
8 Supplementary Materials

8.1 Graph Signal Sampling and Recovery as a Motivating Example for solving Non-square
Linear Inverse Problems using Iterative Methods

The emerging field of signal processing on graphs [25, 26] is based on an interesting idea of treating
“values” associated with the nodes of a graph as “a signal supported on a graph” and apply techniques
from signal processing to solve problems such as prediction and detection. For example, the number
of cars at different road intersections on the Manhattan road network can be viewed as a graph
signal on the road graph G = (V, E) where V is the set of road intersections and E is the set of road
segments. For a directed or undirected graph G = (V, E), the graph signal has the same dimension as
the number of nodes |V| in the graph, i.e., there is only one value associated with each node.

One important problem of graph signal processing is that of recovering the values on the remaining
nodes of a graph given the values sampled on a particular node subset S ⊂ V under the assumption
of “bandlimited” graph signal [31–33]. One application of graph signal reconstruction can be that
of reconstructing the entire traffic flow using the observations from a few cameras at some road
intersections [34]. The graph signal reconstruction problem can be formulated as a least-square
solution of the following linear system (see equation (5) in [32])

[
f(S)
f(Sc)

]
=

[
u1(S) u2(S) . . . uw(S)
u1(Sc) u2(Sc) . . . uw(Sc)

]
α1

α2

...
αw.

 , (28)

where f(S) is the given part of the graph signal f on the set S, f(Sc) is the unknown part of the
graph signal f to be reconstructed, [α1, α2, . . . αw] are unknown coefficients of the graph signal

f =

[
f(S)
f(Sc)

]
represented in the subspace spanned by u1,u2, . . .uw which are the firstw eigenvectors

of the graph Laplacian matrix. It is shown in [32] that this least-square reconstruction problem can be
solved using an iterative linear projection method (see equation (11) in [32])

fk+1 = UU>
(

fk + J>J(

[
f(S)

0

]
− fk)

)
, (29)

where U = [u1,u2, . . .uw]. This iteration can be shown to converge to the least square solution
given by

f(Sc) = (U)Sc((U)>Sc(U)Sc)−1(U)tScf(S). (30)
Note that we may want to reconstruct multiple instances of graph signal, such as road traffic at
different time, which brings in the formulation of distributed computing as discussed in Section 2.1.

8.2 Bounds on the Mean-squared Error beyond the i.i.d. Case

Until now, we based our analysis on the i.i.d. assumption 1. For the PageRank problem discussed in
Section 2.2, this assumption means that the personalized PageRank queries (the different preference
vector ri’s) are independent across different users. Although the case when the PageRank queries
are arbitrarily correlated is hard to analyze, we may still provide concrete analysis for some specific
cases. For example, a reasonable case when the PageRank queries are correlated with each other is
when these queries are all affected by some “common fashion topic” that the users wish to search
for. In mathematics, we can model this phenomenon by assuming that the solutions to the i-th linear
inverse problem satisfies

x∗i = x̄ + zi, (31)
for some random vector x̄ and an i.i.d. vector zi across different queries (different i). The common
part x̄ is random because the common fashion topic itself can be random. This model can be
generalized to the following “stationary” model.
Assumption 4. Assume the solutions x∗i ’s of the linear inverse problems have the same mean µE and
stationary covariances, i.e.,

E[x∗i (x
∗
i)
>] = CE + CCor,∀1 ≤ i ≤ k, (32)

E[x∗i (x
∗
j)
>] = CCor,∀1 ≤ i, j ≤ k. (33)

12

Computation deadline T
dl

 (s)
0 10 20 30

O
v
e
ra

ll
m

e
a
n
-s

q
u
a
re

d
 e

rr
o
r

10
-15

10
-10

10
-5

10
0

Google plus graph

Uncoded

Repetition-1

Repetition-2

Coded

Figure 3: Experimentally computed overall mean squared error of uncoded, replication-based and
coded personalized PageRank on the Google Plus graph on a cluster with 120 workers. The queries
are generated using the model from the stationary model in Assumption 4.

Under this assumption, we have to change the coded linear inverse algorithm slightly. The details are
shown in Algorithm 2.

Algorithm 2 Coded Distributed Linear Inverse (Stationary Inputs)
Call Algorithm 1 but replace the Λ matrix with

Λ̃ = σmax(G>G)Λ + diag{G>1k} ·Ψ · diag{G>1k}>, (34)

where σmax(G>G) is the maximum eigenvalue of G>G, and Ψn×n = [Ψi,j] satisfies

Ψi,j = trace[BliCcor(B
>)lj]. (35)

For the stationary version, we can have the counterpart of Theorem 3.1 as follows. Trivial generaliza-
tions include arbitrary linear scaling x∗i = αix̄ + βizi for scaling constants αi and βi.

Theorem 8.1. Define E = X̂−X∗, i.e., the error of the decoding result (7) by replacing Λ defined
in (8) with Λ̃ in (34). Assuming that the solutions for all linear inverse problems satisfy Assumption
4. Then, the error covariance of E satisfies

E[‖E‖2 |l] ≤trace
[
(GΛ̃−1G>)−1

]
. (36)

where the norm ‖·‖ is the Frobenius norm.

Proof. See Supplementary Section 8.5.

In Section 4, we have compared coded, uncoded and replication-based linear inverse schemes under
the i.i.d. assumption. Now, we test Algorithm 2 for correlated PageRank queries that are distributed
with the stationary covariance matrix in the form of (32) and (33). Note that the only change to be
made in this case is on the Λ matrix (see equation (34)). The other settings are exactly the same as
the experiments that are shown in Figure 2. The results on the Google Plus social graph are shown in
Figure 3. In this case, we also have to compute the Λ matrix. This issue is discussed in Section 8.9.

8.3 Proof of Theorem 3.1

8.3.1 Notation and Preliminary Properties

Now we prove Theorem 3.1. We first introduce some notation and preliminary properties that we
will use in this proof. Denote by vec(A) the vector that is composed of the concatenation of all

columns in a matrix A. For example, the vectorization of A =

[
1 2 3
4 5 6

]
is the column vector

13

vec(A) = [1, 4, 2, 5, 3, 6]>. We will also use the Kronecker product defined as

Am×n ⊗B =

a11B a12B . . . a1nB
...

...
. . .

...
am1B am2B . . . amnB.

 (37)

We now state some properties of the vectorization and Kronecker product.
Lemma 8.1. Property 1: if A = BC, then

vec(A) = (C⊗ IN)vec(B). (38)

Property 2: vectorization does not change the Frobenius norm, i.e.,

‖A‖ = ‖vec(A)‖ . (39)

Property 3: The following mixed-product property holds

(A⊗B)(C⊗D) = (A ·C)⊗ (B ·D), (40)

if one can form the matrices AC and BD.
Property 4: If A and B are both positive semi-definite, A⊗B is also positive semi-definite.
Property 5: Suppose C is positive semi-definite and A � B. Then,

A⊗C � B⊗C. (41)

Property 6: (commutative property) Suppose Am×n and Bp×q are two matrices. Then,

(Am×n ⊗ Ip) · (In ⊗Bp×q) = (Im ⊗Bp×q) · (Am×n ⊗ Iq). (42)

Property 7: Suppose A is an nN × nN matrix that can be written as

AnN×nN =


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann

 , (43)

where each Aij is a square matrix of size N ×N . Then, for an arbitrary matrix L of size k × n,

trace
[
(L⊗ IN) ·A · (L⊗ IN)>

]
=trace

L ·

trace[A11] . . . trace[A1n]
...

