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Abstract

Under/overestimation of state/action values are harmful for reinforcement learn-
ing agents. In this paper, we show that a state/action value estimated using the
Bellman equation can be decomposed to a weighted sum of path-wise values that
follow log-normal distributions. Since log-normal distributions are skewed, the
distribution of estimated state/action values can also be skewed, leading to an
imbalanced likelihood of under/overestimation. The degree of such imbalance can
vary greatly among actions and policies within a single problem instance, making
the agent prone to select actions/policies that have inferior expected return and
higher likelihood of overestimation. We present a comprehensive analysis to such
skewness, examine its factors and impacts through both theoretical and empirical
results, and discuss the possible ways to reduce its undesirable effects.

1 Introduction

In reinforcement learning (RL) [1, 2], actions executed by the agent are decided by comparing relevant
state values V or action values Q. In most cases, the ground truth V and Q are not available to the
agent, and the agent has to rely on estimated values V̂ and Q̂ instead. Therefore, whether or not an
RL algorithm yields sufficiently accurate V̂ and Q̂ is a key factor to its performance. Many researches
have proved that, for many popular RL algorithms such as Q-learning [3] and value iteration [4],
estimated values are guaranteed to converge in the limit to their ground truth values [5, 6, 7, 8].

Still, under/overestimation of state/action values occur frequently in practice. Such phenomena are
often considered as the result of insufficient sample size or the utilisation of function approximation
[9]. However, recent researches have pointed out that the basic estimators of V and Q derived
from the Bellman equation, which were considered unbiased and have been widely applied in RL
algorithms, are actually biased [10] and inconsistent [11]. For example, van Hasselt [10] showed that
the max operator in the Bellman equation and its transforms introduces bias to the estimated action
values, resulting in overestimation. New operators and algorithms have been proposed to correct such
biases [12, 13, 14], inconsistency [11] and other issues of value-based RL [15, 16, 17, 18].

This paper shows that, despite having great improvements in recent years, the value estimator
of RL can still suffer from under/overestimation. Specifically, we show that the distributions of
estimated state/action values are very likely to be skewed, resulting in imbalanced likelihood of
under/overestimation. Such skewness and likelihood can vary dramatically among actions/policies
within a single problem instance. As a result, the agent may frequently select undesirable ac-
tions/policies, regardless of its value estimator being unbiased.
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Figure 1: Illustration of positive skewness (red distribution) and negative skewness (blue distribution).
Thick and thin vertical lines represent the corresponding expected values and medians, respectively.

Such phenomenon is illustrated in Figure 1. An estimated state/action value following the red
distribution has a mean 0.21 and a median−0.61, thus tends to be underestimated. Another following
the blue distribution, on the other hand, has a mean −0.92 and a median 0.61, thus likely to be
overestimated. Despite that the red expected return is noticeably greater than the blue, the probability
of an unbiased agent arriving at the opposite conclusion (blue is better) and thus selecting the inferior
action/policy is around 0.59, which is even worse than random guessing.

This paper also indicates that such skewness comes from the Bellman equation passing the dispersion
of transition dynamics to the state/action values. Therefore, as long as a value is estimated by
applying the Bellman equation to the observations of transition, it can suffer from the skewness
problem, regardless of the algorithm being used. Instead of proposing new algorithms, this paper
suggests two general ways to reduce the skewness. The first is to balance the impacts of positive and
negative immediate rewards to the estimated values. We show that positive rewards lead to positive
skewness and vice versa, and thus, a balance between the two may help neutralise the harmful effect
of skewness. The second way is to simply collect more observations of transitions. However, our
results in this paper indicate that the effectiveness of this approach diminishes quickly as the sample
size grows, and thus is recommended only when observations are cheap to obtain.

In the rest of this paper, we will elaborate our analysis to the distributions of state/action values
estimated by the Bellman equation. Specifically, we will show that an estimated value in a general
MDP can be decomposed to path-wise values in normalised single-reward Markov chains. The
path-wise values are shown to obey log-normal distributions, and thus the distribution of an estimated
value is the convolution of such log-normal distributions. To understand which factors have the most
impact to the skewness, we derive the expressions of the parameters of these log-normal distributions.
We then discuss whether the skewness of estimated values can be reduced in order to improve
learning performance. Finally, we provide our empirical results to complement our theoretical ones,
illustrating how substantial the undesirable effect of skewness can be, as well as to what degree such
effect can be reduced by obtaining more observations.

