
Convolutional Phase Retrieval

Qing Qu
Columbia University
qq2105@columbia.edu

Yuqian Zhang
Columbia University
yz2409@columbia.edu

Yonina C. Eldar
Technion

yonina@ee.technion.ac.il

John Wright
Columbia University
jw2966@columbia.edu

Abstract

We study the convolutional phase retrieval problem, which considers recov-
ery of an unknown signal x ∈ Cn from m measurements consisting of the
magnitude of its cyclic convolution with a known kernela of lengthm. This
model is motivated by applications to channel estimation, optics, and un-
derwater acoustic communication, where the signal of interest is acted on
by a given channel/filter, and phase information is difficult or impossible to
acquire. We show that when a is random and m is sufficiently large, x can
be efficiently recovered up to a global phase using a combination of spec-
tral initialization and generalized gradient descent. The main challenge is
coping with dependencies in the measurement operator; we overcome this
challenge by using ideas from decoupling theory, suprema of chaos pro-
cesses and the restricted isometry property of random circulant matrices,
and recent analysis for alternating minimizing methods.

1 Introduction

We study the problem of recovering a unknown signal x ∈ Cn from measurements y =
|a⊛ x|, which consist of the magnitude of the convolution of x and a given filter a ∈ Cm,

find z, s.t. y = |a⊛ z| , (1)
where ⊛ denotes cyclic convolution. Let Ca ∈ Cm×m be a circulant matrix generated by a,
and let A ∈ Cm×n be a matrix formed by the first n columns of Ca. Then the convolutional
phase retrieval problem can be rewritten in the common matrix-vector form

find z, s.t. y = |Az| . (2)
This problem is motivated by applications like channel estimation [37, 1], (non)coherent op-
tical communication [14, 24], and underwater acoustic communication [31]. For example, in
millimeter-wave (mm-wave) wireless communications for 5G networks [27], one important
problem is to reconstruct signal angle of arrival (AoA) from measurements, which are taken
by the convolution of signal AoA and the antenna pattern.
Because of technical difficulties that the phase measurements are either very noisy and unre-
liable, or expensive to acquire, it is preferred to only take measurements of signal magnitude
and the phase information is lost.
Most known results on the exact solution of phase retrieval problems [8, 29, 10, 38, 36, 35]
pertain to generic random matrices, where the entries of A are independent subgaussian ran-
dom variables. However, in practice it is almost impossible to design purely random mea-
surement matrices: in many cases as we mentioned above, the measurement is much more
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structured – generated by passing a signal through a manually designed filter. Moreover,
the structured measurements often admit more efficient numerical methods: by using the
fast Fourier transform for matrix-vector products, the benign structure of the convolutional
model (1) allows us to design methods with O(m) memory and O(m logm) computation
cost per iteration. While for generic measurements, the cost is around O(mn).
In this work, we study the convolutional phase retrieval problem (1) under the assumption
that the kernel a = [a1, · · · , am]

⊤ is random, with each entry i.i.d. complex Gaussian,

a = u+ iv, u,v ∼iid N
(
0, 12I

)
. (3)

Compared to the generic random measurement, as we can see, the random convolution
model we study here is far more structured: it is parameterized by only O(m) independent
complex normal random variables, whereas the generic model involves O(mn) ones. Since
the rows and columns of A are probabilistically dependent, standard techniques (based on
concentration of functions of independent random vectors) do not apply.

We propose and analyze a local1 gradient descent type method, minimizing a weighted,
nonconvex and nonsmooth objective

min
z∈Cn

f(z) =
1

2m

∥∥∥b1/2 ⊙ (y − |Az|)
∥∥∥2 , (4)

where ⊙ denotes the Hadamard product and b ∈ Rm
++ is a weighting vector. Our result can

be informally summarized as follows.

Theorem 1.1 (Informal) When m ≥ Ω(npoly log n), with high probability, spectral initializa-
tion [25, 5] produces an initialization z(0) that is O(1/ poly log n) close to the optimum. Moreover,
when m ≥ Ω

(
∥Cx∥2

∥x∥2 npoly log n
)

, with high probability, a certain gradient descent method based
on (4) converges linearly from this initialization to the set X =

{
xeiϕ | ϕ ∈ [0, 2π)

}
of points that

differ from the true signal x only by a global phase.