. . .
...

trace[An1] . . . trace[Ann]

 · L>
 . (44)

Proof. See Supplementary Section 8.14.

8.3.2 Computing the explicit form of the error matrix E

From (5), we have encoded the input ri to the linear inverse problem in the following way:

[s1, s2, . . . , sn] = [r1, r2, . . . , rk] ·G. (45)

Since x∗i is the solution to the linear inverse problem, we have

x∗i = Cinvri, (46)

where Cinv is either the direct inverse M−1 for square linear inverse problems or the least-square
matrix (M>M + λI)−1M> for non-square inverse problems. Define y∗i as the solution of the
inverse problem with the encoded input si. Then, we also have

y∗i = Cinvsi. (47)

Left-multiplying Cinv on both LHS and RHS of (45) and plugging in (46) and (47), we have

[y∗1,y
∗
2, . . . ,y

∗
n] = [x∗1,x

∗
2, . . . ,x

∗
k] ·G = X∗ ·G. (48)

14

Define ε
(l)
i = y

(li)
i − y∗i , which is the remaining error at the i-th worker after li iterations. From the

explicit form (4) of the remaining error of the executed iterative algorithm, we have

y
(li)
i = y∗i + ε

(li)
i = y∗i + Bliε

(0)
i . (49)

Therefore,from the definition Y(Tdl) = [y
(l1)
1 ,y

(l2)
2 , . . . ,y

(ln)
n] (see Algorithm 1) and equation (48)

and (49),

Y(Tdl) =[y
(l1)
1 ,y

(l2)
2 , . . . ,y(ln)

n]

=[y∗1,y
∗
2, . . . ,y

∗
n] + [ε

(l1)
1 , ε

(l2)
2 , . . . , ε(ln)n]

=X∗ ·G + [Bl1ε
(0)
1 , . . . ,Blnε(0)n].

(50)

Plugging in (7), we get the explicit form of E = X̂> −X∗:

X̂> = (GΛ−1G>)−1GΛ−1(Y(Tdl))>

= (GΛ−1G>)−1GΛ−1
[
G>(X∗)> + [Bl1ε

(0)
1 , . . . ,Blnε(0)n]>

]
= (X∗)> + (GΛ−1G>)−1GΛ−1

[
Bl1ε

(0)
1 , . . . ,Blnε(0)n

]>
.

(51)

From (6), (48) and the definition ε
(0)
i = y

(0)
i − y∗i and e

(l)
i = x

(0)
i − x∗i , we have

[ε
(0)
1 , ε

(0)
2 , . . . , ε(0)n] = [e

(0)
1 , e

(0)
2 , . . . , e

(0)
k] ·G. (52)

8.3.3 Vectorization of the error matrix E

From property 2 of Lemma 8.1, vectorization does not change the Frobenius norm, so we have

E[‖E‖2 |l] = E[‖vec(E)‖2 |l] = E
[
trace

(
vec(E)vec(E)>

)
|l
]
. (53)

Therefore, to prove the conclusion of this theorem, i.e., E[‖E‖2 |l] ≤
σmax(G>G)trace

[
(GΛ−1G>)−1

]
, we only need to show

E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤ σmax(G>G)trace

[
(GΛ−1G>)−1

]
. (54)

8.3.4 Express the mean-squared error using the vectorization form

Now we prove (54). From (51), we have

E> = (GΛ−1G>)−1GΛ−1[Bl1ε
(0)
1 , . . . ,Blnε(0)n]>, (55)

which is the same as

E = [Bl1ε
(0)
1 , . . . ,Blnε(0)n] · [(GΛ−1G>)−1GΛ−1]>. (56)

From property 1 of Lemma 8.1, (56) means

vec(E) =
[
(GΛ−1G>)−1GΛ−1 ⊗ IN

]
· vec([Bl1ε

(0)
1 , . . . ,Blnε(0)n])

=
[
(GΛ−1G>)−1GΛ−1 ⊗ IN

]
· diag[Bl1 , . . . ,Bln] · vec([ε

(0)
1 , . . . , ε(0)n]).

(57)

Define
L = (GΛ−1G>)−1GΛ−1, (58)

D = diag[Bl1 , . . . ,Bln], (59)
and

E0 = vec([ε
(0)
1 , . . . , ε(0)n]). (60)

Then,
vec(E) = (L⊗ IN) ·D ·E0. (61)

Therefore,

E
[
trace

(
vec(E)vec(E)>

)
|l
]

=trace
(
(L⊗ IN ·D)E[E0E

>
0 |l](L⊗ IN ·D)>

)
. (62)

15

8.3.5 Bounding the term E[E0E
>
0 |l] using the maximum eigenvalue σmax(G>G)

Note that E0 = vec([ε
(0)
1 , . . . , ε

(0)
n]). From (52), we have

[ε
(0)
1 , ε

(0)
2 , . . . , ε(0)n] = [e

(0)
1 , e

(0)
2 , . . . , e

(0)
k] ·G. (63)

Therefore, using property 1 of Lemma 8.1, we have

E0 = (G> ⊗ IN) · vec([e
(0)
1 , e

(0)
2 , . . . , e

(0)
k]). (64)

From Assumption 1, the covariance of e
(0)
i is

E[e
(0)
i (e

(0)
i)>|l] = CE , i = 1, . . . , k. (65)

Therefore, from (64), we have

E[E0E
>
0 |l] =(G> ⊗ IN) · E[vec([e

(0)
1 , e

(0)
2 , . . . , e

(0)
k])·

vec([e
(0)
1 , e

(0)
2 , . . . , e

(0)
k])>|l] · (G> ⊗ IN)>

(a)
= (G> ⊗ IN) · (Ik ⊗CE) · (G> ⊗ IN)>

=(G> ⊗ IN) · (Ik ⊗CE) · (G⊗ IN)

(b)
=(G> · Ik ·G)⊗ (IN ·CE · IN)

=G>G⊗CE

(c)

�σmax(G>G)In ⊗CE ,

(66)

where (a) is from (65), (b) and (c) follow respectively from property 3 and property 5 of Lemma 8.1.

If G has orthonormal rows, the eigenvalues of G>G (which is an n×n matrix) are all in (0, 1]. This
is why we can remove the term σmax(G>G) in (11) when G has orthonormal rows. In what follows,
we assume G has orthonormal rows, and the result when G does not have orthonormal rows follows
naturally.

