
Supplementary material for the paper “Decoupling when
to update from how to update“

A Proofs

Proof of Lemma 1:
Let the distribution over instances be concentrated uniformly over the vectors of the standard basis,
e1, . . . , ed. Let w⇤ be any vector in {±1}d. Fix some i. Then, with probability 1/4 over the choice
of w(1)

0 , w

(2)
0 , we have that the signs of hw(1)

0 , eii, hw(2)
0 , eii agree with each other, but disagree with

hw⇤
, eii. It is easy to see that the i’th coordinate of w(1) and w

(2) will never be updated. Therefore,
no matter how many iterations we will perform, the solution will be wrong on ei. It follows that the
probability of error is lower bounded by the random variable 1

d

Pd
i=1 Zi, the Zi are i.i.d. Bernoulli

variables with P[Zi = 1] = 1/4. Using Chernoff’s inequality,

P
"
1

d

dX

i=1

Zi < 1/8

#
 exp(�dC) ,

where C =

3
112 . It follows that if d � log(1/�)/C then with probability of at least 1 � � we will

have that the error of the solution is at least 1/8.

Proof of Lemma 2:
Let wt be a random vector indicating the vector of the perceptron after t iterations. Fix some i and
w.l.o.g. assume that w⇤

i = 1. The value of wt at the i’th coordinate is always in the set {�1, 0, 1}.
Furthermore, it alters its value like a Markov chain with a transition matrix of

P =

µ 1� µ 0

µ 0 1� µ

0 µ 1� µ

!

It is easy to verify that the stationary distribution over {�1, 0, 1} is

⇡ =

✓
µ

2

µ+ (1� µ)

2
,

µ(1� µ)

µ+ (1� µ)

2
,

(1� µ)

2

µ+ (1� µ)

2

◆
.

Now, the probability that our algorithm will fail on the i’th coordinate is lower bounded by the
probability that the i’th coordinate of both w

(1)
, w

(2) will be 0 and then our algorithm will see a
flipped label. This would happen with probability of order of µ3 for a small µ.

12

B Experimental Results

We show our algorithm’s performance in two controlled setups, using a perceptron based algorithm.
In the first setup we test we run our algorithm on synthetic data that is generated by randomly
sampling instances from the unit ball in Rd, with different probabilities for random label-flips. In the
second setup we test our performance on a binary classification task based on the MNIST dataset,
again with random label-flips with different probabilities. We show that in both scenarios, our
adaptation of the perceptron algorithm results in resilience for large noise probabilities, unlike the
vanilla perceptron algorithm which fails to converge on even small amounts of noise.

B.1 Linear Classification on Synthetic Data

To test the performance of the suggested perceptron-like algorithm, we use synthetic data in various
dimensions, generated in the following process:

1. Randomly choose w

⇤ 2 Rd with a given norm kw⇤k = 10

3

(a) In each iteration, draw vectors x 2 Rd from the uniform distribution on the unit ball
until |hw⇤

, xi| � 1, and then set y = sign(hw⇤
, xi).

(b) With probability µ < 0.5, flip the sign of y.

The above was performed for different values of µ, and repeated 5 times for each setup. In Figure 3
we depict the average performance over the 5 runs. As can be seen, our algorithm greatly improves
the noise resilience of the vanilla perceptron.

d = 100, µ = 0.01 d = 100, µ = 0.4

Figure 3: Mean accuracy of our algorithm (blue line) compared to a vanilla perceptron update rule
(green line), averaged across 5 randomly initialized training sessions, testing different noise rate
values. Each iteration is tested against a test set of 10K correctly labeled examples.

13

B.2 Linear Classification on MNIST Data Noisy Labels

Here we use a binary classification task of discriminating between the digits 4 and 7, from the
MNIST dataset.

We tested the performance of the above algorithm against the regular perceptron algorithm with
various levels of noise.

µ = 0.1 µ = 0.2

µ = 0.3 µ = 0.4

µ = 0.1 0.2 0.3 0.4

best acc. (ours) 99.4 99.2 99.0 98.7
best acc. (perceptron) 97.2 95.0 91.8 85.8
mean last 100 iters (ours) 99.3 99.1 98.9 98.4
mean last 100 iters (perc.) 87.0 77.7 65.4 59.2

Figure 4: Mean accuracy of our algorithm (blue line) compared to a regular perceptron update
rule (green line), with different noise rates. In all training sessions we performed 1M iterations,
randomly drawing examples from the MNIST train set, and testing the accuracy of both algorithms
on the MNIST test set every 1000 iterations.