2 Preliminaries

The standard RL setup of [1] is followed in this paper. An environment is formulated as a finite
discounted Markov Decision Process (MDP) M = (S,A, P,R, γ), where S and A are finite sets
of states and actions, P (s′|s, a) is a transition probability function, R(s, a, s′) is an immediate
reward function, and γ ∈ (0, 1) is a discount factor. A trajectory (s1, a1, s2, r1), (s2, a2, s3, r2), ...,
(st, at, st+1, rt) represents the interaction history between the agent and the MDP. The number of
occurrences of state-action pair (s, a) and transition (s, a, s′) in such trajectory are denoted Ns,a and
Ns,a,s′ , respectively.

A policy is denoted π, and V π(s) is the state value of π starting from s. An action value Qπ(s, a) is
essentially a state value following a non-stationary policy that selects a at the first step but follows π
thereafter. It can be analysed in the same way as V π, so it suffices to focus on V π in the following
sections. For convenience, superscript π in V π will be dropped if it is clear from the context.

For any s ∈ S and policy π, it holds that V π(s) =
∑
s′∈S P (s

′|s, π(s))(R(s, π(s), s′) + γV π(s′)),
which is called the Bellman equation. Most model-based and model-free RL algorithms utilise this
equation, its equivalents, or its transforms to estimate state values. Since P and R are unknown to
the agent, estimated values V̂ (s) are computed from estimated transitions P̂ and rewards R̂ instead,
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where P̂ (s′|s, a) = Ns,a,s′/Ns,a and R̂(s, a, s′) = rt with (st, at, st+1)=(s, a, s′). This is done
explicitly in model-based learning, and implicitly with frequencies of updates in model-free learning.
We will show in later section that the skewness of estimated values is decided by the dynamic effects
of the environment rather than the learning algorithm being used, and therefore, it suffices to focus
on the model-based case in order to evaluate such skewness.

The skewness in this paper refers to the Pearson 2 coefficient (E[X] − median[X])/
√
Var[X]

[19, 20]. Following this definition, a distribution has a positive skewness if and only if its mean is
greater than its median, and vice versa. Assuming that the bias of V̂ is corrected or absent, we have
E[V̂ ] = V . Thus, a positive skewness of V̂ means Pr(V̂ <V ) > 0.5, indicating a higher likelihood
of underestimation, while a negative skewness indicates a higher likelihood of overestimation.

An informative indicator of skewness is CDFV̂ (V )−0.5 where CDFV̂ is the cumulative distribution
function of V̂ . The sign of this indicator is consistent with the Pearson 2 coefficient, while its absolute
value gives the extra probability of under/overestimation of V̂ compared to a zero-skew distribution.

A log-normal distribution with location parameter µ and scale parameter σ is denoted lnN (µ, σ2). A
random variable X follows lnN (µ, σ2) if and only if ln(X) follows normal distribution N (µ, σ2).
The parameters µ and σ of log-normal distribution can be calculated from its mean and variance
by µ = ln

( E[X]2√
E[X]2+Var[X]

)
, and σ2 = ln

(
1 + Var[X]

E[X]2

)
, where E[X] and Var[X] are the mean and

variance of X ∼ lnN (µ, σ2), respectively.

3 Log-normality of Estimated State Values

In this section, we elaborate our analysis to the distributions of estimated values V̂ . The analysis
is formed of three steps. First, state values in general MDPs are decomposed to the state values
in relevant normalised single-reward Markov chains. Second, they are further decomposed into
path-wise state values. Third, the path-wise state values are shown to obey log-normal distributions.

3.1 Decomposing into Normalised Single-reward Markov chains

Given an MDP M and a policy π, the interaction between π and M forms a Markov chain Mπ , with
transition probability pi,j = P (sj |si, π(si)) and reward ri,j = R(si, π(si), sj) from arbitrary state
si to state sj . Let P π be the transition matrix of Mπ, V π be the (column) vector of state values,
Rπ be the reward matrix, and J be a vector of 1 with the same size of V π. Then Bellman equation
is equivalent to V π = P π◦RπJ + γP πV π = (I − γP π)−1(P π◦RπJ), where I is an identity
matrix, and ◦ is Hadamard product.

