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Abstract

Greedy optimization methods such as Matching Pursuit (MP) and Frank-Wolfe
(FW) algorithms regained popularity in recent years due to their simplicity, effec-
tiveness and theoretical guarantees. MP and FW address optimization over the
linear span and the convex hull of a set of atoms, respectively. In this paper, we
consider the intermediate case of optimization over the convex cone, parametrized
as the conic hull of a generic atom set, leading to the first principled definitions
of non-negative MP algorithms for which we give explicit convergence rates and
demonstrate excellent empirical performance. In particular, we derive sublinear
(O(1/t)) convergence on general smooth and convex objectives, and linear con-
vergence (O(e−t)) on strongly convex objectives, in both cases for general sets
of atoms. Furthermore, we establish a clear correspondence of our algorithms
to known algorithms from the MP and FW literature. Our novel algorithms and
analyses target general atom sets and general objective functions, and hence are
directly applicable to a large variety of learning settings.

1 Introduction

In recent years, greedy optimization algorithms have attracted significant interest in the domains
of signal processing and machine learning thanks to their ability to process very large data sets.
Arguably two of the most popular representatives are Frank-Wolfe (FW) [12, 21] and Matching
Pursuit (MP) algorithms [34], in particular Orthogonal MP (OMP) [9, 49]. While the former targets
minimization of a convex function over bounded convex sets, the latter apply to minimization over a
linear subspace. In both cases, the domain is commonly parametrized by a set of atoms or dictionary
elements, and in each iteration, both algorithms rely on querying a so-called linear minimization
oracle (LMO) to find the direction of steepest descent in the set of atoms. The iterate is then updated
as a linear or convex combination, respectively, of previous iterates and the newly obtained atom
from the LMO. The particular choice of the atom set allows to encode structure such as sparsity and
non-negativity (of the atoms) into the solution. This enables control of the trade-off between the
amount of structure in the solution and approximation quality via the number of iterations, which
was found useful in a large variety of use cases including structured matrix and tensor factorizations
[50, 53, 54, 18].

In this paper, we target an important “intermediate case” between the two domain parameterizations
given by the linear span and the convex hull of an atom set, namely the parameterization of the
optimization domain as the conic hull of a possibly infinite atom set. In this case, the solution
can be represented as a non-negative linear combination of the atoms, which is desirable in many
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applications, e.g., due to the physics underlying the problem at hand, or for the sake of interpretability.
Concrete examples include unmixing problems [11, 16, 3], model selection [33], and matrix and
tensor factorizations [4, 24]. However, existing convergence analyses do not apply to the currently
used greedy algorithms. In particular, all existing MP variants for the conic hull case [5, 38, 52] are
not guaranteed to converge and may get stuck far away from the optimum (this can be observed in
the experiments in Section 6). From a theoretical perspective, this intermediate case is of paramount
interest in the context of MP and FW algorithms. Indeed, the atom set is not guaranteed to contain
an atom aligned with a descent direction for all possible suboptimal iterates, as is the case when the
optimization domain is the linear span or the convex hull of the atom set [39, 32]. Hence, while conic
constraints have been widely studied in the context of a manifold of different applications, none of
the existing greedy algorithms enjoys explicit convergence rates.

We propose and analyze new MP algorithms tailored for the minimization of smooth convex functions
over the conic hull of an atom set. Specifically, our key contributions are:

• We propose the first (non-orthogonal) MP algorithm for optimization over conic hulls
guaranteed to converge, and prove a corresponding sublinear convergence rate with ex-
plicit constants. Surprisingly, convergence is achieved without increasing computational
complexity compared to ordinary MP.

• We propose new away-step, pairwise, and fully corrective MP variants, inspired by variants
of FW [28] and generalized MP [32], respectively, that allow for different degrees of weight
corrections for previously selected atoms. We derive corresponding sublinear and linear (for
strongly convex objectives) convergence rates that solely depend on the geometry of the
atom set.

• All our algorithms apply to general smooth convex functions. This is in contrast to all prior
work on non-negative MP, which targets quadratic objectives [5, 38, 52]. Furthermore, if
the conic hull of the atom set equals its linear span, we recover both algorithms and rates
derived in [32] for generalized MP variants.

• We make no assumptions on the atom set which is simply a subset of a Hilbert space, in
particular we do not assume the atom set to be finite.