Assuming G has orthonormal rows, we have

E[E0E
>
0 |l] � In ⊗CE . (67)

Plugging (67) into (62), we have

E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤trace

(
(L⊗ IN) ·D(In ⊗CE)D>(L⊗ IN)>

)
, (68)

where D = diag[Bl1 , . . . ,Bln]. Therefore,

D(In ⊗CE)D> =diag[Bl1CE(B>)l1 , . . . ,BlnCE(B>)ln]. (69)

From the definition of C(li) in (9),

D(In ⊗CE)D> = diag[C(l1), . . . ,C(ln)]. (70)

8.3.6 Reducing the dimensionality of D(In ⊗CE)D> in the trace expression using property
7 in Lemma 8.1

From Property 7 in Lemma 8.1, we can simplify (71):

E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤trace

(
(L⊗ IN) ·D(In ⊗CE)D>(L⊗ IN)>

)
(a)
= trace

(
(L⊗ IN) · diag[C(l1), . . . ,C(ln)](L⊗ IN)>

)
(b)
= trace

[
L · diag[trace(C(l1)), . . . , trace(C(l1))]L>

]
(c)
= trace

(
LΛL>

)
,

(71)

16

where (a) is from (70), (b) is from Property 7 and (c) is from the definition of Λ in (8). Equation (71)
can be further simplified to

E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤ trace

(
LΛL>

)
(a)
= trace

(
(GΛ−1G>)−1GΛ−1Λ((GΛ−1G>)−1GΛ−1)>

)
=trace((GΛ−1G>)−1),

(72)

where (a) is from the definition of the decoding matrix L = (GΛ−1G>)−1GΛ−1. Thus, we have
completed the proof of Theorem 3.1 for the case when G has orthonormal rows. As we argued earlier,
the proof when G does not have orthonormal rows follows immediately (see the text after (66)).

8.4 Proof of Theorem 4.2

First, we need the following corollary of Theorem 3.1.
Corollary 8.1. Suppose the i.i.d. Assumption 1 holds and the matrix Gk×n is a submatrix of an
n× n orthonormal matrix. Assume that the symmetric matrix FΛF> has the block form

FΛF> =

[
J1 J2

J>2 J4

]
n×n

, (73)

that is, (J1)k×k is GΛG>, (J2)k×(n−k) is GΛH>, and (J4)(n−k)×(n−k) is HΛH>. Then, we
have

E[‖E‖2 |l] ≤ trace(J1)− trace(J2J
−1
4 J>2). (74)

Proof. First, note that
G = [Ik,0k,n−k] F. (75)

Therefore,

GΛ−1G> = [Ik,0k,n−k] FΛ−1F> [Ik,0k,n−k]
>

(a)
= [Ik,0k,n−k] (FΛF>)−1 [Ik,0k,n−k]

>
,

(76)

where (a) is from F>F = In. Now take the inverse of both sides of (73), we have

(FΛF>)−1 =

[
(J1 − J2J

−1
4 J>2)−1 ∗
∗ ∗

]
n×n

, (77)

where ∗ is used as a substitute for matrices that are unimportant for our argument. Thus, comparing
(76) and (77),

GΛ−1G> = (J1 − J2J
−1
4 J>2)−1, (78)

which means
(GΛ−1G>)−1 = J1 − J2J

−1
4 J>2 . (79)

From (11) and (79), the theorem follows.

From Corollary 8.1, for fixed li, 1 ≤ i ≤ n,

E[‖Ecoded‖2 |l] ≤ trace(J1)− trace(J2J
−1
4 J>2). (80)

We will show that
Ef [trace(J1)] = Ef

[
‖Euncoded‖2

]
, (81)

which completes the proof. To show (81), first note that from (18),

Ef
[
‖Euncoded‖2

]
= kEf [trace(C(l1))]. (82)

Since G := [gj,i] is a submatrix of a Fourier matrix, we have |gji|2 = 1/n. Thus, J1 = GΛG>

satisfies
trace(J1) =

k∑
j=1

n∑
i=1

|gji|2trace(C(li)) =
k

n

n∑
i=1

trace(C(li)).

Therefore, Ef [trace(J1)] = kEf [trace(C(l1))]. (83)
which, along with (82), completes the proof of (81), and hence also the proof of Theorem 4.2.

17

8.5 Proof of Theorem 8.1

The proof follows the same procedure as the proof of Theorem 3.1. Basically, we can obtain exactly
the same results from (45) to (64) except that all Λ are replaced with Λ̃. However, now that we
assume the solutions of the linear inverse problems satisfy 4, we have

E[vec([e
(0)
1 , e

(0)
2 , . . . , e

(0)
k])vec([e

(0)
1 , e

(0)
2 , . . . , e

(0)
k])>|l] = Ik ⊗CE + (1k1

>
k)⊗Ccor. (84)

Note that the first part Ik ⊗CE is exactly the same as in the proof of Theorem 3.1, so all conclusions
until (71) can still be obtained (note that σmax(G>G) should be added in the general case) for this
part. More specifically, this means (71) can be modified to

E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤ trace

(
(L⊗ IN) ·DΣD>(L⊗ IN)>

)
+ σmax(G>G)trace

(
LΛL>

)
,

(85)

where the second term σmax(G>G)trace
(
LΛL>

)
is the same as in (71) because of the first part Ik⊗

CE in (84). However, the first term trace
(
(L⊗ IN) ·DΣD>(L⊗ IN)>

)
is from the correlation

between different inputs, and the matrix Σ is
Σ = (G> ⊗ IN) · ((1k1>k)⊗Ccor) · (G> ⊗ IN)>, (86)

which is obtained by adding the second term (1k1
>
k)⊗Ccor in (84) into the step (a) in (66). From

Property 6 of Lemma 8.1, (86) can be simplified to
Σ = (G>1k1

>
k G)⊗Ccor. (87)

Therefore, from the definition of (59)

DΣD> =diag[Bl1 , . . . ,Bln] · (G>1k1
>
k G)⊗Ccor · diag[(B>)l1 , . . . , (B>)ln]. (88)

Define the column vector h = G>1k := [h1, h2, . . . hn]>. Then, (G>1k1
>
k G) ⊗ Ccor can be

written as a block matrix where the block on the i-th row and the j-th column is hih∗jCcor. There-
fore, After left-multiplying the block diagonal matrix diag[Bl1 , . . . ,Bln] and right-multiplying
diag[(B>)l1 , . . . , (B>)ln], we obtain

DΣD> = Ψ̃ = [Ψ̃i,j], (89)

where the block Ψ̃i,j on the i-th row and the j-th column is hih∗jB
liCcor(B

>)lj . From Property 7 of
Lemma 8.1, we have

trace[(L⊗ IN) ·DΣD>(L⊗ IN)>]
(a)
= trace

[
L
[
trace[Ψ̃i,j]

]
L>
]

(b)
= trace

[
L
[
hih
∗
j trace[BliCcor(B

>)lj]
]
L>
]

(c)
= trace

[
Ldiag(h)

[
trace[BliCcor(B

>)lj]
]

diag(h>)L>
]

(d)
= trace

[
Ldiag{G>1k} ·Ψ · diag{G>1k}>L>

]
,

(90)

where step (a) is from Property 7 of Lemma 8.1 and the notation
[
trace[Ψ̃i,j]

]
means the n × n

matrix with entries trace[Ψ̃i,j], (b) is from the definition of Ψ̃i,j below (90), (c) is from the definition
h = G>1k := [h1, h2, . . . hn]>, and (d) is from the definition of the matrix Ψ in (35). Plugging
(90) into (85), we obtain

E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤trace

[
Ldiag{G>1k} ·Ψ · diag{G>1k}>L>

]
+ σmax(G>G)trace

(
LΛL>

)
=trace[LΛ̃L>],

(91)

where Λ̃ = σmax(G>G)Λ + diag{G>1k} · Ψ · diag{G>1k}>, which is the same as in (34).
Therefore
E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤trace

(
LΛ̃L>

)
(a)
= trace

(
(GΛ̃−1G>)−1GΛ̃−1Λ̃((GΛ̃−1G>)−1GΛ̃−1)>

)
=trace((GΛ̃−1G>)−1),

(92)

where (a) is from the definition of the decoding matrix L = (GΛ̃−1G>)−1GΛ̃−1.