This equation indicates that a state value is a weighted sum of dynamic effects, with rewards serving
as the weights of summation. Precisely, let B = (I − γP π)−1, then the equation above becomes
V π = B(P π◦RπJ), or V π(si) =

∑
j,k rj,k(bi,j pj,k). Here, term (bi,j pj,k) describes the joint

dynamic effect starting from si ending with transition sjsk, which will be elaborated in Section 3.2.

Let Mπ
j,k denote a normalised single-reward Markov chain (NSR-MC) of Mπ , which has exactly the

same S, A, γ and Pπ as Mπ, but all rewards are trivially 0 except rj,k = 1. For an NSR-MC Mπ
j,k,

the equation above becomes V πMπ
j,k

(si) = bi,j pj,k. Thus, a state value V of a general MDP M can

be rewritten as the weighted sum of state values of all |S|2 NSR-MCs {Mπ
j,k} of M , i.e.

V πM (si) =
∑
j,k rj,kVMπ

j,k
(si). (1)

Therefore, the next step of analysis is to examine the state values in NSR-MCs.

3.2 Decomposing into Path-wise State Values

Seeing Markov chain Mπ as a directed graph, a walk w of length |w| in such graph is a sequence
of |w| successive transitions through states s1, s2, s3, ..., s|w|+1.1 A path is a walk without repeated
states, with exception to the last state s|w|+1, which can be either a visited or an unvisited one.

1Superscripts here refer to the timestamps on w rather than the indices of specific states in S.
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Figure 2: Illustration of walks and a representative path. "Forward" and "backward" transitions are
drawn in thick and thin arrows, respectively, and pi,j denotes the transition probability from si to sj .

In an NSR-MC with unique non-zero reward rj,k = 1, a state value V π(si) = bi,j pj,k can be
expanded as a sum of the discounted occurrence probabilities of walks that start from si and end
with transition (sj , π(sj), sk). Let Wi,j,k denotes the set of all possible walks w satisfying s1=si,
s|w|=sj and s|w|+1=sk. Then we have V (si) =

∑
w∈Wi,j,k

(γ|w|−1
∏

(st,st+1) on w pst,st+1). Since
Wi,j,k is infinite, the walks in Wi,j,k need to be put into finite groups for further analysis.

Concretely, a step in a walk is considered "forward" if it arrives to a previously unvisited state, and
"backward" if the destination has already been visited before that step. The latter also includes the
cases where st+1 = st, that is, the agent stays at the same state after transition. The only exception
to this classification is the last transition of a walk, which is always considered a "forward" one,
regardless of if its destination having been visited or not. The start state s1 and all such "forward"
transitions of a walk w form a representative path of w, denoted w̃.

This is illustrated by Figure 2. In this example, all walks from s1 passing s2 ending with s3s4, such
as (s1s1s2s3s3s4), (s1s2s3s1s2s3s4) and (s1s2s3s2s3s2s3s4), are grouped with the representative
path (s1s2s3s4). Note that transition s1s3 will not happen within this group; rather, it belongs to the
groups that have s1s3 in their representative paths.

As can be seen from Figure 2, all possible walks sharing one representative path w̃ compose a chain
which has the same transition probability values with the original Markov chain Mπ, but with only
two type of transitions: (forward) si to si+1 (i ≤ |w̃|); (backward) si to sj (j ≤ i ≤ |w̃|). We call
this chain the derived chain of w̃, denoted Mπ(w̃), or simply M(w̃). Then the infinite sum becomes

V (s) =
∑
w̃∈W̃ VM(w̃)(s), (2)

where W̃ is the set of all representative paths that start from s and end with the unique 1-reward
transition of the relevant NSR-MC. Such VM(w̃)(s) are called path-wise state values of Mπ .

Since the main concern of this paper is the skewness of V̂ , we do not provide a constructive method of
obtaining all Mπ(w̃). Rather, we point out that the size of W̃ is at most (|S|!), and thus an estimated
value V̂ in NSR-MCs can be decomposed to finitely many estimated path-wise state values.