Before presenting our algorithms (Section 3) along with the corresponding convergence guarantees
(Section 4), we briefly review generalized MP variants. A detailed discussion of related work can
be found in Section 5 followed by illustrative experiments on a least squares problem on synthetic
data, and non-negative matrix factorization as well as non-negative garrote logistic regression as
applications examples on real data (numerical evaluations of more applications and the dependency
between constants in the rate and empirical convergence can be found in the supplementary material).

Notation. Given a non-empty subset A of some Hilbert space, let conv(A) be the convex hull
of A, and let lin(A) denote its linear span. Given a closed set A, we call its diameter diam(A) =
maxz1,z2∈A ‖z1 − z2‖ and its radius radius(A) = maxz∈A ‖z‖. ‖x‖A := inf{c > 0: x ∈
c · conv(A)} is the atomic norm of x over a set A (also known as the gauge function of conv(A)).
We call a subset A of a Hilbert space symmetric if it is closed under negation.

2 Review of Matching Pursuit Variants

LetH be a Hilbert space with associated inner product 〈x,y〉, ∀x,y ∈ H. The inner product induces
the norm ‖x‖2 := 〈x,x〉, ∀x ∈ H. Let A ⊂ H be a compact set (the “set of atoms” or dictionary)
and let f : H→R be convex and L-smooth (L-Lipschitz gradient in the finite dimensional case).
If H is an infinite-dimensional Hilbert space, then f is assumed to be Fréchet differentiable. The
generalized MP algorithm studied in [32], presented in Algorithm 1, solves the following optimization
problem:

min
x∈lin(A)

f(x). (1)

In each iteration, MP queries a linear minimization oracle (LMO) solving the following linear
problem:

LMOA(y) := arg min
z∈A

〈y, z〉 (2)

for a given query y ∈ H. The MP update step minimizes a quadratic upper bound gxt(x) =
f(xt) + 〈∇f(xt),x− xt〉+ L

2 ‖x− xt‖2 of f at xt, where L is an upper bound on the smoothness
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constant of f with respect to a chosen norm ‖ · ‖. Optimizing this norm problem instead of f
directly allows for substantial efficiency gains in the case of complicated f . For symmetric A and for
f(x) = 1

2‖y − x‖2, y ∈ H, Algorithm 1 recovers MP (Variant 0) [34] and OMP (Variant 1) [9, 49],
see [32] for details.

Algorithm 1 Norm-Corrective Generalized Match-
ing Pursuit

1: init x0 ∈ lin(A), and S := {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: S := S ∪ {zt}
5: Let b := xt − 1

L∇f(xt)
6: Variant 0:

Update xt+1 := arg min
z:=xt+γzt

γ∈R

‖z− b‖2

7: Variant 1:
Update xt+1 := arg min

z∈lin(S)

‖z− b‖2

8: Optional: Correction of some/all atoms z0...t

9: end for

Approximate linear oracles. Solving the
LMO defined in (2) exactly is often hard in
practice, in particular when applied to matrix
(or tensor) factorization problems, while ap-
proximate versions can be much more efficient.
Algorithm 1 allows for an approximate LMO.
For given quality parameter δ ∈ (0, 1] and
given direction d ∈ H, the approximate LMO
for Algorithm 1 returns a vector z̃ ∈ A such
that

〈d, z̃〉 ≤ δ〈d, z〉, (3)
relative to z = LMOA(d) being an exact solu-
tion.

Discussion and limitations of MP. The anal-
ysis of the convergence of Algorithm 1 in [32]
critically relies on the assumption that the ori-
gin is in the relative interior of conv(A) with

respect to its linear span. This assumption originates from the fact that the convergence of MP- and
FW-type algorithms fundamentally depends on an alignment assumption of the search direction
returned by the LMO (i.e., zt in Algorithm 1) and the gradient of the objective at the current iteration
(see third premise in [39]). Specifically, for Algorithm 1, the LMO is assumed to select a descent
direction, i.e., 〈∇f(xt), zt〉 < 0, so that the resulting weight (i.e., γ for Variant 0) is always positive.
In this spirit, Algorithm 1 is a natural candidate to minimize f over the conic hull of A. However,
if the optimization domain is a cone, the alignment assumption does not hold as there may be
non-stationary points x in the conic hull of A for which minz∈A〈∇f(x), z〉 = 0. Algorithm 1 is
therefore not guaranteed to converge when applied to conic problems. The same issue arises for
essentially all existing non-negative variants of MP, see, e.g., Alg. 2 in [38] and in Alg. 2 in [52]. We
now present modifications corroborating this issue along with the resulting MP-type algorithms for
conic problems and corresponding convergence guarantees.