18

8.6 Proof of Theorem 4.1

In this section, we compute the residual error of the uncoded linear inverse algorithm. From (4), in
the uncoded scheme, the overall error is

E
[
‖Euncoded‖2 |l

]
=E

[∥∥∥[e
(l1)
1 , e

(l2)
2 . . . , e

(lk)
k]

∥∥∥2 |l]
=

k∑
i=1

E
[∥∥∥[e

(li)
i]
∥∥∥2 |l]

=

k∑
i=1

trace
(
E
[
e
(li)
i (e

(li)
i)>|l

])
(a)
=

k∑
i=1

trace
(
E
[
Blie

(0)
i (Blie

(0)
i)>|l

])
=

k∑
i=1

trace
(
BliE

[
e
(0)
i (e

(0)
i)>|l

]
(Bli)>

)
=

k∑
i=1

trace
(
Bli ·CE · (Bli)>

)
=

k∑
i=1

trace
(
BliCE(Bli)>

)
(b)
=

k∑
i=1

trace (C(li)) ,

(93)

where (a) is from (4) and (b) is from the definition of C(li) in (9). Thus, we have computed the
closed-form of the MSE of the uncoded method. To prove (18), we note that from the i.i.d. assumption
of li,

Ef
[
‖Euncoded‖2

]
=Ef

[
k∑
i=1

trace (C(li))

]
= kEf [trace(C(l1))]. (94)

8.7 Proof of Theorem 4.4

From Theorem 4.2,

Ef
[
‖Euncoded‖2

]
− Ef

[
‖Ecoded‖2

]
≥ Ef [trace(J2J

−1
4 J>2)]. (95)

We now argue that to show (22), we only need to show

lim
n→∞

1

n− k
Ef [trace(J2J

−1
4 J>2)] ≥ varf [trace(C(l1))]

Ef [trace(C(l1))]
, (96)

because then, we have

lim
n→∞

1

(n− k)

[
Ef
[
‖Euncoded‖2

]
− Ef

[
‖Ecoded‖2

]] (a)

≥ lim
n→∞

1

(n− k)
Ef [trace(J2J

−1
4 J>2)]

(b)

≥ varf [trace(C(l1))]

Ef [trace(C(l1))]
,

(97)

where (a) follows from (95) and (b) follows from (96).

Also note that after we prove (22), then using (20), we have

Ef
[
‖Euncoded‖2

]
− Ef

[
‖Erep‖2

]
≤(n− k)Ef [trace(C(l1))], (98)

19

so we have

lim
n→∞

1

(n− k)

[
Ef
[
‖Euncoded‖2

]
− Ef

[
‖Erep‖2

]]
≤Ef [trace(C(l1))]

(a)

≤ 1

ρ

varf [trace(C(l1))]

Ef [trace(C(l1))]

≤1

ρ
lim
n→∞

1

(n− k)

[
Ef
[
‖Euncoded‖2

]
− Ef

[
‖Ecoded‖2

]]
,

(99)

which means coded computation beats uncoded computation. Note that step (a) holds because of the
variance heavy-tail property.

Therefore, we only need to prove (96). The proof of (96) is divided into two steps, and intuition
behind each step is provided along the proof. The main intuition is that the Fourier structure of the
matrix F makes the matrix J4 concentrates around its mean value, which makes the most tricky term
Ef [trace(J2J

−1
4 J>2)] analyzable.

8.7.1 Exploiting the Fourier structure to obtain a Toeplitz covariance matrix

First, we claim that when Fn×n is the Fourier transform matrix, the matrix FΛF> in (73)

FΛF> =

[
J1 J2

J>2 J4

]
n×n

, (100)

is a Toeplitz matrix composed of the Fourier coefficients of the sequence (vector) s =
[trace(C(l1)), . . . , trace(C(ln))]. In what follows, we use the simplified notation

sj := trace(C(lj+1)), j = 0, 1, . . . , n− 1. (101)

Lemma 8.2. If

F =

(
wpq√
n

)
p,q=0,1,...,n−1

, (102)

where w = exp(−2πi/n), then

FΛF> = Toeplitz[s̃p]p=0,1,...,n−1, (103)

where

s̃p =
1

n

n−1∑
j=0

w−pjsj (104)

Proof. The entry on the l-th row and the m-th column of FΛF> is

[FΛF>]l,m =

n−1∑
j=0

wlj√
n

w−mj√
n
sj =

1

n

n−1∑
j=0

w(l−m)jsj . (105)

Thus, Lemma 8.2 holds.

Therefore, the variance of all entries of FΛF> is the same because

varf [s̃p] =varf

 1

n

n−1∑
j=0

w−pjsj

 =
1

n
varf [s0] =:

1

n
v. (106)

Further, the means of all diagonal entries of FΛF> are

Ef [s̃0] = Ef [s0] =: µ, (107)

while the means of all off-diagonal entries are

Ef [s̃p] =
1

n

n−1∑
j=0

w−pjEf [sj] = 0,∀p 6= 0. (108)

20

8.7.2 Using the concentration of J4 to obtain the error when n→∞

From an intuitive perspective, when n→∞, the submatrix J4 concentrates at µIn−k (see the above
computation on the mean and variance of all entries). In this case

Ef [trace(J2J
−1
4 J>2)] ≈ 1

µ
Ef [trace(J2J

>
2)]

=
1

µ
k(n− k)var[s̃p]

=
n− k
µ

v · k
n
.

(109)

Therefore, we have

lim
n→∞

1

n− k
Ef [trace(J2J

−1
4 J>2)] =

v

µ
=

varf [s0]

Ef [s0]
. (110)

Now, we formalize the above intuitive statement. In fact, we will show a even stronger bound than
the bound on the expected error.

Lemma 8.3. When n− k = o(
√
n), with high probability (in 1−O((n−k)2

n)),

1

n− k
trace(J2J

−1
4 J>2) ≥ 1

µ+ ε

(
k

n
v − ε

)
, (111)

for any ε > 0.

After we prove Lemma 8.3, we obtain a bound on expectation using the fact that

1

n− k
Ef [trace(J2J

−1
4 J>2)] ≥ (1−O(

(n− k)2

n
))

1

µ+ ε

(
k

n
v − ε

)
. (112)

Thus, when n→∞ and n− k = o(
√
n),

lim
n→∞

1

n− k
Ef [trace(J2J

−1
4 J>2)] ≥ v − ε

µ+ ε
=

varf [s0]− ε
Ef [s0] + ε

, (113)

for all ε > 0, which completes the proof of Theorem 4.4.