3.3 Log-normality of Estimated Path-wise State Values

Strictly speaking, derived chain M(w̃) of a representative path w̃ is not necessarily a Markov chain,
because only part of the transitions in the original Markov chain Mπ is included, allowing the
possibility of

∑i+1
j=1 psi,sj < 1. However, this does not make the path-wise state values violate

Bellman equation, and thus they can be treated as regular state values.

Since a representative path w̃ has no repeated states (except for s|w̃|+1 which can either be a new state
or the same as some sk), the superscripts here can be treated as the indices of states for convenience.
Therefore, path-wise state value VM(w̃)(s

i) is denoted Vi, and pi,j refers to psi,sj in this section.
Given w̃, the most important path-wise value is V1, which belongs to the start point of w̃.

Definition 3.1. Given a derived chainM(w̃) and discount factor γ, let pi,j be the transition probability
from si to sj on M(w̃). The joint dynamic effect of M(w̃) for i ≤ |w̃| is recursively defined as

Di =
γpi,i+1

1− γ(pi,i +
∑i−1
j=1 pi,j

∏i−1
k=j Dk)

.

Lemma 3.2. For all i < |w̃|, path-wise state values satisfy Vi = Di Vi+1.
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Proof. By Bellman equation, it holds that Vi =
∑|w̃|+1
j=1 pi,j(ri,j+γVj). By definition of M(w̃)

we have pi,j = 0 for j > i+1 and ri,j = 0 for (i, j) 6= (|w̃|, |w̃|+1). Thus Vi = γ
∑i+1
j=1 pi,jVj

for i < |w̃|. When i = 1, this becomes V1 = γ(p1,1V1+p1,2V2) =
γp1,2

1−γp1,1V2 = D1V2. Sup-

pose Vi = Di Vi+1 holds for all i ≤ k < |w̃|−1. Then Vi = (
∏k
j=iDj)Vk+1 for i ≤ k,

and therefore, Vk+1 = γ
∑k+2
j=1 pk+1,jVj = γ[

∑k+1
j=1 pk+1,j(

∏k
l=j Dl)Vk+1 + pk+1,k+2Vk+2] =

γpk+1,k+2

1−γ(pk+1,k+1+
∑k
j=1 pk+1,j

∏k
l=j Dl)

Vk+2 = Dk+1Vk+2. Thus, by the principle of induction, Vi =

Di Vi+1 holds for all i < |w̃|.

Lemma 3.3. For all i ≤ |w̃|, Vi = 1
γ

∏|w̃|
j=iDj . Particularly, V1 = 1

γ

∏|w̃|
j=1Dj .

Proof. By definition of w̃, there are two possible cases of the last step from s|w̃| to s|w̃|+1:
(I) s|w̃|+1 /∈ {s1, ..., s|w̃|}; (II) there exists k ≤ |w̃| such that s|w̃|+1 = sk.

(Case I) There is no transition starting from s|w̃|+1 in this case, thus V|w̃|+1 = 0. Therefore,
V|w̃| = p|w̃|,|w̃|+1(r|w̃|,|w̃|+1 + γV|w̃|+1) + γ

∑|w̃|
j=1 p|w̃|,jVj = p|w̃|,|w̃|+1 + γ

∑|w̃|
j=1 p|w̃|,jVj =

p|w̃|,|w̃|+1

1−γ(p|w̃|,|w̃|+
∑|w̃|−1
j=1 p|w̃|,j

∏|w̃|−1
k=j Dk)

= 1
γD|w̃|. Thus Vi = (

∏|w̃|−1
j=i Dj)V|w̃| =

1
γ

∏|w̃|
j=iDj .

(Case II with s|w̃|+1 = sk) In this case V|w̃|+1 = Vk and p|w̃|,|w̃|+1 = p|w̃|,k, thus V|w̃| =

p|w̃|,|w̃|+1(r|w̃|,|w̃|+1 + γVk) + γ
∑|w̃|
j=1,j 6=k p|w̃|,jVj = p|w̃|,|w̃|+1 + γ

∑|w̃|
j=1 p|w̃|,jVj which is the

same expression as the first case, and therefore Vi = 1
γ

∏|w̃|
j=iDj also holds for this case.