3 Greedy Algorithms on Conic Hulls

The cone cone(A− y) tangent to the convex set conv(A) at a point y is formed by the half-lines
emanating from y and intersecting conv(A) in at least one point distinct from y. Without loss of
generality we consider 0 ∈ A and assume the set cone(A) (i.e., y = 0) to be closed. If A is finite
the cone constraint can be written as cone(A) := {x : x =

∑|A|
i=1 αiai s.t. ai ∈ A, αi ≥ 0 ∀i}. We

consider conic optimization problems of the form:

min
x∈cone(A)

f(x). (4)

Note that if the setA is symmetric or if the origin is in the relative interior of conv(A) w.r.t. its linear
span then cone(A) = lin(A). We will show later how our results recover known MP rates when the
origin is in the relative interior of conv(A).

As a first algorithm to solve problems of the form (4), we present the Non-Negative Generalized
Matching Pursuit (NNMP) in Algorithm 2 which is an extension of MP to general f and non-negative
weights.

Discussion: Algorithm 2 differs from Algorithm 1 (Variant 0) in line 4, adding the iteration-
dependent atom − xt

‖xt‖A to the set of possible search directions1. We use the atomic norm for the

1This additional direction makes sense only if xt 6= 0. Therefore, we set − xt
‖xt‖A

= 0 if xt = 0, i.e., no
direction is added.

3



Algorithm 2 Non-Negative Matching Pursuit

1: init x0 = 0 ∈ A
2: for t = 0 . . . T
3: Find z̄t := (Approx-)LMOA(∇f(xt))
4: zt = arg min

z∈
{
z̄t,

−xt
‖xt‖A

}〈∇f(xt), z〉

5: γ := 〈−∇f(xt),zt〉
L‖zt‖2

6: Update xt+1 := xt + γzt
7: end for

Figure 1: Two dimensional example for TA(xt) where
A = {a1,a2}, for three different iterates x0, x1 and
x2. The shaded area corresponds to TA(xt) and the
white area to lin(A) \ TA(xt).

normalization because it yields the best constant in the convergence rate. In practice, one can replace
it with the Euclidean norm, which is often much less expensive to compute. This iteration-dependent
additional search direction allows to reduce the weights of the atoms that were previously selected,
thus admitting the algorithm to “move back” towards the origin while maintaining the cone constraint.
This idea is informally explained here and formally studied in Section 4.1.

Recall the alignment assumption of the search direction and the gradient of the objective at the current
iterate discussed in Section 2 (see also [39]). Algorithm 2 obeys this assumption. The intuition
behind this is the following. Whenever xt is not a minimizer of (4) and minz∈A〈∇f(xt), z〉 = 0,
the vector − xt

‖xt‖A is aligned with ∇f(xt) (i.e., 〈∇f(xt),− xt
‖xt‖A 〉 < 0), preventing the algorithm

from stopping at a suboptimal iterate. To make this intuition more formal, let us define the set of
feasible descent directions of Algorithm 2 at a point x ∈ cone(A) as:

TA(x) :=

{
d ∈ H : ∃z ∈ A ∪

{
− x

‖x‖A

}
s.t. 〈d, z〉 < 0

}
. (5)

If at some iteration t = 0, 1, . . . the gradient ∇f(xt) is not in TA(xt) Algorithm 2 terminates as
minz∈A〈d, z〉 = 0 and 〈d,−xt〉 ≥ 0 (which yields zt = 0). Even though, in general, not every
direction in H is a feasible descent direction, ∇f(xt) /∈ TA only occurs if xt is a constrained
minimum of Equation 4:
Lemma 1. If x̃ ∈ cone(A) and ∇f(x̃) 6∈ TA then x̃ is a solution to minx∈cone(A) f(x).

Initializing Algorithm 2 with x0 = 0 guarantees that the iterates xt always remain inside cone(A)
even though this is not enforced explicitly (by convexity of f , see proof of Theorem 2 in Appendix D
for details).