The proof of Lemma 8.3 relies on the concentration of trace(J2J
>
2) and the concentration of J4. In

particular, when we prove the concentration of J4, we use the Gershgorin circle theorem [27]. First,
we show the following Lemma.
Lemma 8.4. When n− k = o(n), with high probability (in 1−O(n−kn))

1

n− k
trace(J2J

>
2) ≥ k

n
v − ε. (114)

Proof. Since (J2)k×(n−k) := [Ji,j] (Ji,j represents the entry on the i-th row and the j-th column) is
the upper-right submatrix of FΛF> = Toeplitz[s̃p]p=0,1,...,n−1,

trace(J2J
>
2) =

k∑
i=1

n−k∑
j=1

|Ji,j |2 =

k∑
l=1

n∑
m=k+1

|s̃m−l|2. (115)

Since all entries in J2 have zero mean (because l 6= m ever in (115) and from (108) all off-diagonal
entries have zero mean) and have the same variance v

n (see (106)),

Ef
[

1

n− k
trace(J2J

>
2)

]
=

1

n− k
· k(n− k)Ef [|s̃1|2]

(a)
=

1

n− k
· k(n− k)varf [s̃1] =

k

n
v,

(116)

where (a) holds because Ef [s̃1] = 0. To prove (114), we compute the variance of trace(J2J
>
2) and

use Chebyshev’s inequality to bound the tail probability. Define

µB := Ef [trace(J2J
>
2)]

(a)
=

k(n− k)

n
v, (117)

21

where (a) follows from (116). From (115), we have

trace(J2J
>
2) ≤(n− k)

n−1∑
p=1

|s̃p|2
(a)
= (n− k)

 1

n

n−1∑
j=0

s2j − |s̃0|2
 , (118)

where the last equality (a) holds due to Parseval’s equality for the Fourier transform, which states that
1
n

∑n−1
j=0 s

2
j =

∑n−1
p=0 |s̃p|2. Then,

varf

[
1

n− k
trace(J2J

>
2)

]
=Ef

[(
1

n− k
trace(J2J

>
2)

)2
]
− E2

f

[
1

n− k
trace(J2J

>
2)

]
(a)

≤Ef


 1

n

n−1∑
j=0

s2j − |s̃0|2
2
− k2

n2
v2

(b)
=Ef


 1

n

n−1∑
j=0

s2j − (
1

n

n−1∑
j=0

sj)
2

2
− k2

n2
v2,

(119)

where (a) follows from (116) and (118) and (b) follows from (104). Note that

1

n

n−1∑
j=0

s2j − (
1

n

n−1∑
j=0

sj)
2 =

n− 1

n
s2, (120)

where

s2 :=
1

n− 1

n−1∑
j=0

(sj − s̄)2, (121)

is the famous statistic called “unbiased sample variance”, and its variance is (see Page 229, Theorem
2 in [35])

var[s2] =
1

n

(
µ4 −

n− 3

n− 1
µ2
2

)
, (122)

where
µ4 = E[(s0 − µ)4], (123)

and
µ2 = E[(s0 − µ)2] = var[s0] = v. (124)

Also note that the sample variance is unbiased, which means
Ef [s2] = v. (125)

Therefore, we have

Ef [(s2)2] = var[s2] + (Ef [s2])2 =
1

n

(
µ4 −

n− 3

n− 1
v2
)

+ v2, (126)

so we have

varf

[
1

n− k
trace(J2J

>
2)

]
(a)

≤Ef


 1

n

n−1∑
j=0

s2j − (
1

n

n−1∑
j=0

sj)
2

2
− k2

n2
v2

(b)
=Ef

[
(
n− 1

n
s2)2

]
− k2

n2
v2

=
(n− 1)2

n2
Ef [(s2)2]− k2

n2
v2

(c)
=

(n− 1)2

n2
1

n

(
µ4 −

n− 3

n− 1
v2
)

+
(n− 1)2 − k2

n2
v2

=O
(

1

n

)
+

(n− 1)2 − k2

n2
v2,

(127)

22

where (a) follows from (119), (b) follows from (120) and (c) follow from (126).

Note that we have computed the expectation of 1
n−k trace(J2J

>
2), which is k

nv (see (116)). Using the
Chebyshev’s inequality

Pr

(∣∣∣∣ 1

n− k
trace(J2J

>
2)− k

n
v

∣∣∣∣ ≥ ε) ≤ 1

ε2
var
[

1

n− k
trace(J2J

>
2)

]
(a)

≤ 1

ε2
O
(

1

n

)
+

1

ε2
(n− 1)2 − k2

n2
v2

=
1

ε2
O
(

1

n

)
+

1

ε2
(n− k − 1)(n+ k − 1)

n2
v2

(b)
<

1

ε2
O
(

1

n

)
+

2

ε2
n− k − 1

n
v2

=
1

ε2
O
(
n− k
n

)
.

(128)

where (a) is from (127) and (b) is because n+ k− 1 < 2n. Therefore, the proof of (114) is over.

Next, we show that with high probability the largest eigenvalue of (J4)(n−k)×(n−k) is smaller
than (1 + ε)µ. Note that the matrix J4 is a principle submatrix of the Toeplitz matrix FΛF> =
Toeplitz[s̃p]p=0,1,...,n−1, so J4 = Toeplitz[s̃p]p=0,1,...,n−k−1 is also Toeplitz. Using the Gershgorin
circle theorem, all eigenvalues of J4 := [J̃ij] must lie in the union of (n− k) circles, in which the
i-th circle is centered at the diagonal entry J̃ii = s̃0 and has radius

∑
j 6=i |J̃ij | =

∑
j 6=i |s̃j−i|. These

(n − k) circles are all within the circle centered at s̃0 with radius 2
∑n−k−1
p=1 |s̃p|. Therefore, the

maximum eigenvalue of J4 satisfies

σmax < s̃0 + 2

n−k−1∑
p=1

|s̃p|. (129)

Thus,

Pr(σmax > µ+ ε) < Pr

(
s̃0 + 2

n−k−1∑
p=1

|s̃p| > µ+ ε

)

= Pr

(s̃0 − µ+ 2

n−k−1∑
p=1

|s̃p|

)2

> ε2


(a)

≤ 1

ε2
E

(s̃0 − µ+ 2

n−k−1∑
p=1

|s̃p|

)2


(b)

≤ 1

ε2
(2n− 2k − 1)2

v

n
=

1

ε2
O
(

(n− k)2

n

)
,

(130)

where (a) is from the Markov inequality and (b) is due to the fact that var[s̃p] = v
n for all p and

E[s̃0] = µ and E[s̃p] = 0 for all p 6= 0.

From Lemma 8.4 and (130), when n → ∞ and (n − k)2 = o(n), with high probability (which is
1− 1

ε2O
(

(n−k)2
n

)
),

1

n− k
trace(J2J

>
2) ≥ k

n
v − ε, (131)

and at the same time
J−14 � 1

µ+ ε
In−k. (132)

From concentration of trace(J2J
>
2) and the lower bound of J−14 , we have, with high probability,

1

n− k
trace(J2J

−1
4 J>2) ≥ 1

µ+ ε

(
k

n
v − ε

)
, (133)

23

for all ε. This concludes the proof of Lemma 8.3 and hence completes the proof of Theorem 4.4 (see
the details from after Lemma 8.3 to equation (113)). This lemma is a formal statement of equality
(110).

