
A Appendix

A.1 Background: Exponential Families

This section will give a in-depth explanation of exponential families and the properties of them we
exploit in our analysis.

An exponential family is a family of probability distributions over x ∈ X indexed by the parameter
θ ∈ Θ ⊆ Rd that can be written in this canonical form for some choice of functions h : X → R,
S : X → Rd, and A : Θ→ R:

p(x1, . . . ,xn|θ) = (

n∏
i=1

h(xi))exp

(
(

n∑
i=1

S(xi)) · θ − n ·A(θ)

)
. (1)

We call h the base measure, S the sufficient statistics of x, and A as the log-partition function of
this family. Note that the data {x1, . . . ,xn} interact with the parameter θ solely through the dot
product of θ and the sum of their sufficient statistics. When the parameter θ is used in this dot product
unmodified (as in (1)), we call this a natural parameterization. Our analysis will be restricted to the
families that satisfy the following two properties:
Definition A.1. An exponential family is minimal if the coordinates of the function S are not almost
surely linearly dependent, and the interior of Θ is non-empty.
Definition A.2. For any for ∆ ∈ R, an exponential family is ∆-bounded if

∆ ≥ sup
x,y∈X

||S(x)− S(y)||. (2)

This constraint can be relaxed with some caveats explored in the appendix.

When a family is minimal, the log-partition function A has many interesting characteristics. It can
be defined as A(θ) = log

∫
X h(x)exp (S(x) · θ) dx, and serves to normalize the distribution. Its

derivatives form the cumulants of the distribution, that is to say ∇A(θ) = κ1 = Ex|θ[S(x)] and
∇2A(θ) = κ2 = Ex|θ[(S(x)− κ1)(S(x)− κ1)ᵀ]. This second cumulant is also the covariance of
S(x), which demonstrates that A(θ) must be a convex function since covariances must be positive
semidefinite.

In Bayesian data analysis, we are interested in finding our posterior distribution over the parameter θ
that generated the data. We must introduce a prior distribution p(θ|η) to describe our initial beliefs
on θ, where η is a parameterization of our family of priors.

p(θ|x1, . . . , xn, η) ∝ p(x1, . . . , xn|θ)p(θ|η) (3)

∝ (

n∏
i=1

h(xi))exp

(
(

n∑
i=1

S(xi)) · θ − n ·A(θ)

)
p(θ|η) (4)

∝ exp

(
(

n∑
i=1

S(xi), n) · (θ,−A(θ))

)
p(θ|η) (5)

(6)

Notice that we can ignore the (
∏n
i=1 h(xi)) as it is a constant that will be normalized out. If we

let our prior take the form of another exponential family p(θ|η) = exp (T (θ) · η −B(η)) where
T (θ) = (θ,−A(θ)) and B(η) = log

∫
Θ

exp (T (θ) · η) dθ, the we can perform these manipulations,

p(θ|x1, . . . , xn, η) ∝ exp

(
(

n∑
i=1

S(xi), n) · T (θ) + η · T (θ)−B(η)

)
(7)

∝ exp

((
η + (

n∑
i=1

S(xi), n)

)
· T (θ)−B(η)

)
(8)
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and see that expression (8) can be written as

p(θ|η′) = exp (T (θ) · η′ − C(η′)) (9)

where η′ = η +
∑n
i=1(S(xi), 1) and C(η′) is chosen such that the distribution is normalized.

This family of posteriors is precisely the same exponential family that we chose for our prior. We
call this a conjugate prior, and it offers us an efficient way of finding the parameter of our posterior:
ηposterior = ηprior +

∑n
i=1(S(xi), 1). Within this family, T (θ) forms the sufficient statistics of θ,

and the derivatives of C(η) give the cumulants of these sufficient statistics.