Limitations of Algorithm 2: Let us call active the atoms which have nonzero weights in the
representation of xt =

∑t−1
i=0 αizi computed by Algorithm 2. Formally, the set of active atoms is

defined as S := {zi : αi > 0, i = 0, 1, . . . , t− 1}. The main drawback of Algorithm 2 is that when
the direction − xt

‖xt‖A is selected, the weight of all active atoms is reduced. This can lead to the
algorithm alternately selecting − xt

‖xt‖A and an atom from A, thereby slowing down convergence in a
similar manner as the zig-zagging phenomenon well-known in the Frank-Wolfe framework [28]. In
order to achieve faster convergence we introduce the corrective variants of Algorithm 2.

3.1 Corrective Variants

To achieve faster (linear) convergence (see Section 4.2) we introduce variants of Algorithm 2, termed
Away-steps MP (AMP) and Pairwise MP (PWMP), presented in Algorithm 3. Here, inspired by the
away-steps and pairwise variants of FW [12, 28], instead of reducing the weights of the active atoms
uniformly as in Algorithm 2, the LMO is queried a second time on the active set S to identify the
direction of steepest ascent in S. This allows, at each iteration, to reduce the weight of a previously
selected atom (AMP) or swap weight between atoms (PWMP). This selective “reduction” or “swap
of weight” helps to avoid the zig-zagging phenomenon which prevent Algorithm 2 from converging
linearly.

At each iteration, Algorithm 3 updates the weights of zt and vt as αzt = αzt +γ and αvt = αvt −γ,
respectively. To ensure that xt+1 ∈ cone(A), γ has to be clipped according to the weight which is
currently on vt, i.e., γmax = αvt . If γ = γmax, we set αvt = 0 and remove vt from S as the atom vt
is no longer active. If dt ∈ A (i.e., we take a regular MP step and not an away step), the line search
is unconstrained (i.e., γmax =∞).
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For both algorithm variants, the second LMO query increases the computational complexity. Note
that an exact search on S is feasible in practice as |S| has at most t elements at iteration t.

Taking an additional computational burden allows to update the weights of all active atoms in the
spirit of OMP. This approach is implemented in the Fully Corrective MP (FCMP), Algorithm 4.

Algorithm 3 Away-steps (AMP) and Pairwise
(PWMP) Non-Negative Matching Pursuit

1: init x0 = 0 ∈ A, and S := {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: Find vt := (Approx-)LMOS(−∇f(xt))
5: S = S ∪ zt
6: AMP: dt=arg mind∈{zt,−vt}〈∇f(xt),d〉
7: PWMP: dt = zt − vt

8: γ := min
{
〈−∇f(xt),dt〉

L‖dt‖2 , γmax

}
(γmax see text)

9: Update αzt , αvt and S according to γ
(γ see text)

10: Update xt+1 := xt + γdt
11: end for

Algorithm 4 Fully Corrective Non-Negative
Matching Pursuit (FCMP)

1: init x0 = 0 ∈ A,S = {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: S := S ∪ {zt}
5: Variant 0:

xt+1 = arg min
x∈cone(S)

‖x−(xt− 1
L∇f(xt))‖2

6: Variant 1:
xt+1 = arg minx∈cone(S) f(x)

7: Remove atoms with zero weights from S
8: end for

At each iteration, Algorithm 4 maintains the set of active atoms S by adding zt and removing atoms
with zero weights after the update. In Variant 0, the algorithm minimizes the quadratic upper bound
gxt(x) on f at xt (see Section 2) imitating a gradient descent step with projection onto a “varying”
target, i.e., cone(S). In Variant 1, the original objective f is minimized over cone(S) at each iteration,
which is in general more efficient than minimizing f over cone(A) using a generic solver for cone
constrained problems. For f(x) = 1

2‖y − x‖2, y ∈ H, Variant 1 recovers Algorithm 1 in [52] and
the OMP variant in [5] which both only apply to this specific objective f .

3.2 Computational Complexity
algorithm cost per iteration convergence k(t)
NNMP C +O(d) O(1/t) -
PWMP C +O(d+ td) O

(
e−βk(t)

)
t

3|A|!+1

AMP C +O(d+ td) O
(
e−

β
2 k(t)

)
t/2

FCMP v. 0 C +O(d) + h0 O
(
e−βk(t)

)
t

3|A|!+1

FCMP v. 1 C +O(d) + h1 O
(
e−βk(t)

)
t

Table 1: Computational complexity versus convergence rate (see Sec-
tion 4) for strongly convex objectives

We briefly discuss the computa-
tional complexity of the algorithms
we introduced. ForH = Rd, sums
and inner products have cost O(d).
Let us assume that each call of the
LMO has cost C on the set A and
O(td) on S. The variants 0 and 1
of FCMP solve a cone problem at
each iteration with cost h0 and h1,
respectively. In general, h0 can be
much smaller than h1. In Table 1
we report the cost per iteration for every algorithm along with the asymptotic convergence rates
derived in Section 4.