8.8 Proof of Theorem 4.5

1) Uncoded linear inverse problem:

Consider the eigenvalue decomposition

B = PΘP−1, (134)

where
Θ = diag{γ1, γ2, . . . γN}, (135)

and without the loss of generality, assume γ1 is the maximum eigenvalue. Then, from the definition
C(li) = BliCE(B>)li in (9),

C(li) = PΘliP−1CE(P>)−1ΘliP>. (136)

Since P−1CE(P>)−1 is a positive definite matrix, all of its eigenvalues are positive real numbers.
Suppose the maximum eigenvalue and the minimum eigenvalue of P−1CE(P>)−1 are respectively
emax and emin. Then, (136) gives the upper and lower bounds

trace(C(li)) ≤ emaxtrace(PΘ2liP>), (137)

and
trace(C(li)) ≥ emintrace(PΘ2liP>). (138)

Suppose the maximum and minimum eigenvalues of P>P are respectively cmax and cmin. Then,
(137) and (138) can be further simplified to

trace(C(li)) ≤ emaxtrace(ΘliP>PΘli)

≤ cmaxemaxtrace(Θ2li)

= cmaxemax

N∑
j=1

γ2lij ,

(139)

and

trace(C(li)) ≥ emintrace(ΘliP>PΘli)

≥ cminemintrace(Θ2li)

= cminemin

N∑
j=1

γ2lij ,

(140)

where the last equality in the above two inequalities are from the definition of Θ in (135). Therefore,

lim
Tdl→∞

1

Tdl
logE[‖Euncoded‖2 |l]

(a)
= lim

Tdl→∞

1

Tdl
log

(
k∑
i=1

trace (C(li))

)

(b)
= lim
Tdl→∞

1

Tdl
log

 N∑
j=1

k∑
i=1

γ2lij


= lim
Tdl→∞

1

Tdl
log

 N∑
j=1

k∑
i=1

γ
2dTdl

vi
e

j


(c)
= max
i∈[k],j

log(γj)
2
vi ,

(141)

where (a) is from Theorem 4.1, (b) is obtained by plugging in (139) and (140) and the fact that the
constants emin, cmin, emax and cmin do not change the error exponent when Tdl increases, and (c) is

24

from the fact that the maximum term dominates the error exponent in a log-sum form. Since the
maximum eigenvalue of the matrix B is γ1, we have

lim
Tdl→∞

1

Tdl
logE[‖Euncoded‖2 |l] = max

i∈[k]
log γ

2
vi
1

=− 2

maxi∈[k] vi
log

1

γ1
.

(142)

Therefore, the error exponent is determined by the worker with the slowest speed (maximum vi).

2) replication-based linear inverse:

Now we look at the replication-based linear inverse scheme. At first, we do not know the order of the
random sequence v1, v2, . . . vn. Therefore, when we assign the extra n− k < k workers to replicate
the computations of the last n− k linear inverse problems, there is a non-zero probability that the
slowest worker of the first k workers does not have any other copy. More precisely, denote by E the
above event. Then, if we uniformly choose n− k workers to replicate, the probability of E is

Pr(E) =

(
k−1
n−k
)(

k
n−k
) . (143)

This is also a constant that does not depend on the time Tdl. Therefore,

E[‖Erep‖2 |l] ≥ cminemin Pr(E)

N∑
j=1

γ
2d Tdl

maxi∈[k] vi
e

j , (144)

where the exponent 2d Tdl
maxi∈[k] vi

e is because we are lower-bounding the error of replication-based
scheme using only the error of the slowest worker in the first k workers, and Pr(E) is the probability
that this particular worker is not replicated using any of the n− k extra workers.

Using the fact that maxj γj = γ1 and the fact that cminemin Pr(E) is a constant that does not change
with Tdl, we have

lim
Tdl→∞

1

Tdl
logE[‖Erep‖2 |l] ≥

2

maxi∈[k] vi
log

1

γ1
. (145)

Note that E[‖Erep‖2 |l] ≤ E[‖Euncoded‖2 |l], so we also have

lim
Tdl→∞

1

Tdl
logE[‖Erep‖2 |l] ≤ lim

Tdl→∞

1

Tdl
logE[‖Euncoded‖2 |l] =

2

maxi∈[k] vi
log

1

γ1
. (146)

Therefore,

lim
Tdl→∞

1

Tdl
logE[‖Erep‖2 |l] =

2

maxi∈[k] vi
log

1

γ1
. (147)

3) Coded linear inverse algorithm:

For the coded linear inverse algorithm,

E[‖Ecoded‖2 |l] ≤ σmax(G>G)trace
[
(GΛ−1G>)−1

]
. (148)

From (139), we have

trace(C(li)) ≤cmaxemax

N∑
j=1

γ2lij ≤ cmaxemaxNγ
2li
1 . (149)

Plugging into (148), we have

E[‖Ecoded‖2 |l] ≤ σmax(G>G)trace
[
(GΛ−12 G>)−1

]
, (150)

where

Λ2 :=diag{cmaxemaxNγ
2l1
1 , . . . cmaxemaxNγ

2ln
1 }

=Ncmaxemaxdiag{γ2l11 , . . . γ2ln1 }.
(151)

25

Since N , cmax and emax are all constant numbers,

lim
Tdl→∞

1

Tdl
logE[‖Ecoded‖2 |l] ≤ lim

Tdl→∞

1

Tdl
log trace

[
(GΛ−13 G>)−1

]
, (152)

where

Λ3 :=diag{γ2l11 , . . . γ2ln1 } = diag{γ
2dTdl

v1
e

1 , . . . γ
2dTdl

vn
e

1 }. (153)

Define S = {i1, . . . ik}, i.e., the index set of the fastest k workers. Then,

min
i∈S

(
1

γ1

)2dTdl
vi
e

=

(
1

γ1

)2d Tdl
vik
e

. (154)

For i ∈ [n] \ S = {ik+1, . . . in}, (
1

γ1

)2dTdl
vi
e

≥ 0. (155)

Therefore, from the definition of the diagonal matrix Λ3 in (153), the entries of Λ−13 can be lower-
bounded by (154) for i ∈ S, and can be lower-bounded by (155) for i ∈ [n] \ S . Thus,

Λ−13 �
(

1

γ1

)2d Tdl
vik
e

diag{c1, c2, . . . cn}, (156)

where ci is the indicator
ci = δ(i ∈ S). (157)

Define GT as the submatrix of G composed of the columns in G with indexes in T ⊂ [n]. Use
σmin(X) to denote the minimum eigenvalue of a matrix X. Define

smin = min
T ⊂[n],|T |=k

σmin(GTG>T). (158)

Since G is a matrix with orthonormal rows, any arbitrary GT that satisfies |T | = k must have full
rank. This means that smin > 0. Note that smin > 0 is a constant that depends only on the generator
matrix G and does not change with the overall time Tdl. Therefore,

GΛ−13 G>
(a)

�
(

1

γ1

)2d Tdl
vik
e

Gdiag{c1, c2, . . . cn}G>

(b)
=

(
1

γ1

)2d Tdl
vik
e

GSG
>
S

(c)

�
(

1

γ1

)2d Tdl
vik
e

sminIk.

(159)

where (a) is from (156), (b) is from (157), and (c) is from (158). Thus, plugging (159) into (152)
(note that there is an inverse inside the trace of (152))

lim
Tdl→∞

1

Tdl
logE[‖Ecoded‖2 |l] ≤ lim

Tdl→∞

1

Tdl
log trace

[
(GΛ−13 G>)−1

]
≤ lim
Tdl→∞

1

Tdl
log trace

(1

γ1

)−2d Tdl
vik
e

1

smin
Ik


= lim
Tdl→∞

1

Tdl
log


(

1

γ1

)−2d Tdl
vik
e

trace
[

1

smin
Ik

]
(a)
= lim

Tdl→∞

1

Tdl
log

(
1

γ1

)−2d Tdl
vik
e

=− 2

vik
log

1

γ1
,

(160)

where (a) is because trace
[

1
smin

Ik

]
= k

smin
is a constant and does not change the error exponent.