Here, Cx ∈ Cm×m denotes the circulant matrix corresponding to cyclic convolution with a
length m zero padding of x, and poly log n denotes a polynomial in log n. A dependence of
the sample complexity m on ∥Cx∥ seems inevitable2 and is corroborated by experiments.
Our proof is based on ideas from decoupling theory [11], the suprema of chaos processes and
restricted isometry property of random circulant matrices [26, 20], and a new iterative analy-
sis of alternating minimizing methods [35]. Our analysis draws connections between the
convergence properties of gradient descent and the classical alternating direction method.
This allows us to avoid the need to argue that high-degree polynomials in the structured
random matrix A concentrate uniformly, as would be required by a straightforward trans-
lation of existing analysis to this new setting. Instead, we control the bulk effect of phase
errors uniformly in a neighborhood around the ground truth. This requires us to develop
new decoupling and concentration tools for controlling nonlinear phase functions of circu-
lant random matrices, which could be potentially useful for analyzing other random circu-
lant convolution problems such as blind deconvolution [40], and convolutional dictionary
learning [18].

Prior art for phase retrieval. The challenge of developing efficient, guaranteed methods
for phase retrieval has attracted substantial interest over the past decade [28, 19]. For the
generalized phase retrieval problem in which the sensing matrix A is i.i.d. random, the first
result on global recovery is based on semidefinite programming (SDP) [8, 3, 36]. However,
the computational cost of SDP limits its practicality. Nonconvex methods can be more ef-
ficient. [25] showed that the alternating minimization method provably converges to the

1It would be nicer to characterize the global geometry of the problem as in [15, 33, 34, 32]. However,
the nonhomogeneity of ∥Cx∥ over the space causes tremendous difficulties for concentration with
m ≥ Ω(npoly logn) samples.

2The operator norm of Cx is nonhomogeneous over x ∈ CSn−1, ranging from constant to O(
√
n).

For instance, ∥Cx∥ = 1 when x is a standard basis vector; and ∥Cx∥ =
√
n when x = 1√

n
1.

2



truth, when initialized using a spectral method and provided with fresh samples at each
iteration. Candes et al. [5] showed with the same initalization, gradient descent for the
nonconvex least squares objective,

min
z∈Cn

f1(z) =
1

2m

∥∥∥y2 − |Az|2
∥∥∥2 , (5)

provably recovers the ground truth, with near-optimal sample complexity m ≥ Ω(n log n).
The work [10, 39, 38] further reduce the sample complexity to m ≥ Ω(n) by using different
nonconvex objectives and truncation techniques. Moreover, [34] reveals that the nonconvex
objective (5) has a benign global geometry: with high probability, it has no bad critical points
with m ≥ Ω(n log3 n) samples3.

Structured random measurements. The study of structured random measurement in sig-
nal processing [21] includes the study of random Fourier measurements [7, 9, 12] and partial
random convolutions [26, 20] in compressed sensing [6]. However, the study of structured
random measurement for phase retrieval is still quite limited. In particular, [17] and [4] stud-
ied the performance of SDP methods with t-designs and random masked Fourier transform
measurements. The authors in [5, 2] show that the phase retrieval problem with random
coded diffraction and STFT measurements can be solved by minimizing nonconvex objec-
tives, while [5] requires resampling for the initialization, and in [2] the contraction radius
is not large enough for initialization. In addition, the motivation of these measurement
schemes are quite different from ours. For more detailed review of this subject, we refer the
readers to Section 4 of [21].

Notations. We use (·)⊤ and (·)∗ to denote the real and Hermitian transpose, respectively.
We use CSn−1 to denote a n dimensional complex sphere. Let ℜ(·) and ℑ(·) denote the real
and imaginary parts of a complex variable, respectively. Throughout the paper, we assume
the optimal solution is x ∈ Cn. Because the solution is only optimal to a global phase shift,
we define the optimal solution set as X =

{
xeiθ | θ ∈ [0, 2π)

}
, and define the distance from

a point z ∈ Cn to the set X as

dist(z,X )
.
= inf

θ∈[0,2π)

∥∥z − xeiθ
∥∥ .

For any z ∈ C with |z| ̸= 0, we use ϕ(z) to denote the phase of z, that is, eiϕ(z) = z/ |z|.