4 Convergence Rates

In this section, we present convergence guarantees for Algorithms 2, 3, and 4. All proofs are deferred
to the Appendix in the supplementary material. We write x? ∈ arg minx∈cone(A) f(x) for an optimal
solution. Our rates will depend on the atomic norm of the solution and the iterates of the respective
algorithm variant:

ρ = max {‖x?‖A, ‖x0‖A . . . , ‖xT ‖A} . (6)

If the optimum is not unique, we consider x? to be one of largest atomic norm. A more intuitive
and looser notion is to simply upper-bound ρ by the diameter of the level set of the initial iterate
x0 measured by the atomic norm. Then, boundedness follows since the presented method is a
descent method (due to Lemma 1 and line search on the quadratic upper bound, each iteration strictly
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decreases the objective and our method stops only at the optimum). This justifies the statement
f(xt) ≤ f(x0). Hence, ρ must be bounded for any sequence of iterates produced by the algorithm,
and the convergence rates presented in this section are valid as T goes to infinity. A similar notion to
measure the convergence of MP was established in [32]. All of our algorithms and rates can be made
affine invariant. We defer this discussion to Appendix B.

4.1 Sublinear Convergence

We now present the convergence results for the non-negative and Fully-Corrective Matching Pursuit
algorithms. Sublinear convergence of Algorithm 3 is addressed in Theorem 3.
Theorem 2. Let A ⊂ H be a bounded set with 0 ∈ A, ρ := max {‖x?‖A, ‖x0‖A, . . . , ‖xT ‖A, }
and f be L-smooth over ρ conv(A ∪−A). Then, Algorithms 2 and 4 converge for t ≥ 0 as

f(xt)− f(x?) ≤
4
(

2
δLρ

2 radius(A)2 + ε0

)
δt+ 4

,

where δ ∈ (0, 1] is the relative accuracy parameter of the employed approximate LMO (see Equa-
tion (3)).

Relation to FW rates. By rescaling A by a large enough factor τ > 0, FW with τA as atom
set could in principle be used to solve (4). In fact, for large enough τ , only the constraints of (4)
become active when minimizing f over conv(τA). The sublinear convergence rate obtained with
this approach is up to constants identical to that in Theorem 2 for our MP variants, see [21]. However,
as the correct scaling is unknown, one has to either take the risk of choosing τ too small and hence
failing to recover an optimal solution of (4), or to rely on too large τ which can result in slow
convergence. In contrast, knowledge of ρ is not required to run our MP variants.

Relation to MP rates. If A is symmetric, we have that lin(A) = cone(A) and it is easy to show
that the additional direction − xt

‖xt‖ in Algorithm 2 is never selected. Therefore, Algorithm 2 becomes
equivalent to Variant 0 of Algorithm 1, while Variant 1 of Algorithm 1 is equivalent to Variant 0 of
Algorithm 4. The rate specified in Theorem 2 hence generalizes the sublinear rate in [32, Theorem 2]
for symmetric A.

4.2 Linear Convergence

We start by recalling some of the geometric complexity quantities that were introduced in the context
of FW and are adapted here to the optimization problem we aim to solve (minimization over cone(A)
instead of conv(A)).

Directional Width. The directional width of a set A w.r.t. a direction r ∈ H is defined as:

dirW (A, r) := max
s,v∈A

〈
r
‖r‖ , s− v

〉
(7)

Pyramidal Directional Width [28]. The Pyramidal Directional Width of a set A with respect to a
direction r and a reference point x ∈ conv(A) is defined as:

PdirW (A, r,x) := min
S∈Sx

dirW (S ∪ {s(A, r)}, r), (8)

where Sx := {S | S ⊂ A and x is a proper convex combination of all the elements in S} and
s(A, r) := maxs∈A〈 r

‖r‖ , s〉.