Thus, we have completed the proof of Theorem 4.5.

26

8.9 Computing the Matrix Λ

One difficulty in our coded linear inverse algorithm is pre-computing the entries trace(C(l)) =
trace

(
BlCE(B>)l

)
in the weight matrix Λ in (8), which involves a number of matrix-matrix

multiplications. One way to side-step this problem is to estimate trace(C(l)) using Monte Carlo
simulations. Concretely, choose m i.i.d. N -variate random vectors a1,a2, . . .am that are distributed
the same as the initial error e(0) after Assumption 1. Then, compute the statistic

γ̂m,l =
1

m

m∑
j=1

∥∥Blaj
∥∥2 , l = 1, 2, . . . Tu, (161)

where Tu is an upper bound of the number of iterations in a practical iterative computing algorithm.
The Lemma 8.5 below shows that γ̂m,l is an unbiased and asymptotically consistent estimator of
trace(C(l)) for all l. The computational complexity of computing γ̂m,l, l = 1, 2, . . . Tu is the same as
the computation of m linear inverse problems for Tu iterations. The computation has low complexity
and can be carried out distributedly in m workers before the main algorithm starts. Additionally, the
computation results can be used repeatedly when we implement the coded linear inverse algorithm
multiple times. In our experiments on PageRank, for each graph we choose m = 10 and estimate
trace(C(l)) before implementing the coded linear inverse algorithm (in this case it is the coded
power-iteration algorithm), which has the same complexity as solving m = 10 extra linear inverse
problems.
Lemma 8.5. The statistic γ̂m,l is an unbiased and asymptotically consistent estimator of trace(C(l)).
More specifically, the mean and variance of the estimator γ̂m,l satisfies

E[γ̂m,l|l] = trace(C(l)), (162)

vart[γ̂m,l] ≤
1

m

∥∥Bl
∥∥4
F
E
[
‖aj‖4

]
. (163)

Proof. The expectation of γ̂m,l satisfies

E[γ̂m,l] =
1

m

m∑
j=1

E
[∥∥Blaj

∥∥2]
=E

[∥∥Bla1

∥∥2]
=E

[
trace(Bla1a

>
1 (Bl)>)

]
(a)
= trace(BlE[a1a

>
1](Bl)>)

=trace(BlCE(Bl)>)

=trace(C(l)),

(164)

where (a) is from the fact that a1 has covariance CE . To bound the variance of γ̂m,l, note that for all
j, ∥∥Blaj

∥∥2 ≤∥∥Bl
∥∥2
F
‖aj‖2 . (165)

Therefore,

var[γ̂m,l] =var[
1

m

m∑
j=1

∥∥Blaj
∥∥2]

(a)
=

1

m
var
[∥∥Blaj

∥∥2]
(b)

≤ 1

m
E
[∥∥Blaj

∥∥4]
(c)

≤ 1

m

∥∥Bl
∥∥4
F
E
[
‖aj‖4

]
,

(166)

where (a) holds because all ‖aj‖ are independent of each other, and (b) holds because var[X] ≤
E[X2], and (c) is from the Cauchy-Schwartz inequality.

27

For the correlated case, we have to compute a slightly modified weighting matrix denoted by Λ̃ in (34).
The only change is that we have to compute Ψi,j in (35) for all possible li, lj such that 1 ≤ li, lj ≤ Tu.
We also choose m i.i.d. N -variate random vectors b1,b2, . . .bm that are distributed with mean 0N
and covariance Ccor, which is the same as the correlation part according to Assumption 4. Then,
compute the statistic

γ̂m,(li,lj) =
1

m

m∑
u=1

buB
ljBlibu, 1 ≤ li, lj ≤ Tu. (167)

Then, it is easy to show that γ̂m,(li,lj) is also an unbiased and asymptotically consistent estimator of
Ψi,j .

8.10 Proof of Theorem 5.1

The computational complexity at each worker is equal to the number of operations in one iteration
multiplied by the number of iterations. The number of iterations is l. In each iteration, the number
of operations is equal to the number of non-zeros in B because each iteration x(l+1) = Kr + Bx(l)

requires at least scanning through the non-zeros in B once to compute Bx(l). Note that we only
count the number of non-zeros in B and ignore the matrix K because K may not be a square matrix.
In fact, it can even be a scalar in the PageRank problem2. For general B matrices, the number of
entries is in the order of N2, where N is the number of rows in B. Therefore, the overall number of
operations at each worker is in the order of Θ(N2l).

The encoding and decoding steps in Algorithm 1 are all based on matrix-matrix multiplications.
More specifically, for encoding, we multiply the generator matrix Gk×n with the input matrix and
the initial estimates, which both have size N × k. Thus, the complexity scales as O(nkN). For
decoding, the computation of the decoding matrix L = (G>Λ−1G)−1GΛ−1 is has complexity
Θ(k3) (matrix inverse) plus Θ(k2n) (matrix multiplications). Multiplying the decoding matrix Lk×n
with linear inverse results that have size N × n has complexity Θ(nkN). Therefore, for large N , the
computational complexity is in the order of Θ(nkN).

The computation of the matrix Λ, as we have explained in Section 8.9, has the same complexity
as computing m ≈ 10 extra linear inverse problems. Additionally, it is a one-time cost in the pre-
processing step. Thus, we do not take into account the complexity of computing Λ for the analysis of
encoding and decoding.

8.11 Proof of Theorem 5.2

We assume that the matrix B and K have already been stored in each worker before the computation
of the linear inverse problems. For the PageRank problem, this means that we store the column-
normalized adjacency matrix A in each worker.

In Algorithm 1, the i-th worker requires the central controller to communicate a vector ri with length
N to compute the linear inverse problem. Thus

COSTcommunication = N INTEGERS. (168)

The computation cost at each worker is equal to the number of operations in one iteration multiplied
by the number of iterations in the specified iterative algorithm. In each iteration, the number of
operations also roughly equals to the number of non-zeros in B. Thus

COSTcomputation ≈ 2 · |E| · li OPERATIONS, (169)

where li is the number of iterations completed at the i-th worker, |E| is the number of non-zeros in B,
and 2· is because we count both addition and multiplication. From Fig. 7, the typical number of li is
about 50.

Thus, the ratio between computation and communication is

COSTcomputation/COSTcommunication

≈ lid̄ OPERATIONS/INTEGERS,
(170)

2Since we are trying to prove Theorem 5.1 which states that the computational cost is higher than that of the
communication cost, neglecting the computation of K does not affect the result.

28

0 50 100 150 200

200 different personalized PageRank problems

0

0.005

0.01

0.015

0.02

m
ea

n
sq

ua
re

 e
rr

or

Simulation
Theoretical error

Figure 4: This simulation result shows the mean squared error of the computation results for k = 200
different problems in the uncoded scheme.

