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Abstract

Deep learning requires data. A useful approach to obtain data is to be creative and

mine data from various sources, that were created for different purposes. Unfortu-

nately, this approach often leads to noisy labels. In this paper, we propose a meta

algorithm for tackling the noisy labels problem. The key idea is to decouple “when

to update” from “how to update”. We demonstrate the effectiveness of our algo-

rithm by mining data for gender classification by combining the Labeled Faces

in the Wild (LFW) face recognition dataset with a textual genderizing service,

which leads to a noisy dataset. While our approach is very simple to implement,

it leads to state-of-the-art results. We analyze some convergence properties of the

proposed algorithm.

1 Introduction

In recent years, deep learning achieves state-of-the-art results in various different tasks, however,

neural networks are mostly trained using supervised learning, where a massive amount of labeled

data is required. While collecting unlabeled data is relatively easy given the amount of data available

on the web, providing accurate labeling is usually an expensive task. In order to overcome this

problem, data science becomes an art of extracting labels out of thin air. Some popular approaches

to labeling are crowdsourcing, where the labeling is not done by experts, and mining available

meta-data, such as text that is linked to an image in a webpage. Unfortunately, this gives rise to a

problem of abundant noisy labels - labels may often be corrupted [19], which might deteriorate the

performance of neural-networks [12].

Let us start with an intuitive explanation as to why noisy labels are problematic. Common neural

network optimization algorithms start with a random guess of what the classifier should be, and

then iteratively update the classifier based on stochastically sampled examples from a given dataset,

optimizing a given loss function such as the hinge loss or the logistic loss. In this process, wrong

predictions lead to an update of the classifier that would hopefully result in better classification

performance. While at the beginning of the training process the predictions are likely to be wrong,

as the classifier improves it will fail on less and less examples, thus making fewer and fewer updates.

On the other hand, in the presence of noisy labels, as the classifier improves the effect of the noise

increases - the classifier may give correct predictions, but will still have to update due to wrong

labeling. Thus, in an advanced stage of the training process the majority of the updates may actually

be due to wrongly labeled examples, and therefore will not allow the classifier to further improve.

To tackle this problem, we propose to decouple the decision of “when to update” from the decision

of “how to update”. As mentioned before, in the presence of noisy labels, if we update only when

the classifier’s prediction differs from the available label, then at the end of the optimization process,

these few updates will probably be mainly due to noisy labels. We would therefore like a different

update criterion, that would let us decide whether it is worthy to update the classifier based on a

given example. We would like to preserve the behavior of performing many updates at the begin-

ning of the training process but only a few updates when we approach convergence. To do so, we
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suggest to train two predictors, and perform update steps only in case of disagreement between them.

This way, when the predictors get better, the “area” of their disagreement gets smaller, and updates

are performed only on examples that lie in the disagreement area, therefore preserving the desired

behavior of the standard optimization process. On the other hand, since we do not perform an up-

date based on disagreement with the label (which may be due to a problem in the label rather than

a problem in the predictor), this method keeps the effective amount of noisy labels seen throughout

the training process at a constant rate.

The idea of deciding “when to update” based on a disagreement between classifiers is closely related

to approaches for active learning and selective sampling - a setup in which the learner does not have

unlimited access to labeled examples, but rather has to query for each instance’s label, provided at

a given cost (see for example [34]). Specifically, the well known query-by-committee algorithm

maintains a version space of hypotheses and at each iteration, decides whether to query the label of

a given instance by sampling two hypotheses uniformly at random from the version space [35, 14].

Naturally, maintaining the version space of deep networks seems to be intractable. Our algorithm

maintains only two deep networks. The difference between them stems from the random initializa-

tion. Therefore, unlike the original query-by-committee algorithm, that samples from the version

space at every iteration, we sample from the original hypotheses class only once (at the initializa-

tion), and from there on, we update these two hypotheses using the backpropagation rule, when

they disagree on the label. To the best of our knowledge, this algorithm was not proposed/analyzed

previously, not in the active learning literature and especially not as a method for dealing with noisy

labels.

To show that this method indeed improves the robustness of deep learning to noisy labels, we con-

duct an experiment that aims to study a real-world scenario of acquiring noisy labels for a given

dataset. We consider the task of gender classification based on images. We did not have a dedicated

dataset for this task. Instead, we relied on the Labeled Faces in the Wild (LFW) dataset, which con-

tains images of different people along with their names, but with no information about their gender.