Inspired by the notion of pyramidal width in [28], which is the minimal pyramidal directional width
computed over the set of feasible directions, we now define the cone width of a set A where only
the generating faces (g-faces) of cone(A) (instead of the faces of conv(A)) are considered. Before
doing so we introduce the notions of face, generating face, and feasible direction.

Face of a convex set. Let us consider a set K with a k−dimensional affine hull along with a
point x ∈ K. Then, K is a k−dimensional face of conv(A) if K = conv(A) ∩ {y : 〈r,y − x〉 =
0} for some normal vector r and conv(A) is contained in the half-space determined by r, i.e.,
〈r,y − x〉 ≤ 0, ∀ y ∈ conv(A). Intuitively, given a set conv(A) one can think of conv(A) being a
dim(conv(A))−dimensional face of itself, an edge on the border of the set a 1-dimensional face and
a vertex a 0-dimensional face.
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Face of a cone and g-faces. Similarly, a k−dimensional face of a cone is an open and unbounded
set cone(A) ∩ {y : 〈r,y − x〉 = 0} for some normal vector r and cone(A) is contained in the half
space determined by r. We can define the generating faces of a cone as:

g-faces(cone(A)) :={B ∩ conv(A) :B ∈ faces(cone(A))} .

Note that g-faces(cone(A)) ⊂ faces(conv(A)) and conv(A) ∈ g-faces(cone(A)). Furthermore,
for each K ∈ g-faces(cone(A)), cone(K) is a k−dimensional face of cone(A).

We now introduce the notion of feasible directions. A direction d is feasible from x ∈ cone(A) if it
points inwards cone(A), i.e., if ∃ε > 0 s.t. x + εd ∈ cone(A). Since a face of the cone is itself a
cone, if a direction is feasible from x ∈ cone(K) \ 0, it is feasible from every positive rescaling of x.
We therefore can consider only the feasible directions on the generating faces (which are closed and
bounded sets). Finally, we define the cone width of A.

Cone Width.

CWidth(A) := min
K∈g-faces(cone(A))

x∈K
r∈cone(K−x)\{0}

PdirW (K ∩A, r,x) (9)

We are now ready to show the linear convergence of Algorithms 3 and 4.

Theorem 3. Let A ⊂ H be a bounded set with 0 ∈ A and let the objective function f : H→R be
both L-smooth and µ-strongly convex over ρ conv(A ∪−A). Then, the suboptimality of the iterates
of Algorithms 3 and 4 decreases geometrically at each step in which γ < αvt (henceforth referred to
as “good steps”) as:

εt+1 ≤ (1− β) εt, (10)

where β := δ2 µCWidth(A)2

L diam(A)2 ∈ (0, 1], εt := f(xt)−f(x?) is the suboptimality at step t and δ ∈ (0, 1]

is the relative accuracy parameter of the employed approximate LMO (3). For AMP (Algorithm 3),
βAMP = β/2. If µ = 0 Algorithm 3 converges with rate O(1/k(t)) where k(t) is the number of

“good steps” up to iteration t.

Discussion. To obtain a linear convergence rate, one needs to upper-bound the number of “bad
steps” t−k(t) (i.e., steps with γ ≥ αvt ). We have that k(t) = t for Variant 1 of FCMP (Algorithm 4),
k(t) ≥ t/2 for AMP (Algorithm 3) and k(t) ≥ t/(3|A|! + 1) for PWMP (Algorithm 3) and Variant 0
of FCMP (Algorithm 4). This yields a global linear convergence rate of εt ≤ ε0 exp (−βk(t)). The
bound for PWMP is very loose and only meaningful for finite sets A. However, it can be observed
in the experiments in the supplementary material (Appendix A) that only a very small fraction of
iterations result in bad PWMP steps in practice. Further note that Variant 1 of FCMP (Algorithm 4)
does not produce bad steps. Also note that the bounds on the number of good steps given above are
the same as for the corresponding FW variants and are obtained using the same (purely combinatorial)
arguments as in [28].

Relation to previous MP rates. The linear convergence of the generalized (not non-negative) MP
variants studied in [32] crucially depends on the geometry of the set which is characterized by the
Minimal Directional Width mDW(A):

mDW(A) := min
d∈lin(A)

d6=0

max
z∈A
〈 d

‖d‖
, z〉 . (11)

The following Lemma relates the Cone Width with the minimal directional width.