2 Algorithm

We develop an approach to convolutional phase retrieval based on local nonconvex opti-
mization. Our proposed algorithm has two components: (1) a careful initialization using
the spectral method; (2) local refinement by (generalized) gradient descent. We introduce
the two steps in reverse order.

2.1 Minimization of a nonconvex and nonsmooth objective

We consider minimizing a weighted nonconvex and nonsmooth objective

f(z) =
1

2m

∥∥∥b1/2 ⊙ (y − |Az|)
∥∥∥2 . (6)

The introduction of the positive weights b facilitates our analysis, by enabling us to compare
certain functions of the dependent random matrix A to functions involving more indepen-
dent random variables. We will substantiate this claim in the next section.
Although the function (4) is not complex-differentiable, if one identifies Cn with R2n and
treats f(z) as a function in the real domain, f is still differentiable in the real sense. Thus,
we adopt the Wirtinger calculus [22], which can be thought of as a clean way of organizing
the real partial derivatives [29, 34].

3[30] tightened the sample complexity to m ≥ Ω(n logn) by using advanced probability tools.
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On the other hand, it should also be noted that the absolute value |·| is nonsmooth at 0 and
hence f(z) is not differentiable everywhere even in the real sense. Similar to [38], for any
complex number u ∈ C, if we uniquely define its phase ϕ(u) at 0 by

exp (iϕ(u))
.
=

{
u/ |u| if |u| ̸= 0,

1 otherwise,

then the Wirtinger gradient of (4) can be uniquely determined as

∂

∂z
f(z) =

1

m
A∗ diag (b) [Az − y ⊙ exp (iϕ(Az))] . (7)

Starting from some initialization z(0), we minimize the objective (6) by gradient descent

z(r+1) = z(r) − τ
∂

∂z
f(z(r)), (8)

where τ > 0 is the stepsize. Indeed, ∂
∂z f(z) can be interpreted as the gradient of f(z) as in

the real case; this method is also referred to as amplitude flow [38].

2.2 Initialization via spectral method

Similar to [25, 29], we compute the initialization z(0) via a spectral method, detailed in [29,
Algorithm 1]. More specifically, z(0) is a scaled leading eigenvector of

Y =
1

m

m∑
k=1

y2kaka
∗
k =

1

m
A∗ diag

(
y2

)
A, (9)

which is constructed from the knowledge of the sensing vectors and observations. The
leading eigenvector of Y can be efficiently computed via the power method. Note that
E [Y ] = ∥x∥2 I + xx∗, so the leading eigenvector of E [Y ] is proportional to the optimal so-
lution x. Under the random convolutional model of A, by using probability tools from [21],
we show that v∗Y v concentrates to its expectation v∗E [Y ]v for all v ∈ CSn−1 whenever
m ≥ Ω(n poly log n), ensuring the initialization z(0) close to the optimal set X .

3 Main Result and Analysis

In this section, we describe our main theoretical result, which shows that with high proba-
bility, the algorithm described in the previous section succeeds.

Theorem 3.1 (Main Result) Whenever m ≥ C0n log
31 n, the spectral method [29, Algorithm 1]

produces an initialization z(0) that satisfies

dist
(
z(0),X

)
≤ c0 log

−6 n ∥x∥

with probability at least 1− c1m
−c2 . Suppose b = ζσ2(y), where

ζσ2(t) = 1− 2πσ2ξσ2(t), ξσ2(t) =
1

2πσ2
exp

(
− t2

2σ2

)
, t > 0, (10)

with σ2 > 1/2. Starting from z(0), with σ2 = 0.51 and stepsize τ = 2.02, whenever m ≥
C1

∥Cx∥2

∥x∥2 max
{
log17 n, n log4 n

}
, with probability at least 1 − c3m

−c4 for all iterate z(r)(r ≥ 1)

defined in (8), we have

dist
(
z(r),X

)
≤ (1− ϱ)r dist

(
z(0),X

)
, (11)

holds for a small scalar ϱ ∈ (0, 1). Here, c0, c1, c2, c3, c4, C0, C1 > 0 are numerical constants.
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Remark: Our result shows that by initializing the problem O(1/polylog(n))-close to the
optimum via spectral method, the gradient descent (8) converges linearly to the optimal so-
lution. As we can see, the sample complexity here also depends on ∥Cx∥, which is quite dif-
ferent from the i.i.d. case. For a typical x ∈ CSn−1 (e.g., x is drawn uniformly random from
CSn−1), ∥Cx∥ remains as O(log n), the sample complexitym ≥ Ω(n poly log n) matches the
i.i.d. case up to log factors. However, ∥Cx∥ is nonhomogeneous over x ∈ CSn−1: if x is
sparse in the Fourier domain (e.g., x = 1√