0 50 100 150 200

200 different personalized PageRank problems

0

1

2

3

4

5

6

7

m
ea

n
sq

ua
re

 e
rr

or

×10-4

Simulation
Theoretical error

Figure 5: This simulation result shows the mean squared error of the computation results for k = 200
different problems in the coded scheme.

where d̄ is the average number of non-zeros in each row of the B matrix (because N is the number
of rows in B). Since li is about 50, we expect that the computation cost is much larger than
communication.

8.12 Simulations

We also test the coded linear inverse algorithm for the personalized PageRank problem in a simulated
setup with randomly generated graphs and worker response times. These simulations help us
understand looseness in our theoretical bounding techniques. They can also test the performance of
the coded Algorithm for different distributions. We simulate Algorithm 1 on a randomly generated
Erdös-Rényi graph with N = 500 nodes and connection probability 0.1. The number of workers n
is set to be 240 and the number of PageRank vectors k is set to be 200. We use the first k = 200
rows of a 240 × 240 DFT-matrix as the G matrix in the coded PageRank algorithm in Section 3.
In Fig. 4 and Fig. 5, we show the simulation result on the mean squared error of all k = 200
PageRank vectors in both uncoded and coded PageRank, which are respectively shown in Fig. 4 and

29

exponential uniform delta

different worker speed distribution

0

0.2

0.4

0.6

0.8

1

av
er

ag
e

m
ea

n
sq

ua
re

 e
rr

or

×10-3

uncoded
repetition
coded

Figure 6: This figure shows the mean squared error of uncoded, replication-based and coded PageRank
algorithms.

Fig. 5. The x-axis represents the computation results for different PageRank problems and the y-axis
represents the corresponding mean-squared error. It can be seen that in the uncoded PageRank, some
of the PageRank vectors have much higher error than the remaining ones (the blue spikes in Fig. 4),
because these are the PageRank vectors returned by the slow workers in the simulation. However, in
coded PageRank, the peak-to-average ratio of mean squared error is much lower than in the uncoded
PageRank. This means that using coding, we are able to mitigate the straggler effect and achieve
more uniform performance across different PageRank computations. From a practical perspective,
this means that we can provide fairness to different PageRank queries.

We compare the average mean-squared error of uncoded, replication-based and coded PageRank
algorithms in Fig. 6. The first simulation compares these three algorithms when the processing time
of one iteration of PageRank computation is exponentially distributed, and the second and third when
the number of iterations is uniformly distributed in the range from 1 to 20 and Bernoulli distributed at
two points 5 and 20 (which we call “delta” distribution). It can be seen that in all three different types
of distributions, coded PageRank beats the other two algorithms.

8.13 Validating Assumption 3 using Experiments

Here we provide an experiment that validates Assumption 3 in Section 4.3, i.e., the computation time
of one power-iteration at the same worker is a constant over time. In Fig. 7, we plot the number
of power-iterations completed at different workers versus computation time. We can see that the
computation speed is indeed constant, which means that Assumption 3 is valid3. Note that there is a
non-zero time cost for loading the graph at each worker. This amount of time does not exist if the
network graph is already loaded in the cache of distributed workers for online queries. Additionally,
this amount of cost does not affect the conclusion of Theorem 4.5, because the loading time becomes
negligible when the computation deadline Tdl →∞.

8.14 Proof of Lemma 8.1

Property 1 and property 2 can be directly examined from the definition. Property 3 is Theorem 3 in
[36]. To prove property 4, we note that the eigenvalues of A ⊗B equals to the pairwise products
of the eigenvalues of A and the eigenvalues of B (from Theorem 6 in [36]). Therefore, since the

3In this work, we assume that the statistics of speed distributions are unknown. However, from Fig. 7, it
may seem that the speeds at different workers are quite predictable. In fact, each time when scheduling tasks to
the pool of parallel workers, the central controller assign the tasks through virtual machines instead of actual
physical addresses. Therefore, the machines assigned to the same task can be different, and this assignment is
transparent to the end-users. Thus, the statistics of speed distributions are generally unobtainable.

30

0 5 10 15 20 25 30

Computation time/s

0

50

100

150

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 a

t
e

a
c
h

 w
o

rk
e

r

Computation speed at different workers

Figure 7: This figure shows the number of PageRank power-iterations completed at different workers
in 30 seconds in the Google Plus experiment.

eigenvalues of A and the eigenvalues of B are all non-negative, the eigenvalues of A⊗B are also
non-negative. Property 5 follows directly from property 4 because when B −A � 0 and C � 0,
(B−A)⊗C � 0.

To prove property 6, we can repeatedly use property 3:

(Am×n ⊗ Ip) · (In ⊗Bp×q) =(Am×n · In)⊗ (Ip ·Bp×q)

=(Im ·Am×n)⊗ (Bp×q · Iq)
=(Im ⊗Bp×q) · (Am×n ⊗ Iq).

(171)

To prove property 7, we first assume that

Lk×n =


L11 L12 . . . L1n

L21 L22 . . . L2n

...
...

. . .
...

Ln1 Ln2 . . . Lkn

 . (172)

Then,

trace
[
(L⊗ IN) ·A · (L⊗ IN)>

] (a)
=

k∑
l=1

trace

 n∑
i=1

n∑
j=1

LkiAijLkj


=

k∑
l=1

 n∑
i=1

n∑
j=1

Lkitrace[Aij]Lkj


(b)
= trace

L ·

trace[A11] . . . trace[A1n]
...

. . .
...

trace[An1] . . . trace[Ann]

 · L>
 ,

(173)

where (a) and (b) hold both because the trace can be computed by examining the trace on the diagonal
(or the diagonal blocks).

31

	Introduction
	System Model and Problem Formulation
	Preliminaries on Solving Linear Systems using Iterative Methods
	Motivating Applications of Linear Inverse Problems
	Problem Formulation: Distributed Computing and the Straggler Effect
	Preliminaries on Error Correcting Codes

	Coded Distributed Computing of Linear Inverse Problems
	Bounds on Performance of the Coded Linear Inverse Algorithm

	Comparison with Uncoded Schemes and Replication-based Schemes
	Comparison between the coded and uncoded linear inverse before a deadline
	Comparison between the replication-based and coded linear inverse before a deadline
	Asymptotic Comparison between Coded, Uncoded and Replication-based linear inverse as the Deadline Lg

	Analyzing the Computational Complexity
	Encoding and decoding complexity
	Analysis on the cost of communication versus computation

	Experiments on Real Systems
	Conclusions
	Supplementary Materials
	Graph Signal Sampling and Recovery as a Motivating Example for solving Non-square Linear Inverse Problems using Iterative Methods
	Bounds on the Mean-squared Error beyond the i.i.d. Case
	Proof of Theorem 3.1
	Notation and Preliminary Properties
	Computing the explicit form of the error matrix Lg
	Vectorization of the error matrix Lg
	Express the mean-squared error using the vectorization form
	Bounding the term Lg using the maximum eigenvalue Lg
	Reducing the dimensionality of Lg in the trace expression using property 7 in Lemma 8.1

	Proof of Theorem 4.2
	Proof of Theorem 8.1
	Proof of Theorem 4.1
	Proof of Theorem 4.4
	Exploiting the Fourier structure to obtain a Toeplitz covariance matrix
	Using the concentration of Lg to obtain the error when Lg

	Proof of Theorem 4.5
	Computing the Matrix Lg
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Simulations
	Validating Assumption 3 using Experiments
	Proof of Lemma 8.1

