ŝ − Σ)| ≥ ε‖Σ‖‖w‖2) ≤ 2 exp

(
−c ε

2

K4

)
where we set t = ε‖Σ‖‖w‖2 and assumed ε‖Σ‖‖w‖2 = o(1).

15 Kernel Smoothing (Proof of Lemma 5)

The following lemma bounds the bias inherent in using a kernel to smooth the sample covariance
matrix for B(t) across time.

14



Proof of Lemma 5. The proof is found in Lemma 5 of (Zhou et al., 2010), repeated here for com-
pleteness.

Without loss of generality, let t = t0. We will use the Riemann integral to approximate the sum

B̃p(t0, i, j) =
1

m

m∑
k=1

2

h
K

(
k
m − t0
h

)
Bi,j

(
k

m

)
.

Specifically,

B̃p(t0, i, j) =

∫ 1

0

2

h
K

(
u− t0
h

)
Bi,j(u)du+O

(
1

m2h5

)
where the second equality follows from Assumption K5 and the assumed bound on the second
derivative of Bij(t). From the proof of Lemma 5 in (Zhou et al., 2010),

∫ 1

0
2
hK(u−t0h )Bi,j(u)du−

Bi,j(t0) = O(h) so

B̃p(t0, i, j)−Bi,j(t0) = O

(
h+

1

m2h5

)
.

Taking the maximum over i, j and t0 ∈ [0, 1] completes the proof.
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