n
1), the sample complexity can be as large as

m ≥ Ω
(
n2 poly log n

)
. Such a behavior is also demonstrated in the experiments of Section

4. We believe the (very large!) number of logarithms in our result is an artifact of our anal-
ysis, rather than a limitation of the method. We expect to reduce the sample complexity
to m ≥ Ω

(
∥Cx∥2

∥x∥2 n log
6 n

)
by a tighter analysis, which is left for future work. The choices

of the weighting b ∈ Rm in (10), σ2 = 0.51, and the stepsize τ = 2.02 are purely for the
purpose of analysis. In practice, the algorithm converges with b = 1 and a choice of small
stepsize τ , or by using backtracking linesearch for the stepsize τ .
In the following, we briefly highlight some major challenges and novel proofing ideas be-
hind the analysis. The details can be found in our full paper.

3.1 Proof sketch of iterative contraction

Our analysis is largely inspired by the recent analysis of alternating direction method (ADM)
[35]. In this following, we draw connections between the gradient descent method (8) and
ADM, and sketch basic ideas of convergence analysis.

ADM iteration. ADM is a classical method for solving phase retrieval problems [16, 25,
35], which can be considered as a heuristic method that solves the problem

min
z∈Cn,|u|=1

1
2 ∥Az − y ⊙ u∥2 .

At every iterate ẑ(r), ADM proceeds in two steps:

c(r+1) = y ⊙ exp
(
Aẑ(r)

)
, ẑ(r+1) = argmin

z

1

2

∥∥∥Az − c(r+1)
∥∥∥2 ,

which leads to the following update

ẑ(r+1) = A†
(
y ⊙ exp

(
Aẑ(r)

))
,

where A† = (A∗A)
−1

A∗ is the pseudo-inverse of A. Let θ̂r = argminθ

∥∥∥ẑ(r) − xeiθ
∥∥∥. The

distance between ẑ(r+1) and X is bounded by

dist
(
ẑ(r+1),X

)
=

∥∥∥ẑ(r+1) − xeiθ̂r+1

∥∥∥ ≤
∥∥A†∥∥ ∥∥∥Axeiθ̂r −

(
y ⊙ exp

(
Aẑ(r)

))∥∥∥ . (12)

Gradient descent with b = 1. For simplicity, let us consider the gradient descent update
(8) with b = 1. Let θr = argminθ

∥∥∥z(r) − xeiθ
∥∥∥, with stepsize τ = 1. The distance between

the iterate z(r) and the optimal set X is bounded by

dist
(
z(r+1),X

)
=

∥∥∥z(r+1) − xeiθr+1

∥∥∥ ≤
∥∥∥∥I − 1

m
A∗A

∥∥∥∥ ∥∥∥z(r) − xeiθr
∥∥∥

+
1

m
∥A∥

∥∥∥Axeiθr − y ⊙ exp
(
iϕ(Az(r))

)∥∥∥ . (13)

Towards iterative contraction. By measure concentration, it can be shown that∥∥∥∥I − 1

m
A∗A

∥∥∥∥ = o(1), ∥A∥ ≈
√
m,

∥∥A†∥∥ ≈ 1/
√
m, (14)
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holds with high probability whenever m ≥ Ω(npoly log n). Therefore, to show iterative
contraction of both methods, based on (12) and (13), it is sufficient to show that∥∥Axeiθ − y ⊙ exp (iϕ(Az))

∥∥ ≤ (1− η)
√
m

∥∥z − xeiθ
∥∥ , (15)

for some constant η ∈ (0, 1), where θ = argminθ∈[0,2π)

∥∥∥z − xeiθ
∥∥∥ such that eiθ = x∗z/ |x∗z|.

By similar ideas of controlling (15) for the ADM method [35], this observation provides a
new way of analyzing the gradient descent method. As an attempt to show (15) for the
random circulant matrix A, we invoke the following lemma, which controls the error in a
first order approximation to exp(iϕ(·)).