To find the gender for each image, we use an online service to match a gender to a given name (as is

suggested by [25]), a method which is naturally prone to noisy labels (due to unisex names). Apply-

ing our algorithm to an existing neural network architecture reduces the effect of the noisy labels,

achieving better results than similar available approaches, when tested on a clean subset of the data.

We also performed a controlled experiment, in which the base algorithm is the perceptron, and show

that using our approach leads to a noise resilient algorithm, which can handle an extremely high

label noise rates of up to 40%. The controlled experiments are detailed in Appendix B.

In order to provide theoretical guarantees for our meta algorithm, we need to tackle two questions:

1. does this algorithm converge? and if so, how quickly? and 2. does it converge to an optimum? We

give a positive answer to the first question, when the base algorithm is the perceptron and the noise

is label flip with a constant probability. Specifically, we prove that the expected number of iterations

required by the resulting algorithm equals (up to a constant factor) to that of the perceptron in the

noise-free setting. As for the second question, clearly, the convergence depends on the initialization

of the two predictors. For example, if we initialize the two predictors to be the same predictor, the

algorithm will not perform any updates. Furthermore, we derive lower bounds on the quality of the

solution even if we initialize the two predictors at random. In particular, we show that for some

distributions, the algorithm’s error will be bounded away from zero, even in the case of linearly

separable data. This raises the question of whether a better initialization procedure may be helpful.

Indeed, we show that for the same distribution mentioned above, even if we add random label noise,

if we initialize the predictors by performing few vanilla perceptron iterations, then the algorithm

performs much better. Despite this worst case pessimism, we show that empirically, when working

with natural data, the algorithm converges to a good solution. We leave a formal investigation of

distribution dependent upper bounds to future work.

2 Related Work

The effects of noisy labels was vastly studied in many different learning algorithms (see for example

the survey in [13]), and various solutions to this problem have been proposed, some of them with

theoretically provable bounds, including methods like statistical queries, boosting, bagging and more

[21, 26, 7, 8, 29, 31, 23, 27, 3]. Our focus in this paper is on the problem of noisy labels in the context

of deep learning. Recently, there have been several works aiming at improving the resilience of deep
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learning to noisy labels. To the best of our knowledge, there are four main approaches. The first

changes the loss function. The second adds a layer that tries to mimic the noise behavior. The third

groups examples into buckets. The fourth tries to clean the data as a preprocessing step. Beyond

these approaches, there are methods that assume a small clean data set and another large, noisy, or

even unlabeled, data set [30, 6, 38, 1]. We now list some specific algorithms from these families.

[33] proposed to change the cross entropy loss function by adding a regularization term that takes

into account the current prediction of the network. This method is inspired by a technique called

minimum entropy regularization, detailed in [17, 16]. It was also found to be effective by [12],

which suggested a further improvement of this method by effectively increasing the weight of the

regularization term during the training procedure.

[28] suggested to use a probabilistic model that models the conditional probability of seeing a wrong

label, where the correct label is a latent variable of the model. While [28] assume that the probability

of label-flips between classes is known in advance, a follow-up work by [36] extends this method

to a case were these probabilities are unknown. An improved method, that takes into account the

fact that some instances might be more likely to have a wrong label, has been proposed recently

in [15]. In particular, they add another softmax layer to the network, that can use the output of

the last hidden layer of the network in order to predict the probability of the label being flipped.

Unfortunately, their method involves optimizing the biases of the additional softmax layer by first

training it on a simpler setup (without using the last hidden layer), which implies two-phase training

that further complicates the optimization process. It is worth noting that there are some other works

that suggest methods that are very similar to [36, 15], with a slightly different objective or training

method [5, 20], or otherwise suggest a complicated process which involves estimation of the class-

dependent noise probabilities [32]. Another method from the same family is the one described in

[37], who suggests to differentiate between “confusing” noise, where some features of the example

make it hard to label, or otherwise a completely random label noise, where the mislabeling has no

clear reason.

[39] suggested to train the network to predict labels on a randomly selected group of images from

the same class, instead of classifying each image individually. In their method, a group of images

is fed as an input to the network, which merges their inner representation in a deeper level of the

network, along with an attention model added to each image, and producing a single prediction.

Therefore, noisy labels may appear in groups with correctly labeled examples, thus diminishing

their impact. The final setup is rather complicated, involving many hyper-parameters, rather than

providing a simple plug-and-play solution to make an existing architecture robust to noisy labels.

From the family of preprocessing methods, we mention [4, 10], that try to eliminate instances that are

suspected to be mislabeled. Our method shares a similar motivation of disregarding contaminated

instances, but without the cost of complicating the training process by a preprocessing phase.