In both of the two cases above, V1 is the product of D1, D2, ..., D|w̃| given by Definition 3.1, and
an additional factor 1

γ . Thus we have ln(V1) = − ln(γ) +
∑|w̃|
j=1 ln(Dj). By replacing all pi,j in

Definition 3.1 with estimated transition p̂i,j , we get the “estimated” 2 joint dynamic effects D̂. Then
the equation above becomes ln(V̂1) = − ln(γ) +

∑|w̃|
j=1 ln(D̂j). Assuming D̂i’s as independent

random variables, it can be shown by the central limit theorem that as |w̃| grows, ln(V̂1) will tend to
a normal distribution, and therefore, V̂1 approximates a log-normal distribution.

The “estimated” joint dynamic effects D̂ are actually mutually dependent in most cases, thus the
rigorous analysis of log-normality is more complicated. The main idea here is to first prove all
D̂i ≤ γ, and then show that the summation involving terms pi,j

∏i−1
k=j D̂k in Definition 3.1 diminish

quickly with the size of w̃, which indicates that D̂i is mostly decided by p̂i,i and p̂i,i+1 and thus the
dependency between any two D̂ is relatively weak. As the focus here is to see the skewness of V̂1,
such analysis is skipped, and we proceed to the study of parameters of log-normal distribution of V̂1.

Since p̂i,i and p̂i,i+1 are the main factors that decide D̂i, we provide the result on the most repre-
sentative case where pi,i + pi,i+1 = 1 and all other pi,j are 0 for i < |w̃|. Such M(w̃) is denoted
M0(w̃) in the following text. It is easy to see that all D̂i are mutually independent in such chains.

The delta method [21, 22] below is used to obtain the expressions of parameters.

Lemma 3.4 (Delta method[21, 22]). Suppose X is a random variable with finite moments, E[X]
being its mean and Var[X] being its variance. Suppose f is a sufficiently differentiable function.
Then it holds that E[f(X)] ≈ f(E[X]), and Var[f(X)] ≈ f ′(E[X])2 Var[X].

Lemma 3.5. Let D̂j be Dj replacing all p with p̂. Let Ni denotes the number of visits to the chain
state si in a learning trajectory. In M0(w̃) derived chains it holds that E[D̂j ] ≈ γpj,j+1

1−γpj,j , and

Var[D̂j ] ≈ γ2(1−γ)2
(1−γpj,j)4 ·

pj,jpj,j+1

Nj
.

Proof. It holds that Var[p̂j,j+1] = ( 1
Nj

)2Njpj,jpj,j+1 =
pj,jpj,j+1

Nj
, then by applying Lemma 3.4 to

Definition 3.1.
2Such “estimation” is not done explicitly in actual algorithms, but implicitly when using Bellman equation.
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Lemma 3.6. In M0(w̃) derived chains it holds that

E[V̂1] =
1

γ

|w̃|∏
j=1

E[D̂j ],

Var[V̂1] ≈
1

γ2

( |w̃|∏
j=1

(Var[D̂j ] + E[D̂j ]
2)−

|w̃|∏
j=1

E[D̂j ]
2

)
.

Proof. For independent X1, X2, ..., Xn it holds that Var[X1...Xn] =
∏n
j=1(Var[Xj ] + E[Xj ]

2)−∏n
j=1 E[Xj ]

2. Since all D̂ are independent in M0(w̃), by applying this and Lemma 3.4 to Lemma
3.3, the above results can be obtained.

Theorem 3.7. In M0(w̃) with sufficiently large |w̃|, it holds that V̂1 ∼̇ lnN (µ, σ2) with µ =

ln
( E[V̂1]

2√
E[V̂1]2+Var[V̂1]

)
and σ2 = ln

(
1+Var[V̂1]

E[V̂1]2

)
, where E[V̂1] and Var[V̂1] are given by Lemma 3.6.

Proof. By applying the equations on the parameters of log-normal (see Section 2) to V̂1.