Lemma 3.2 (Lemma 3.2, [35]) For any ρ > 0, and for any z, z′ ∈ C, we have

|exp (iϕ(z′ + z))− exp (iϕ(z′))| ≤ 21|z|≥ρ|z′| + (1− ρ)−1 |ℑ (z/z′)| .

Let us decompose z = αx + βw, where w ∈ CSn−1 with w ⊥ x, and α, β ∈ C. Note that
ϕ(α) = θ. Then by Lemma 3.2, for any ρ ∈ (0, 1), we have∥∥Axeiθ − y ⊙ exp (iϕ(Az))

∥∥ =

∥∥∥∥|Ax| ⊙
[
exp (iϕ (Ax))− exp

(
iϕ

(
Ax+

β

α
Aw

))]∥∥∥∥
≤

∥∥∥|Ax| ⊙ 1| βα ||Aw|≥ρ|Ax|

∥∥∥︸ ︷︷ ︸
T1

+
1

1− ρ

∣∣∣∣βα
∣∣∣∣ ∥ℑ ((Aw)⊙ exp (−iϕ(Ax)))∥︸ ︷︷ ︸

T2

.

The first term T1 can be bounded using the restricted isometry property of random circulant
matrices [20], together with some auxiliary analysis.
The second term T2 involves a nonlinear function exp (−iϕ(Ax)) of the random circulant
matrix A. Controlling this nonlinear, highly dependent random process T2(w) for all w
is a nontrivial task. Next, we explain why controlling T2 is technically challenging, and
sketch the key ideas about how to control a smoothed variant of T2, by using the weighting
b = ζσ2(y) introduced in (10). We also provide intuition for why the weighting b is helpful.

3.2 Controlling the phase term T2

As elaborated above, the major challenge of showing iterative contraction is bound-
ing the suprema of the nonlinear, dependent random process T2(w) over the set S ={
w ∈ CSn−1 | w ⊥ x

}
. By using the fact that ℑ(u) = 1

2i (u− u) for any u ∈ C, we have

sup
w∈S

T 2
2 ≤ 1

2 ∥A∥2 + 1
2 sup
w∈S

∣∣∣∣∣∣∣w⊤A⊤ diag (ψ(Ax))Aw︸ ︷︷ ︸
L(a,w)

∣∣∣∣∣∣∣ ,
where ψ(t) .= exp (−2iϕ(t)). As from (14), ∥A∥ ≈

√
m, the major task left is to show that

sup
w∈S

|L(a,w)| < (1− η′)m (16)

for some constant η′ ∈ (0, 1).

Why decoupling? Let A =

[
a∗
1

· · ·
a∗
m

]
. The term

L(a,w) = w⊤A⊤ diag (ψ(Ax))Aw =

m∑
k=1

ψ(a∗
kx)w

⊤aka
⊤
k w︸ ︷︷ ︸

dependence across k

is a summation of dependent random variables, for which our probability tools are very
limited. To overcome this problem, we deploy ideas from decoupling [11]. Informally, decou-
pling allows us to compare moments of the original random function to functions of more
independent random variables, which are usually easier to analyze. The book [11] provides
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a beautiful introduction to this area. In our problem, notice that the random vector a oc-
curs twice in the definition of L(a,w) – one in the phase term ψ(Ax) = exp(−2iϕ(Ax)),
and another in the quadratic term. The general spirit of decoupling is to seek to replace one
a with an independent copy a′ of the same random vector, yielding a random process with
fewer dependencies. Here, we seek to replace L(a,w) with

QL
dec(a,a

′,w) = w⊤A⊤ diag (ψ(A′x))Aw. (17)

The usefulness of this new, decoupled form QL
dec(a,a

′,w), is that it introduces extra ran-
domness — QL

dec(a,a
′,w) is now a chaos process of a conditioned on a′. This makes analyz-

ing supw∈S QL
dec(a,a

′,w) amenable to existing analysis of suprema of chaos processes for ran-
dom circulant matrices [21]. However, achieving the decoupling requires additional work;
the most general existing results on decoupling pertain to tetrahedral polynomials, which are
polynomials with no monomials involving any power larger than one of any random vari-
able. By appropriately tracking cross terms, these results can also be applied to more gen-
eral (non-tetrahedral) polynomials in Gaussian random variables [23]. However, our ran-
dom process L(a,w) involves a nonlinear phase term ψ(Aw) which is not a polynomial,
and hence is not amenable to a direct appeal to existing results.