In our experiment we test the performance of our method against methods that are as simple as

training a vanilla version of neural network. In particular, from the family of modified loss function

we chose the two variants of the regularized cross entropy loss suggested by [33] (soft and hard

bootsrapping). From the family of adding a layer that models the noise, we chose to compare to one

of the models suggested in [15] (which is very similar to the model proposed by [36]), because this

model does not require any assumptions or complication of the training process. We find that our

method outperformed all of these competing methods, while being extremely simple to implement.

Finally, as mentioned before, our “when to update” rule is closely related to approaches for active

learning and selective sampling, and in particular to the query-by-committee algorithm. In [14] a

thorough analysis is provided for various base algorithms implementing the query-by-committee

update rule, and particularly they analyze the perceptron base algorithm under some strong distribu-

tional assumptions. In other works, an ensemble of neural networks is trained in an active learning

setup to improve the generalization of neural networks [11, 2, 22]. Our method could be seen as

a simplified member of ensemble methods. As mentioned before, our motivation is very different

than the active learning scenario, since our main goal is dealing with noisy labels, rather than trying

to reduce the number of label queries. To the best of our knowledge, the algorithm we propose was

not used or analyzed in the past for the purpose of dealing with noisy labels in deep learning.
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3 METHOD

As mentioned before, to tackle the problem of noisy labels, we suggest to change the update rule

commonly used in deep learning optimization algorithms in order to decouple the decision of “when

to update” from “how to update”. In our approach, the decision of “when to update” does not depend

on the label. Instead, it depends on a disagreement between two different networks. This method

could be generally thought of as a meta-algorithm that uses two base classifiers, performing updates

according to a base learning algorithm, but only on examples for which there is a disagreement

between the two classifiers.

To put this formally, let X be an instance space and Y be the label space, and assume we sample

examples from a distribution

˜D over X ⇥Y , with possibly noisy labels. We wish to train a classifier

h, coming from a hypothesis class H. We rely on an update rule, U , that updates h based on its

current value as well as a mini-batch of b examples. The meta algorithm receives as input a pair of

two classifiers, h1, h2 2 H, the update rule, U , and a mini batch size, b. A pseudo-code is given in

Algorithm 1.

Note that we do not specify how to initialize the two base classifiers, h1, h2. When using deep

learning as the base algorithm, the easiest approach is maybe to perform a random initialization.

Another approach is to first train the two classifiers while following the regular “when to update”

rule (which is based on the label y), possibly training each classifier on a different subset of the data,

and switching to the suggested update rule only in an advanced stage of the training process. We

later show that the second approach is preferable.

At the end of the optimization process, we can simply return one of the trained classifiers. If a

small accurately labeled test data is available, we can choose to return the classifier with the better

accuracy on the clean test data.

Algorithm 1 Update by Disagreement

input:
an update rule U

batch size b

two initial predictors h1, h2 2 H
for t = 1, 2, . . . , N do

draw mini-batch (x1, y1), . . . , (xb, yb) ⇠ ˜Db

let S = {(xi, yi) : h1(xi) 6= h2(xi)}
h1  U(h1, S)

h2  U(h2, S)

end for

4 Theoretical analysis

Since a convergence analysis for deep learning is beyond our reach even in the noise-free setting,

we focus on analyzing properties of our algorithm for linearly separable data, which is corrupted by

random label noise, and while using the perceptron as a base algorithm.

Let X = {x 2 Rd
: kxk  1}, Y = {±1}, and let D be a probability distribution over X ⇥ Y ,

such that there exists w

⇤
for which D({(x, y) : yhw⇤

, xi < 1}) = 0. The distribution we observe,

denoted

˜D, is a noisy version of D. Specifically, to sample (x, ỹ) ⇠ ˜D one should sample (x, y) ⇠ D
and output (x, y) with probability 1� µ and (x,�y) with probability µ. Here, µ is in [0, 1/2).

Finally, let H be the class of linear classifiers, namely, H = {x 7! sign(hw, xi) : w 2 Rd}. We

use the perceptron’s update rule with mini-batch size of 1. That is, given the classifier wt 2 Rd
, the

update on example (xt, yt) 2 X ⇥ Y is: wt+1 = U(wt, (xt, yt)) := wt + yt xt.

As mentioned in the introduction, to provide a full theoretical analysis of this algorithm, we need to

account for two questions:

1. does this algorithm converge? and if so, how quickly?