Lemma 4. If the origin is in the relative interior of conv(A) with respect to its linear span, then
cone(A) = lin(A) and CWidth(A) = mDW(A).

Now, if the set A is symmetric or, more generally, if cone(A) spans the linear space lin(A) (which
implies that the origin is in the relative interior of conv(A)), there are no bad steps. Hence, by
Lemma 4, the linear rate obtained in Theorem 3 for non-negative MP variants generalizes the one
presented in [32, Theorem 7] for generalized MP variants.
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Relation to FW rates. Optimization over conic hulls with non-negative MP is more similar to FW
than to MP itself in the following sense. For MP, every direction in lin(A) allows for unconstrained
steps, from any iterate xt. In contrast, for our non-negative MPs, while some directions allow for
unconstrained steps from some iterate xt, others are constrained, thereby leading to the dependence
of the linear convergence rate on the cone width, a geometric constant which is very similar in spirit
to the Pyramidal Width appearing in the linear convergence bound in [28] for FW. Furthermore, as
for Algorithm 3, the linear rate of Away-steps and Pairwise FW holds only for good steps. We finally
relate the cone width with the Pyramidal Width [28]. The Pyramidal Width is defined as

PWidth(A) := min
K∈faces(conv(A))

x∈K
r∈cone(K−x)\{0}

PdirW (K ∩A, r,x).

We have CWidth(A) ≥ PWidth(A) as the minimization in the definition (9) of CWidth(A) is only
over the subset g-faces(cone(A)) of faces(conv(A)). As a consequence, the decrease per iteration
characterized in Theorem 3 is larger than what one could obtain with FW on the rescaled convex set
τA (see Section 4.1 for details about the rescaling). Furthermore, the decrease characterized in [28]
scales as 1/τ2 due to the dependence on 1/diam(conv(A))2.

5 Related Work

The line of recent works by [44, 46, 47, 48, 37, 32] targets the generalization of MP from the
least-squares objective to general smooth objectives and derives corresponding convergence rates
(see [32] for a more in-depth discussion). However, only little prior work targets MP variants with
non-negativity constraint [5, 38, 52]. In particular, the least-squares objective was addressed and
no rigorous convergence analysis was carried out. [5, 52] proposed an algorithm equivalent to our
Algorithm 4 for the least-squares case. More specifically, [52] then developed an acceleration heuristic,
whereas [5] derived a coherence-based recovery guarantee for sparse linear combinations of atoms.
Apart from MP-type algorithms, there is a large variety of non-negative least-squares algorithms,
e.g., [30], in particular also for matrix and tensor spaces. The gold standard in factorization problems
is projected gradient descent with alternating minimization, see [43, 4, 45, 23]. Other related works
are [40], which is concerned with the feasibility problem on symmetric cones, and [19], which
introduces a norm-regularized variant of problem (4) and solves it using FW on a rescaled convex
set. To the best of our knowledge, in the context of MP-type algorithms, we are the first to combine
general convex objectives with conic constraints and to derive corresponding convergence guarantees.

Boosting: In an earlier line of work, a flavor of the generalized MP became popular in the context
of boosting, see [35]. The literature on boosting is vast, we refer to [42, 35, 7] for a general overview.
Taking the optimization perspective given in [42], boosting is an iterative greedy algorithm minimizing
a (strongly) convex objective over the linear span of a possibly infinite set called hypothesis class.
The convergence analysis crucially relies on the assumption of the origin being in the relative interior
of the hypothesis class, see Theorem 1 in [17]. Indeed, Algorithm 5.2 of [35] might not converge
if the [39] alignment assumption is violated. Here, we managed to relax this assumption while
preserving essentially the same asymptotic rates in [35, 17]. Our work is therefore also relevant in
the context of (non-negative) boosting.

6 Illustrative Experiments
We illustrate the performance of the presented algorithms on three different exemplary tasks, showing
that our algorithms are competitive with established baselines across a wide range of objective func-
tions, domains, and data sets while not being specifically tailored to any of these tasks (see Section 3.2
for a discussion of the computational complexity of the algorithms). Additional experiments targeting
KL divergence NMF, non-negative tensor factorization, and hyperspectral image unmixing can be
found in the appendix.