Decoupling is “recoupling”. Existing results [23] for decoupling polynomials of Gaus-
sian random variables are derived from two simple facts: (i) orthogonal projections of Gaus-
sian variables are independent, and (ii) Jensen’s inequality. Indeed, for a ∼ CN (0, I), let us
introduce an independent vector δ ∼ CN (0, I). Write

g1 = a+ δ, g2 = a− δ.

Because of Fact (i), these are independent CN (0, 2I) vectors. By conditional expectation,

Eδ

[
QL

dec(g
1, g2,w)

]
= Eδ

[
QL

dec(a+ δ,a− δ,w)
] .

= L̂(a,w). (18)

Thus, we can see that the key idea of decoupling L(a,w) into QL
dec(a,a

′,w), is essentially
“recoupling” QL

dec(g
1, g2,w) via conditional expectation – the “recoupled” term L̂ can be

viewed as an approximation of L(a,w). Notice that by Fact (ii), for any convex function φ,

Ea

[
sup
w∈S

φ
(
L̂(a,w)

)]
= Ea

[
sup
w∈S

φ
(
Eδ

[
QL

dec(a+ δ,a− δ,w)
])]

≤ Ea,δ

[
sup
w∈S

φ
(
QL

dec(a+ δ,a− δ,w)
)]

= Eg1,g2

[
sup
w∈S

φ
(
QL

dec(g
1, g2,w)

)]
.

Thus, by choosing φ(t) = |t|p, we can control moments of supw∈S L̂(a,w) via∥∥∥∥ sup
w∈S

∣∣∣L̂(a,w)
∣∣∣∥∥∥∥

Lp

≤
∥∥∥∥ sup
w∈S

∣∣QL
dec(g

1, g2,w)
∣∣∥∥∥∥

Lp

. (19)

For tetrahedral polynomials, L̂ = L, so the approximation is exact. As the tail bound of
supw∈S

∣∣∣L̂(a,w)
∣∣∣ can be controlled via its moments bounds [13, Chapter 7.2], this allows

us to directly control the object L(a,w) of interest. The reason that this control obtains is
because the conditional expectation operator Eδ [· | a] “recouples” QL

dec(a,a
′,w) back to

the target L(a,w). In slogan form, (Gaussian) decoupling is recoupling.

“Recoupling” is Gaussian smoothing. A distinctive feature in convolutional phase re-
trieval is that L is not a polynomial. Hence, it may be challenging to posit a QL

dec which
“recouples” back to L. In other words, in the existing form, we need to tolerate an approxi-
mation error as L̂ ̸= L. By the triangle inequality,

sup
w∈S

|L(a,w)| ≤ sup
w∈S

∣∣∣L̂(a,w)
∣∣∣+ sup

w∈S

∣∣∣L̂(a,w)− L(a,w)
∣∣∣ . (20)

As discussed above, the supw∈S

∣∣∣L̂(a,w)
∣∣∣ can be sharply controlled via its moments bound

in (19). Now the bound (20) is useful to derive tight control for L(a,w), if L(a,w) is very
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close to L̂(a,w) uniformly. The question is: for what L is it possible to find a “well-behaved”
QL

dec for which the approximation error is small? To understand this question, recall that the
mechanism that links Qdec back to L̂ is the conditional expectation operator Eδ [· | a]. For
our case, from (18) orthogonality leads to

L̂(a,w) = wA⊤ diag (h(Ax))Aw, h(t)
.
= Es∼CN (0,∥x∥2) [ψ(t+ s)] . (21)

Thus, by combining the results in (20) and (21), we have

sup
w∈S

|L(a,w)| ≤ sup
w∈S

∣∣∣L̂(a,w)
∣∣∣ + ∥h− ψ∥L∞︸ ︷︷ ︸

approximation error

∥A∥2 . (22)

Note that the function h is not exactly ψ, but generated by convolving ψ with a multivariate
Gaussian pdf : indeed, recoupling is Gaussian smoothing. The Fourier transform of a multivari-
ate Gaussian is again a Gaussian; it decays quickly with frequency. So, in order to admit a
small approximation error, the target L must be smooth. However, in our case, the function
ψ(t) = exp(−2iϕ(t)) is discontinuous at t = 0; it changes extremely rapidly in the vicinity of
t = 0, and hence its Fourier transform (appropriately defined) does not decay quickly at all.
Therefore, L(a,w) is a poor target for approximation with a smooth function L̂ = Eδ[QL

dec].
From Fig. 1, the difference between h and ψ increases as |t| ↘ 0. The poor approximation
error ∥h− ψ∥L∞ = 1 results in a trivial bound for supw∈S |L(a,w)| instead of (16).