2. does it converge to an optimum?
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Theorem 1 below provides a positive answer for the first question. It shows that the number of

updates of our algorithm is only larger by a constant factor (that depends on the initial vectors and

the amount of noise) relatively to the bound for the vanilla perceptron in the noise-less case.

Theorem 1 Suppose that the “Update by Disagreement” algorithm is run on a sequence of random

N examples from

˜D, and with initial vectors w

(1)
0 , w

(2)
0 . Denote K = maxi kw(i)

0 k. Let T be the

number of updates performed by the “Update by Disagreement” algorithm.

Then, E[T ]  3 (4K+1)
(1�2µ)2 kw⇤k2 where the expectation is w.r.t. the randomness of sampling from

˜D.

Proof It will be more convenient to rewrite the algorithm as follows. We perform N iterations,

where at iteration t we receive (xt, ỹt), and update w

(i)
t+1 = w

(i)
t + ⌧t ỹt xt , where

⌧t =

(
1 if sign(hw(1)

t , xti) 6= sign(hw(2)
t , xti)

0 otherwise

Observe that we can write ỹt = ✓tyt, where (xt, yt) ⇠ D, and ✓t is a random variables with

P[✓t = 1] = 1 � µ and P[✓t = �1] = µ. We also use the notation vt = ythw⇤
, xti and ṽt = ✓tvt.

Our goal is to upper bound

¯

T := E[T ] = E[
P

t ⌧t].

We start with showing that

E
"

NX

t=1

⌧tṽt

#
� (1� 2µ)T (1)

Indeed, since ✓t is independent of ⌧t and vt, we get that:

E[⌧tṽt] = E[⌧t✓tvt] = E[✓t] · E[⌧tvt] = (1� 2µ)E[⌧tvt] � (1� 2µ)E[⌧t]
where in the last inequality we used the fact that vt � 1 with probability 1 and ⌧t is non-negative.

Summing over t we obtain that Equation 1 holds.

Next, we show that for i 2 {1, 2},

kw(i)
t k2  kw(i)

0 k2 +
NX

t=1

⌧t(2kw(2)
0 � w

(1)
0 k+ 1) (2)

Indeed, since the update of w

(1)
t+1 and w

(2)
t+1 is identical, we have that kw(1)

t+1�w(2)
t+1k = kw(1)

0 �w(2)
0 k

for every t. Now, whenever ⌧t = 1 we have that either ythw(1)
t�1, xti  0 or ythw(2)

t�1, xti  0.

Assume w.l.o.g. that ythw(1)
t�1, xti  0. Then,

kw(1)
t k2 = kw(1)

t�1 + ytxtk2 = kw(1)
t�1k2 + 2ythw(1)

t�1, xti+ kxtk2  kw(1)
t�1k2 + 1

Second,

kw(2)
t k2 = kw(2)

t�1 + ytxtk2 = kw(2)
t�1k2 + 2ythw(2)

t�1, xti+ kxtk2

 kw(2)
t�1k2 + 2ythw(2)

t�1 � w

(1)
t�1, xti+ kxtk2

 kw(2)
t�1k2 + 2 kw(2)

t�1 � w

(1)
t�1k+ 1 = kw(2)

t�1k2 + 2 kw(2)
0 � w

(1)
0 k+ 1

Therefore, the above two equations imply 8i 2 {1, 2}, kw(i)
t k2  kw(i)

t�1k2 + 2 kw(2)
0 �w

(1)
0 k+ 1.

Summing over t we obtain that Equation 2 holds.

Equipped with Equation 1 and Equation 2 we are ready to prove the theorem.

Denote K = maxi kw(i)
0 k and note that kw(2)

0 � w

(1)
0 k  2K. We prove the theorem by providing

upper and lower bounds on E[hw(i)
t , w

⇤i]. Combining the update rule with Equation 1 we get:

E[hw(i)
t , w

⇤i] = hw(i)
0 , w

⇤i+ E
"

NX

t=1

⌧t ṽt

#
� hw(i)

0 , w

⇤i+ (1� 2µ)

¯

T � �K kw⇤k+ (1� 2µ)

¯

T

To construct an upper bound, first note that Equation 2 implies that

E[kw(i)
t k2]  kw(i)

0 k2 + (2kw(2)
0 � w

(1)
0 k+ 1)

¯

T  K

2
+ (4K + 1)

¯

T
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Using the above and Jensen’s inequality, we get that

E[hw(i)
t , w

⇤i]  E[kw(i)
t k kw⇤k]  kw⇤k

q
E[kw(i)

t k2]  kw⇤k
q
K

2
+ (4K + 1)

¯

T

Comparing the upper and lower bounds, we obtain that

�K kw⇤k+ (1� 2µ)

¯

T  kw⇤k
q
K

2
+ (4K + 1)

¯

T

Using

p
a+ b  pa+

p
b, the above implies that

(1� 2µ)

¯

T � kw⇤k
p
(4K + 1)

p
¯

T � 2K kw⇤k  0

Denote ↵ = kw⇤kp(4K + 1), then the above also implies that (1� 2µ)

¯

T � ↵

p
¯

T � ↵  0.