Beta-Bernoulli System. A specific example of an exponential family that we will be interested in
is the Beta-Bernoulli system, where an individual’s data is a single i.i.d. bit modeled as a Bernoulli
variable with parameter ρ, along with a Beta conjugate prior.

p(x1, . . . ,xn|ρ) =

n∏
i=1

ρxi(1− ρ)1−xi (10)

Letting θ = log( ρ
1−ρ ) and A(θ) = log(1 + exp (θ)) = − log(1− ρ) , we can rewrite the equation as

follows:

p(x1, . . . ,xn|ρ) =

n∏
i=1

(
ρ

1− ρ
)xi(1− ρ) (11)

= exp

(
n∑
i=1

xi log(
ρ

1− ρ
) + log(1− ρ)

)
(12)

= exp

(
(

n∑
i=1

xi) · θ −A(θ)

)
. (13)

This system satisfies the properties we require, as this natural parameterization with θ is both minimal
and ∆-bounded for ∆ = 1.

As our mechanisms are interested mainly in the posterior, the rest of this section will be written with
respect the family specified by equation (9).

Now that we have the notation for our distributions, we can write out the expression for the Rényi
divergence of two posterior distributions P and Q (parameterized by ηP and ηQ) from the same
exponential family. This expression allows us to directly compute the Rényi divergences of posterior
sampling methods, and forms the crux of the analysis of our exponential family mechanisms.

Observation A.3. Let P and Q be two posterior distributions from the same exponential family that
are parameterized by ηP and ηQ. Then,

Dλ(P ||Q) =
1

λ− 1
log

(∫
Θ

P (θ)λQ(θ)1−λdθ

)
=
C(ληP + (1− λ)ηQ)− λC(ηP )

λ− 1
+ C(ηQ).

(14)

To help analyze the implication of equation (14) for Rényi Differential Privacy, we define some sets
of prior/posterior parameters η that arise in our analysis.

Definition A.4. We say a posterior parameter η is normalizable if C(η) = log
∫

Θ
exp (T (θ) · η)) dθ

is finite.

Let E denote the set of all normalizable η for the conjugate prior family.
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Definition A.5. Let pset(η0, n) be the convex hull of all parameters η of the form η0 + n(S(x), 1)
for x ∈ X . When n is an integer this represents the hull of possible posterior parameters after
observing n data points starting with the prior η0.

Definition A.6. Let Diff be the difference set for the family, where Diff is the convex hull of all
vectors of the form (S(x)− S(y), 0) for x, y ∈ X .

Definition A.7. Two posterior parameters η1 and η2 are neighboring iff η1 − η2 ∈ Diff .
They are r-neighboring iff (η1 − η2)/r ∈ Diff .

A.2 Extension: Public Data for Exponential Families

The use of a conjugate prior makes the interaction of observed data versus the prior easy to see. The
prior η0 can be expressed as (αχ, α), where χ is a vector expressing the average sufficient statistics
of pseudo-observations and α represents a count of these pseudo-observations. After witnessing the
n data points, the posterior becomes a prior that has averaged the data sufficient statistics into a new
χ and added n to α.

If the data analyst had some data in addition to X that was not privacy sensitive, perhaps from a stale
data set for which privacy requirements have lapsed, then this data can be used to form a better prior
for the analysis.

Not only would this improve utility by adding information that can be fully exploited, it would also
in most cases improve the privacy guarantees as well. A stronger prior, especially a prior farther
from the boundaries where C(η) becomes infinite, will lead to smaller Rényi divergences. This is
effectively the same behavior as the Concentrated Sampling mechanism, which scales the prior to
imagine more pseudo-observations had been seen. This also could apply to settings in which the
analyst can adaptively pay to receive non-private data, since this method will inform us once our prior
formed from this data becomes strong enough to sample directly at our desired RDP level.

This also carries another privacy implication for partial data breaches. If an adversary learns the
data of some individuals in the data set, the Direct Sampling mechanism’s privacy guarantee for
the remaining individuals can actually improve. Any contributions of the affected individuals to
the posterior become in effect yet more public data placed in the prior. The privacy analysis and
subsequent guarantees will match the setting in which this strengthened prior was used.