4 Skewness of Estimated State Values, and Countermeasures

This section interprets the results presented in Section 3 in terms of skewness, and discuss how to
reduce the undesirable effects of skewness. The skewness is mainly decided by two factors: (a)
parameter σ of log-normal distributions; (b) non-zero immediate rewards.

4.1 Impact of Parameter σ of Log-normal Distributions

A regular log-normal distribution lnN (µ, σ2) has a positive skewness, which means a sampled value
from such distribution has more than 0.5 probability to be less than its expected value, resulting in a
higher likelihood of underestimation. Precisely, if X ∼ lnN (µ, σ2), then E[X] = exp(µ + σ2/2)
and median[X] = exp(µ), thus the Pearson 2 coefficient of X is greater than 0. Additionally, since
lnN (µ, σ2) has a CDF(x) = 0.5(1 + erf( ln(x)−µ√

2σ
)) where erf(x) is the Gauss error function, our

indicator CDF(E[X])−0.5 equals to 0.5 erf(σ/
√
8). This indicates that σ has a stronger impact than

µ to the scale of the skewness in log-normal distributions.

Combining Lemma 3.6 and Theorem 3.7 shows that σ is decided by a complicated interaction
between all observed dynamic effect D̂j’s. By Lemma 3.5, transition probabilities pj,∗ completely
decide E[D̂j ], and have substantial impacts to Var[D̂j ].

This indicates that the main cause of skewness is the transition dynamics of MDPs rather than learning
algorithms. As an extreme case, if the forward transition of a state-action pair is deterministic (i.e.
pj,j+1 = 1), then its Var[D̂j ] = 0, resulting no contribution to the skewness. If an estimated
value consists of a large portion of such transitions, then the likelihoods of overestimation and
underestimation are both very low. On the other hand, if backward transition probability pj,j (or any
pj,k with k ≤ j) is close to 1, then Var[D̂j ] increases dramatically, resulting a noticeable skewness.
Real-world problems can be a mix of these two extremes, which leads to a great variety of skewness
among different actions/policies, making learning significantly more difficult.

By Lemma 3.5, σ is also dependent to the number of observations Nj . As Nj grows infinitely,
Var[D̂j ] slowly decreases to 0, which reduces Var[V̂1] in Lemma 3.6 and eventually leads σ to
0. This indicates that running algorithms more steps does help reduce the skewness of estimated
values and improve the overall performance. However, the expression of Var[D̂j ] in Lemma 3.5 also
indicates that the degree of improvement diminishes quickly as Nj grows. Therefore, collecting more
observations is not always an efficient way to reduce the skewness.
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Figure 3: (a) Log-normals weighted by positive reward (red) and negative reward (blue). Thick/thin
vertical lines are means & medians. (b, c) Convolution of two log-normals, given by the purple curve.

1 n2 3 ...

p p p p

1− p 1− p 1− p

1 1 1 1

1, rD 1, rG

Figure 4: A chain MDP with n states, forward probability p, goal reward rG and distraction reward
rD. Transitions under taking action a+ is drawn in solid arrows, and a− in dotted arrows.

4.2 Impact of Non-zero Immediate Rewards

Non-zero immediate rewards decide not only the scale of skewness, but also the direction of skewness.
By Equation 1 and 2 in Sections 3.1 and 3.2, path-wise values are weighted by their corresponding
immediate rewards before being summed into state values. If a path-wise state value is weighted by a
positive reward, then the resulting distribution is still a regular log-normal, which has a positive skew-
ness and thus a higher likelihood of underestimation. However, if it is weighted by a negative reward,
then the result is a flipped log-normal, which has a negative skewness and thus a higher likelihood of
overestimation. This is illustrated in Figure 3 (a), where the red and blue distributions correspond to
the estimated path-wise values weighted by a positive and a negative reward, respectively.

In general cases, the sum of positively skewed random variables is not necessarily a positively skewed
random variable. However, the sum of regular log-normal random variables can be approximated by
another log-normal [23], thus is still positively skewed. Since path-wise state values are approximately
log-normal, it is clear that if an MDP only has positive immediate rewards, then all estimated values
are likely to be positively skewed and thus have higher likelihoods to be underestimated.