14

B.3 Deep Learning Detailed Results

The table below details the results of the LFW experiment, showing the balanced accuracy of all the
different methods for dealing with noisy labels. We show the results on the best iteration and on the
last iteration. We observe that our method outperforms other alternative, and combining it with the
s-model of [15] results in an even better improvement.

Table 1: Accuracy on the test data in the best iteration (with respect to the test data) and the last
iteration, achieved by each method during the training process.

Dataset #1 Accuracy (best iteration) Accuracy (last iteration)
Male Female Mean Male Female Mean

ours (net #1) 94.4 ± 0.7 92.7 ± 0.2 93.6 ± 0.2 94.8 ± 0.8 89.7 ± 1.3 92.2 ± 0.6
ours (net #2) 93.5 ± 1.1 93.2 ± 0.6 93.4 ± 0.3 93.7 ± 0.8 90.1 ± 0.9 91.9 ± 0.4
s-model+ours #1 93.3 ± 1.7 93.8 ± 1.4 93.6 ± 0.4 93.7 ± 1.1 91.4 ± 1.0 92.6 ± 0.1
s-model+ours #2 94.2 ± 0.7 91.7 ± 0.6 93.0 ± 0.2 93.6 ± 1.3 91.6 ± 1.5 92.6 ± 0.1
baseline 91.6 ± 2.2 92.7 ± 1.8 92.2 ± 0.2 94.5 ± 0.7 83.3 ± 3.2 88.9 ± 1.3
bootstrap-soft 92.5 ± 0.6 91.9 ± 0.6 92.2 ± 0.2 94.5 ± 0.7 84.0 ± 1.7 89.2 ± 0.8
bootstrap-hard 92.4 ± 0.7 91.9 ± 1.0 92.1 ± 0.3 94.7 ± 0.2 83.2 ± 1.7 88.9 ± 0.8
s-model 94.5 ± 0.7 91.3 ± 0.4 92.9 ± 0.5 93.3 ± 2.0 89.8 ± 1.3 91.5 ± 0.4

Dataset #2 Accuracy (best iteration) Accuracy (last iteration)
Male Female Mean Male Female Mean

ours (net #1) 95.5 ± 0.8 93.6 ± 0.9 94.5 ± 0.2 95.4 ± 1.1 92.1 ± 0.7 93.7 ± 0.2
ours (net #2) 95.7 ± 1.5 93.0 ± 1.8 94.4 ± 0.2 95.9 ± 0.6 91.6 ± 0.6 93.7 ± 0.3
s-model+ours #1 95.5 ± 0.5 94.0 ± 0.7 94.8 ± 0.2 95.3 ± 1.3 92.9 ± 2.2 94.1 ± 0.4
s-model+ours #2 95.1 ± 0.8 93.9 ± 1.5 94.5 ± 0.3 95.6 ± 1.2 92.5 ± 1.7 94.0 ± 0.2
baseline 93.6 ± 0.7 93.9 ± 0.8 93.8 ± 0.3 96.2 ± 0.2 89.4 ± 1.6 92.8 ± 0.8
bootstrap-soft 94.8 ± 1.0 92.2 ± 0.6 93.5 ± 0.4 96.2 ± 0.6 88.7 ± 2.0 92.5 ± 0.7
bootstrap-hard 93.9 ± 1.2 92.8 ± 0.7 93.4 ± 0.4 96.1 ± 0.3 87.9 ± 1.6 92.0 ± 0.6
s-model 94.8 ± 1.0 93.3 ± 0.4 94.1 ± 0.3 94.5 ± 0.6 92.3 ± 0.2 93.4 ± 0.4

15

	Introduction
	Related Work
	METHOD
	Theoretical analysis
	EXPERIMENTS
	Deep Learning

	Discussion
	Proofs
	Experimental Results
	Linear Classification on Synthetic Data
	Linear Classification on MNIST Data Noisy Labels
	Deep Learning Detailed Results