A.3 Extension: Releasing the result of a Statistical Query

Here we are given a sensitive database X = {x1, . . . , xn} and a predicate φ(·) which maps each xi
into the interval [0, 1]. Our goal is to release a Rényi DP approximation to the quantity: F (X) =
1
n

∑n
i=1 φ(xi).

Observe that directly releasing F (X) is neither DP nor Rényi DP, since this is a deterministic
algorithm; our goal is to release a random sample from a suitable distribution so that the output is as
close to F (X) as possible.

The task of releasing a privatized result of a statistical query can be embedded into our Beta-Bernoulli
system. This allows the privatized statistical query release to be done using either Algorithm 2 or
Algorithm 3.

We can extend the Beta-Bernoulli model to allow the sufficient statistics S(x) to range over the
interval [0, 1] instead of just the discrete set {0, 1}. This alteration still results in a ∆-bounded
exponential family, and the privacy results hold.

The sampled posterior will be a Beta distribution that will concentrate around the mean of the data
observations and the pseudo-observations of the prior. The process is described in the Beta-Sampled
Statistical Query algorithm. The final transformation maps the natural parameter θ ∈ (−∞,∞) onto
the mean of the distribution ρ ∈ (0, 1).

A.4 Proofs of Exponential Family Sampling Theorems

Our proofs will make extensive use of the definitions laid out in Section A.1. We will however need
an additional definition for a modified version of pset, and as well the set of possible updates to the
posterior parameter that might arise from the data.
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Algorithm 1 Beta-Sampled Statistical Query

Require: η0, {x1, . . . , xn}, f, ε, λ
1: Compute Xf = {f(x1), . . . , f(xn)}.
2: Sample θ via Algorithm 2 or Algorithm 3 applied to Xf with η0, ε, and λ.
3: Release ρ = exp(θ)

1+exp(θ) .

Definition A.8. Let lpset(η0, n, b) = pset(η0, n) + bDiff . This is the set of posterior parameters
that are b-neighboring at least one of the elements of pset(η0, n)

Definition A.9. Let U be the set of posterior updates for an exponential family, where U is the
convex hull of all vectors of the form (S(x), 1) for x, y ∈ X .

We begin by noting that observing a data set when starting at a normalizable prior η0 must result in a
normalizable posterior parameter η′.
Observation 1. In a minimal exponential family, for any prior parameter η0, any n > 0, and any
posterior update, every possible posterior parameter in the set η0 + nU is also normalizable. As
C(η) must be a convex function for minimal families, this must apply to positive non-integer values
of n as well.

With this observation, we are ready to prove our result on the conditions under which sampling from
our posterior gives a finite (λ, ε)-RDP guarantee.
Theorem A.10. For a ∆-bounded minimal exponential family of distributions p(x|θ) with continuous
log-partition function A(θ), there exists λ∗ ∈ (1,∞] such Algorithm 1 achieves (λ, ε(η0, n, λ))-RDP
for λ < λ∗.

λ∗ is the supremum over all λ such that all η in the set η0 + (λ− 1)Diff are normalizable.

PROOF:

Algorithm 1 samples directly from the posterior ηpost = η0 +
∑
i(S(xi), 1). When applied to

neighboring data sets X and X′, it selects posterior parameters that are neighboring.

The theorem can be reinterpreted as saying there exists λ∗ such that for λ < λ∗ we have

sup
neighboring ηP ,ηQ∈pset(η0,n)

Dλ(p(θ|ηP )||p(θ|ηQ)) <∞. (15)

For these two posteriors from the same exponential family, we can write out the Rényi divergence in
terms of the log-partition function C(η).

Dλ(p(θ|ηP )||p(θ|ηQ)) =
C(ληP + (1− λ)ηQ)− λC(ηP )

λ− 1
+ C(ηQ) (16)

We wish to show that this is bounded above over all neighboring ηP and ηQ our mechanism might
generate, and will do so by showing that |C(η)|must be bounded every where it is applied in equation
(16) if λ < λ∗. To find this bound, we will ultimately show each potential application of C(η) lies
within a closed subset of E, from which the continuity of C will imply an upperbound.