Denote � = ↵/(1� 2µ), using standard algebraic manipulations, the above implies that

¯

T  � + �

2
+ �

1.5  3�

2
,

where we used the fact that kw⇤k must be at least 1 for the separability assumption to hold, hence

� � 1. This concludes our proof.

The above theorem tells us that our algorithm converges quickly. We next address the second ques-

tion, regarding the quality of the point to which the algorithm converges. As mentioned in the

introduction, the convergence must depend on the initial predictors. Indeed, if w

(1)
0 = w

(2)
0 , then

the algorithm will not make any updates. The next question is what happens if we initialize w

(1)
0

and w

(2)
0 at random. The lemma below shows that this does not suffice to ensure convergence to the

optimum, even if the data is linearly separable without noise. The proof for this lemma is given in

Appendix A.

Lemma 1 Fix some � 2 (0, 1) and let d be an integer greater than 40 log(1/�). There exists a

distribution over Rd ⇥ {±1}, which is separable by a weight vector w

⇤
for which kw⇤k2 = d, such

that running the “Update by Disagreement” algorithm, with the perceptron as the underlying update

rule, and with every coordinate of w

(1)
0 , w

(2)
0 initialized according to any symmetric distribution over

R, will yield a solution whose error is at least 1/8, with probability of at least 1� �.

Trying to circumvent the lower bound given in the above lemma, one may wonder what would

happen if we will initialize w

(1)
0 , w

(2)
0 differently. Intuitively, maybe noisy labels are not such a big

problem at the beginning of the learning process. Therefore, we can initialize w

(1)
0 , w

(2)
0 by running

the vanilla perceptron for several iterations, and only then switch to our algorithm. Trivially, for

the distribution we constructed in the proof of Lemma 1, this approach will work just because in

the noise-free setting, both w

(1)
0 and w

(2)
0 will converge to vectors that give the same predictions

as w

⇤
. But, what would happen in the noisy setting, when we flip the label of every example with

probability of µ? The lemma below shows that the error of the resulting solution is likely to be order

of µ

3
. Here again, the proof is given in Appendix A.

Lemma 2 Consider a vector w

⇤ 2 {±1}d and the distribution

˜D over Rd ⇥ {±1} such that to

sample a pair (x, ỹ) we first choose x uniformly at random from {e1, . . . , ed}, set y = hw⇤
, eii, and

set ỹ = y with probability 1 � µ and ỹ = �y with probability µ. Let w

(1)
0 , w

(2)
0 be the result of

running the vanilla perceptron algorithm on random examples from

˜D for any number of iterations.

Suppose that we run the “Update by Disagreement” algorithm for an additional arbitrary number

of iterations. Then, the error of the solution is likely to be ⌦(µ

3
).

To summarize, we see that without making additional assumptions on the data distribution, it is

impossible to prove convergence of our algorithm to a good solution. In the next section we show

that for natural data distributions, our algorithm converges to a very good solution.

5 EXPERIMENTS

We now demonstrate the merit of our suggested meta-algorithm using empirical evaluation. Our

main experiment is using our algorithm with deep networks in a real-world scenario of noisy labels.
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In particular, we use a hypothesis class of deep networks and a Stochastic Gradient Descent with mo-

mentum as the basis update rule. The task is classifying face images according to gender. As training

data, we use the Labeled Faces in the Wild (LFW) dataset for which we had a labeling of the name

of the face, but we did not have gender labeling. To construct gender labels, we used an external

service that provides gender labels based on names. This process resulted in noisy labels. We show

that our method leads to state-of-the-art results on this task, compared to competing noise robustness

methods. We also performed controlled experiments to demonstrate our algorithm’s performance on

linear classification with varying levels of noise. These results are detailed in Appendix B.