Synthetic data. We consider minimizing the least squares objective on the conic hull
of 100 unit-norm vectors sampled at random in the first orthant of R50. We compare
the convergence of Algorithms 2, 3, and 4 with the Fast Non-Negative MP (FNNOMP)
of [52], and Variant 3 (line-search) of the FW algorithm in [32] on the atom set rescaled
by τ = 10‖y‖ (see Section 4.1), observing linear convergence for our corrective variants.
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Figure 2: Synthetic data experiment.

Figure 2 shows the suboptimality εt, averaged over 20
realizations ofA and y, as a function of the iteration t. As
expected, FCMP achieves fastest convergence followed
by PWMP, AMP and NNMP. The FNNOMP gets stuck
instead. Indeed, [52] only show that the algorithm termi-
nates and not its convergence.

Non-negative matrix factorization. The second task
consists of decomposing a given matrix into the product
of two non-negative matrices as in Equation (1) of [20].
We consider the intersection of the positive semidefinite
cone and the positive orthant. We parametrize the set A as
the set of matrices obtained as an outer product of vectors

from A1 = {z ∈ Rk : zi ≥ 0 ∀ i} and A2 = {z ∈ Rd : zi ≥ 0 ∀ i}. The LMO is approximated
using a truncated power method [55], and we perform atom correction with greedy coordinate descent
see, e.g., [29, 18], to obtain a better objective value while maintaining the same (small) number of
atoms. We consider three different datasets: The Reuters Corpus2, the CBCL face dataset3 and the
KNIX dataset4. The subsample of the Reuters corpus we used is a term frequency matrix of 7,769
documents and 26,001 words. The CBCL face dataset is composed of 2,492 images of 361 pixels
each, arranged into a matrix. The KNIX dataset contains 24 MRI slices of a knee, arranged in a
matrix of size 262, 144× 24. Pixels are divided by their overall mean intensity. For interpretability
reasons, there is interest to decompose MRI data into non-negative factorizations [25]. We compare
PWMP and FCMP against the multiplicative (mult) and the alternating (als) algorithm of [4], and the
greedy coordinate descent (GCD) of [20]. Since the Reuters corpus is much larger than the CBCL
and the KNIX dataset we only used the GCD for which a fast implementation in C is available. We
report the objective value for fixed values of the rank in Table 2, showing that FCMP outperform all
the baselines across all the datasets. PWMP achieves smallest error on the Reuters corpus.

Non-negative garrote. We consider the non-negative garrote which is a common approach to
model order selection [6]. We evaluate NNMP, PWMP, and FCMP in the experiment described
in [33], where the non-negative garrote is used to perform model order selection for logistic regression
(i.e., for a non-quadratic objective function). We evaluated training and test accuracy on 100 random
splits of the sonar dataset from the UCI machine learning repository. In Table 3 we compare the
median classification accuracy of our algorithms with that of the cyclic coordinate descent algorithm
(NNG) from [33].

algorithm Reuters
K = 10

CBCL
K = 10

CBCL
K = 50

KNIX
K = 10

mult - 2.4241e3 1.1405e3 2.4471e03
als - 2.73e3 3.84e3 2.7292e03
GCD 5.9799e5 2.2372e3 806 2.2372e03
PWMP 5.9591e5 2.2494e3 789.901 2.2494e03
FCMP 5.9762e5 2.2364e3 786.15 2.2364e03

Table 2: Objective value for least-squares non-negative
matrix factorization with rank K.

training accuracy test accuracy
NNMP 0.8345 ± 0.0242 0.7419 ± 0.0389
PWMP 0.8379 ± 0.0240 0.7419 ± 0.0392
FCMP 0.8345 ± 0.0238 0.7419 ± 0.0403
NNG 0.8069 ± 0.0518 0.7258 ± 0.0602

Table 3: Logistic Regression with non-negative
Garrote, median ± std. dev.

7 Conclusion

In this paper, we considered greedy algorithms for optimization over the convex cone, parametrized
as the conic hull of a generic atom set. We presented a novel formulation of NNMP along with a
comprehensive convergence analysis. Furthermore, we introduced corrective variants with linear
convergence guarantees, and verified this convergence rate in numerical applications. We believe that
the generality of our novel analysis will be useful to design new, fast algorithms with convergence
guarantees, and to study convergence of existing heuristics, in particular in the context of non-negative
matrix and tensor factorization.

2http://www.nltk.org/book/ch02.html
3http://cbcl.mit.edu/software-datasets/FaceData2.html
4http://www.osirix-viewer.com/resources/dicom-image-library/
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