Let’s begin by observing that ηP and ηQ must lie within pset(η0, n) as they arise as posteriors for
neighboring data sets X and X′. The point ηL = ληP + (1−λ)ηQ = ηP + (λ− 1)(ηP − ηQ) might
not lie within pset(η0, n). However, we know ηP − ηQ lies within Diff and that ηL − ηP is within
(λ−1)Diff . This means for any neighboring data sets, ηP , ηQ, and ηL lie inside lpset(η0, n, λ−1).

If λ < λ∗, then η0 + (λ− 1)Diff ⊆ E. The set η0 + (λ− 1)Diff is potentially an open set, but
the closure of this set must be within E as well, since we can always construct λ′ ∈ (λ, λ∗) where
η0 + (λ′− 1)Diff ⊆ E, and the points inside η0 + (λ− 1)Diff can’t converge to any point outside
of η0 + (λ′ − 1)Diff .

Any point in η ∈ lpset(η0, n, λ− 1) can be broken down into three components using the definition
of lpset: η = η0 + u + d, where u ∈ nU and d ∈ (λ − 1)Diff . For any point in this lpset, we
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can therefore subtract off the component u to reach a point in the set η0 + (λ − 1)Diff . With
Observation 1, we can conclude that η is normalizable if η − u is normalizable, and therefore the
closure of lpset(η0, n, λ− 1) is a subset of E if η0 + (λ− 1)Diff is a subset of E, which we have
shown for λ < λ∗.

As C(η) is a continuous function, we know that the supremum of |C(η)| over the closure of
lpset(η0, n, λ − 1) must be finite. Remember that for any neighboring data sets, ηP ,ηQ, and ηL
are inside lpset(η0, n, λ− 1). Since |C(η)| is bounded over this lpset, so too must our expression
for Dλ(p(θ|ηP )||p(θ|ηQ)) in equation (16). Therefore there exists an upper-bound for the order λ
Rényi divergence across all pairs of posterior parameters selected by Algorithm 1 on neighboring
data sets. This finite upper-bound provides a finite value for ε(η0, n, λ) for which Algorithm 1 offers
(λ, ε(η0, n, λ))-RDP .

�

To prove our results for Algorithm 2 and Algorithm 3, we’ll need an additional result that bounds the
Rényi divergence in terms of the Hessian of the log-partition function and the distance between the
two distribution parameters.

Lemma 1. For λ > 1, if ||∇2C(η)|| < H over the set {ηP + x(ηP − ηQ)|x ∈ [−λ + 1, λ − 1]},
then

Dλ(p(θ|ηP )||p(θ|ηQ)) ≤ ||ηP − ηQ||2Hλ (17)

PROOF:

Define the function g(x) = C(ηP + xv) where x ∈ R and v = ηP − ηQ. This allows us to rewrite
the Rényi divergence as

Dλ(P ||Q) =
g(1− λ)− λg(0)

λ− 1
+ g(1) (18)

Now we will replace g with its first order Taylor expansion

g(x) = g(0) + xg′(0) + e(x) (19)

where e(x) is the approximation error term, satisfying |e(x)| ≤ x2 maxy∈[−x,x] g
′′(y)/2.

This results in

Dλ(p(θ|ηP )||p(θ|ηQ)) =
g(0) + (1− λ)g′(0) + e(1− λ)− λg(0)

λ− 1
+ g(0) + g′(0) + e(1) (20)

= −e(1− λ)

λ− 1
+ e(1) (21)

≤ (λ− 1)2

λ− 1
max

y∈[−λ+1,λ−1]
g′′(y)/2 + max

y∈[−1,1]
g′′(y)/2 . (22)

Further, we can express g′′ in terms of C and v.

g′′(y) = vᵀ∇2C(ηP + yv)v (23)

≤ ||ηP − ηQ||2||∇2C(ηP + yv)|| (24)

≤ ||ηP − ηQ||2H (25)