5.1 Deep Learning

We have applied our algorithm with a Stochastic Gradient Descent (SGD) with momentum as the

base update rule on the task of labeling images of faces according to gender. The images were taken

from the Labeled Faces in the Wild (LFW) benchmark [18]. This benchmark consists of 13,233

images of 5,749 different people collected from the web, labeled with the name of the person in the

picture. Since the gender of each subject is not provided, we follow the method of [25] and use a

service that determines a person’s gender by their name (if it is recognized), along with a confidence

level. This method gives rise to “natural” noisy labels due to “unisex” names, and therefore allows

us to experiment with a real-world setup of dataset with noisy labels.

Name Kim Morgan Joan Leslie

Confidence 88% 64% 82% 88%

Correct

Mislabeled

Figure 1: Images from the dataset tagged as female

We have constructed train and test sets as follows. We first took all the individuals on which the

gender service gave 100% confidence. We divided this set at random into three subsets of equal

size, denoted N1, N2, N3. We denote by N4 the individuals on which the confidence level is in

[90%, 100%), and by N5 the individuals on which the confidence level is in [0%, 90%). Needless to

say that all the sets N1, . . . , N5 have zero intersection with each other.

We repeated each experiment three times, where in every time we used a different Ni as the test set,

for i 2 {1, 2, 3}. Suppose N1 is the test set, then for the training set we used two configurations:

1. A dataset consisting of all the images that belong to names in N2, N3, N4, N5, where un-

recognized names were labeled as male (since the majority of subjects in LFW are males).

2. A dataset consisting of all the images that belong to names in N2, N3, N4.

We use a network architecture suggested by [24], using an available tensorflow implementation

1

.

It should be noted that we did not change any parameters of the network architecture or the opti-

mization process, and use the default parameters in the implementation. Since the amount of male

and female subjects in the dataset is not balanced, we use an objective of maximizing the balanced

accuracy [9] - the average accuracy obtained on either class.

Training is done for 30,000 iterations on 128 examples mini-batch. In order to make the networks

disagreement meaningful, we initialize the two networks by training both of them normally (up-

dating on all the examples) until iteration #5000, where we switch to training with the “Update by

Disagreement” rule. Due to the fact that we are not updating on all examples, we decrease the weight

of batches with less than 10% of the original examples in the original batch to stabilize gradients.

2

.

1

https://github.com/dpressel/rude-carnie.

2

Code is available online on https://github.com/emalach/UpdateByDisagreement.
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We inspect the balanced accuracy on our test data during the training process, comparing our method

to a vanilla neural network training, as well as to soft and hard bootstrapping described in [33] and

to the s-model described in [15], all of which are using the same network architecture. We use the

initialization parameters for [33, 15] that were suggested in the original papers. We show that while

in other methods, the accuracy effectively decreases during the training process due to overfitting the

noisy labels, in our method this effect is less substantial, allowing the network to keep improving.

We study two different scenarios, one in which a small clean test data is available for model selection,

and therefore we can choose the iteration with best test accuracy, and a more realistic scenario where

there is no clean test data at hand. For the first scenario, we observe the balanced accuracy of the best

available iteration. For the second scenario, we observe the balanced accuracy of the last iteration.

As can be seen in Figure 2 and the supplementary results listed in Table 1 in Appendix B, our

method outperforms the other methods in both situations. This is true for both datasets, although, as

expected, the improvement in performance is less substantial on the cleaner dataset.

The second best algorithm is the s-model described in [15]. Since our method can be applied to

any base algorithm, we also applied our method on top of the s-model. This yields even better

performance, especially when the data is less noisy, where we obtain a significant improvement.

Dataset #1 - more noise Dataset #2 - less noise

Figure 2: Balanced accuracy of all methods on clean test data, trained on the two different datasets.

6 Discussion

We have described an extremely simple approach for supervised learning in the presence of noisy

labels. The basic idea is to decouple the “when to update” rule from the “how to update” rule. We

achieve this by maintaining two predictors, and update based on their disagreement. We have shown

that this simple approach leads to state-of-the-art results.

Our theoretical analysis shows that the approach leads to fast convergence rate when the underlying

update rule is the perceptron. We have also shown that proving that the method converges to an op-

timal solution must rely on distributional assumptions. There are several immediate open questions

that we leave to future work. First, suggesting distributional assumptions that are likely to hold in

practice and proving that the algorithm converges to an optimal solution under these assumptions.

Second, extending the convergence proof beyond linear predictors. While obtaining absolute con-

vergence guarantees seems beyond reach at the moment, coming up with oracle based convergence

guarantees may be feasible.
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