Decoupling and convolutional phase retrieval. The key idea to reduce the approxima-
tion error ∥ψ − h∥L∞ = 1 is to smooth ψ. More specifically, we introduce a new objective
(6) with Gaussian weighting b = ζσ2(y) in (10), replacing the analyzing target T2 with

T̂2 =
∥∥∥diag (b1/2)ℑ ((Aw)⊙ exp (−iϕ(Ax)))

∥∥∥ .
Consequently, we obtain a smoothed variant Ls(a,w) of L(a,w),

Ls(a,w) = w⊤A⊤ diag (ζσ2(y)⊙ ψ(Ax))Aw.

Now the approximation error ∥h− ψ∥L∞ in (22) is replaced by ∥h(t)− ζσ2(t)ψ(t)∥L∞ . As
observed from Fig. 1, the function ζσ2(t) smoothes ψ(t) especially near the vicinity of t =
0, such that the new approximation error ∥f(t)− ζσ2(t)ψ(t)∥L∞ is significantly reduced.
Thus, by using similar ideas as above, we can prove a desired bound supw∈S |Ls(a,w)| <
(1 − ηs)m. Finally, because the new weighting b = ζσ2(y), the overall analysis needs to be
slightly modified correspondingly. We refer the readers to our full paper for more details.

Figure 1: Plots of functions ζσ2(t),
f(t) and ψ(t) for t ∈ R+.

Figure 2: Phase transition for recov-
ering the signal x ∈ CSn−1 with dif-
ferent ∥Cx∥.

4 Experiments

Dependence of sample complexity on ∥Cx∥. First, we investigate the dependence of the
sample complexitym on ∥Cx∥. We assume the ground truthx ∈ CSn−1, and consider three
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cases: (1) x = e1 with ∥Cx∥ = 1, where e1 the standard basis vector; (2) x is uniformly ran-
dom generated from CSn−1; (3) x = 1√

n
1, with ∥Cx∥ =

√
n. For each case, we fix the signal

length n = 1000 and vary the ratio m/n. For each ratio m/n, we randomly generate the
kernel a ∼ CN (0, I) and repeat the experiment for 100 times. We initialize the algorithm
by the spectral method [29, Algorithm 1] and run the gradient descent (8). Given the al-
gorithm output x̂, we judge the success of recovery by infϕ∈[0,2π)

∥∥x̂− xeiϕ
∥∥ ≤ ϵ, where

ϵ = 10−5. From Fig. 2, we can see that the larger the ∥Cx∥, the more samples are needed
for exact recovery.

Figure 3: Experiment on real images.

Experiments on real image. Finally, we run the experiment on some real dataset to demon-
strate the effectiveness and the efficiency of the proposed method. We choose an image of
size 200 × 300 as in Fig. 4, we use m = 5n log n samples for reconstruction. The kernel
a ∈ Cm is randomly generated as complex Gaussian CN (0, I). We run power method
for 100 iterations for initialization, and stop the algorithm once the error is smaller than
1 × 10−4. It takes 197.08s to reconstruct all the RGB channels. Experiment using general
Gaussian measurementsA ∈ Cm×n could easily run out of memory on a personal computer
for problems of this size.

Figure 4: Experiment with real antenna pattern.

Experiments on signal AoA phase recovery for 5G communications. Finally, we demon-
strate the effectiveness of the proposed method on a problem arising in 5G communication,
as we mentioned in the introduction. Fig. 4 (left) shows an antenna pattern a ∈ C361 ob-
tained from Bell labs. We observe the modulus of the convolution of this pattern with the
signal of interest. For three different types of signals with length n = 20, (1) x = e1 , (2) x is
uniformly random generated from CSn−1, (3) x = 1√

n
1, our result in Fig. 4 shows that we

can achieve almost perfect recovery.
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