On the other hand, if an estimated value is composed of both positive and negative rewards, then the
skewness of regular and flipped log-normal distributions may partly be neutralised in their convolution.
The purple distribution in Figure 3 (b) shows the result of convolution of two skewed distributions
that lie symmetrically to x = 0. The skewness is perfectly neutralised in this case, resulting in a
symmetric distribution with a balanced likelihood of under/overestimation. In the case of Figure 3
(c), the convolution is still a skewed one, but the scale of this skewness is less than the original ones.

To make learning easier, one may hope to design the reward function such that the more desirable
actions/policies have both higher expected returns and higher likelihood of overestimation than the
less desirable ones. However, the former requires more positive rewards, while the latter calls for
more negative rewards, causing an unsolvable dilemma. Therefore, it is more realistic just to balance
the likelihood of under/overestimation, so that all actions/policies can compete fairly with each other.
Reward shaping [24, 25] can be a promising choice to achieve this goal, as it preserves the optimality
of policies. Since a better balance of positive and negative rewards directly reduces the impact of the
skewness of all relevant log-normal distributions, this approach might be more effective than simply
collecting more observations.

5 Experiments

In this section, we present our empirical results on the skewness of estimated values. There are two
purposes in these experiments: (a) to demonstrate how substantial the harm of the skewness can be;
(b) to see the improvement provided by collecting more observations, as mentioned in Section 4.1.

We conducted experiments in chain MDPs shown in Figure 4. There are n > 0 states s1, s2, ..., sn in
a chain MDP. At each state, the agent has two possible actions a+ and a−. By taking a+ at si with
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Figure 5: (a) Distribution of V̂ π
+

(s1) at m = 200. (b) Underestimation probability curve.

i < n, the agent has probability p > 0 to be sent to si+1, and 1− p to remain at si. Taking a+ at sn
yields a goal reward rG > 0, and the agent remains at sn. Taking a−, on the other hand, sends the
agent from si to si−1 (i > 1) or s1 (i = 1) with probability 1, and if a− is taken at s1, then the agent
will be provided a distraction reward rD > 0.

The objective of the learning agent is to discover a policy that leads it to the goal sn and collects rG
as often as possible, rather than being distracted by rD. There are two policy of interest: π+ that
always take a+, and π− that always take a−. Other policies can be proved to be always worse than
π+ and π− in terms of V π(s1) regardless of rG, rD, p, and discount factor γ.

Since using max operator may introduce bias [10], we modified the default value iteration algorithm
[4] to let it output the unbiased estimated state values by following predetermined policies rather than
using max operator. In each run of experiment, m observations were collected for each state-action
pair, resulting in a data set of size 2mn. Then, the observations were passed to the modified value
iteration algorithm to estimate the state values of π+ and π− under discount factor γ = 0.9.

The Markov chain Mπ+

and Mπ− here are both single-path ones, and thus the corresponding
theoretical distributions of V̂ can be computed directly by applying Theorem 3.7. Further, since
transition probabilities in Mπ− are all 1, we have Var[V̂ π

−
] = 0, and thus its estimated values

always equal trivially to the ground truth one (i.e. it will never be under/overestimated).

The empirical and theoretical distributions of estimated state value V̂ π
+

(s1) with m = 200, n = 20,
p = 0.1, rG = 1e6 in 1000 runs is shown in Figure 5 (a). One-sample Kolmogorov-Smirnov test was
conducted against the null hypotheses that the empirical data came from the theoretical log-normal
distributions. The resulting p-value was 0.1190, which failed to reject the null hypothesis at 5%
significance level, indicating no significant difference between the theoretical and sample distribution.

More importantly, Figure 5 (a) shows a clear positive skewness, indicating a higher likelihood of
underestimation. The empirical value of indicator CDF(E[V̂ ])−0.5 was +0.103, meaning that in
60.3% of runs, the state value was underestimated. This further indicates that, if the distraction reward
rD is set to a value such that V π

−
(s1) is slightly less than V π

+

(s1), then the agent will wrongly
select π− with probability close to 0.603, which is worse than random guess.

To see whether collecting more observations helps reduce skewness, the same experiments as above
were conducted with the number of observations per state-action m ranged from 20 to 400. Figure 5
(b) shows the theoretical and empirical probability of underestimation Pr(V̂ π

+

(s1) < EV̂ π+

(s1)).
At m = 20, 200 and 400, the empirical underestimate probability was 0.741, 0.603 and 0.563,
respectively. While from m = 20 to 200 there was an significant improvement of 0.138, or a 18.6%
relative improvement, from 200 to 400 it was only 0.040, or 6.6% relative. This result supports
the analysis in Section 4.1, demonstrating that the merit of collecting more observations is most
noticeable when the sample size is low, and diminishes quickly as the sample size grows.

We also conducted experiments in the complex maze domain [26] in the same manner as above. In
this domain, the task of the agent is to find a policy that can collect all flags and bring them to the
goal as often as possible, without falling into any traps. The maze used is given in Figure 6 (a).

The states in this domain is represented by the current position of the agent and the status of the three
flags. The agent starts at the start point indicated by S with no flag. At each time step, the agent can
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Figure 6: (a) A complex maze. S, G, numbers, and circles stand for start, goal, flags, and traps,
respectively. (b) Distribution of V̂ π

∗
(sstart) at m = 10. (c) Underestimation probability curve.

select one of the four directions to move to. The agent is then sent to the adjacent grid at the chosen
direction with probability 0.7, and at each of the other three directions with probability 0.1, unless the
destination is blocked, in which case the agent remains at the current grid. Additionally, at the flag
grids (numbers in Figure 6 (a)), taking actions also provides the corresponding flag to the agent if
that flag has not been obtained yet. At the goal point (G), taking arbitrary action yields an immediate
reward equals to 1, 100, 1002 or 1003 if the agent holds 0, 1, 2 or 3 flags, respectively. Then the agent
is sent back to the start point, and all three flag are reset to their initial position. Finally, at any trap
grid (circles), taking actions sends the agent to S and resets all flags without yielding a goal reward.

The complex maze in Figure 6(a) has 440 states, 4 actions, 32 non-zero immediate rewards, and
complicated transition patterns, and thus is difficult to analyse manually. However, it is noticeable
that all non-zero immediate rewards are positive, and thus according to Section 4.2, estimated state
values are likely to have positive skew, resulting in greater likelihood of underestimation.

Figure 6 (b) shows the empirical distribution of estimated value V̂ π
∗
(sstart, no flag) under γ = 0.9 and

m = 10 in 1000 runs. Although it is not a path-wise state value, the distribution is approximately
log-normal with parameter µ ≈ 8.21, σ ≈ 0.480. In 67.6% of these 1000 runs, the optimal state
value at the start state was underestimated.

The effect of collecting a larger sample is show in Figure 6 (c). The probability of underestimation
decreased from 0.676 at m = 10 to 0.597 at m = 50, 0.563 at m = 100, and 0.556 at m = 200.
The data points approximated an exponential function y = 0.1725 exp(−0.04015x)+0.5546, which
suggests that it can be very difficult to achieve underestimation probability lower than 0.55 by
collecting more data in this domain.

6 Conclusion and Future Work

This paper has shown that estimated state values computed using the Bellman equation can be
decomposed to the relevant path-wise state values, and the latter obey log-normal distributions.
Since log-normal distributions are skewed, the estimated state values also have skewed distributions,
resulting in imbalanced likelihood of under/overestimation, which can be harmful for learning.

We have also pointed out that the direction of such imbalance is decided by the immediate reward
associated to the log-normal distributions, and thus, by carefully balancing the impact of positive and
negative rewards when designing the MDPs, such undesirable imbalance can possibly be neutralised.
Collecting more observations, on the other hand, helps reduce the skewness to a degree, but such
effect becomes less significant when the sample size is already large.

It would be interesting to see how the skewness studied in this paper interacts with function approxi-
mation (e.g. neural networks [27, 28]), policy gradient [29, 30], or Monte-Carlo tree search [31, 32].
A reasonable guess is that these techniques introduce their own skewness, and the two different
skewness amplify each other, making learning even more difficult. On the other hand, reducing the
skewness discussed in this paper may improve learning performance even when such techniques
are used. Therefore, developing a concrete method of balancing positive and negative rewards (as
discussed in Section 4.2) can be very helpful, and will be investigated in the future.
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