Plugging in this bound on g′′ gives the desired result.
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Dλ(p(θ|ηP )||p(θ|ηQ)) ≤ (λ− 1)2

λ− 1
max

y∈[−λ+1,λ−1]
g′′(y)/2 + max

y∈[−1,1]
g′′(y)/2 (26)

≤ (λ− 1)||ηP − ηQ||2H/2 + ||ηP − ηQ||2H/2 (27)

≤ ||ηP − ηQ||2Hλ/2 (28)

≤ ||ηP − ηQ||2Hλ (29)

�

We will also make use of the following standard results about the Hessian of the log-partition function
of minimal exponential families, given in (?) as Theorem 1.17 and Corollary 1.19 and rephrased for
our purposes.
Theorem 2. (Theorem 1.17 from (?)) The log-partition function C(η) of a minimal exponential
family is infinitely often differentiable at parameters η in the interior of the normalizable set E.
Theorem 3. (Corollary 1.19 from (?)) For minimal exponential family, the Hessian of the log-
partition function∇2C(η) is nonsingular for every parameter η in the interior of the normalizable
set E.

These results imply that the Hessian ∇2C(η) must exist and be continuous over η in the interior of
E, as well as having non-zero determinant.
Theorem A.11. For any ∆-bounded minimal exponential family with prior η0 in the interior of E,
any λ > 1, and any ε > 0, there exists r∗ ∈ (0, 1] such that using r ∈ (0, r∗] in Algorithm 2 will
achieve (λ, ε)-RDP.

PROOF:

Recall that Algorithm 2 uses the posterior parameter η′ = η0 + r
∑n
i (S(x), 1) where the data

contribution has been scaled by r. Our first step of this proof is to show that there exists r0 ∈ (0, 1]
such that the order λ Rényi divergences of the generated parameters are finite for r < r0.

Similar to the proof of Theorem A.10, we will do so by creating a closed set where C(η) is finite and
that must contain ηP , ηQ, and ηL for any choice of neighboring data sets. On neighboring data sets,
this generates r-neighboring parameters ηP and ηQ. The point ηL = ληP + (1− λ)ηQ is therefore
r(λ − 1)-neighboring ηP . These points must be contained in the set lpset(η0, rn, r(λ − 1)) =
η0 + rnU + r(λ− 1)Diff . For any point in this set, we can subtract off the component in rnU to
get to a modified prior that is r(λ− 1)-neighboring η0.

By the assumption that η0 is in the interior of E, there exists δ > 0 such that the ball B(η0, δ) ⊆ E.
For the choice r0 = δ

2(λ−1)∆ , for any r ∈ (0, r0), the modified prior we constructed for each point
in lpset(η0, rn, r(λ − 1)) is within distance r(λ − 1)∆ of η0 and therefore within B(η0, δ/2) ⊂
B(η0, δ) ⊆ E. Observation 1 then allows us to conclude that every point η in lpset(η0, rn, r(λ− 1))
has an open neighborhood of radius δ2 where C(η) is finite. This is enough to conclude that the
closure of this lpsetmust also lie entirely within E, and C(η) is finite and continuous over this closed
set. As in Theorem A.10, this suffices to show that the supremum of order λ Rényi divergences on
neighboring data sets is bounded above.

We have thus shown there exists r0 where the ε of our (λ, ε)-RDP guarantee is finite for r < r0.
However, our goal was to achieve a specific ε guarantee. Our proof of the existence of r∗ centers
around the claim that there must exist a bound H for the Hessian of C(η) over all choices of
r ∈ [0, r0).

We can construct the set D = ∪r∈[0,r0]lpset(η0, rn, r(λ − 1)), which will contain every possible
ηP , ηQ, and ηL that might arise from any pair neighboring data sets and any choice of r in that interval.
The previous argument still applies: each point in this union must have an open neighborhood of
radius δ/2 that is a subset of E. This is enough to conclude that closure of D is also a subset of E.
Theorem 2 implies∇2C(η) exists and is continuous on the interior of E, and this further implies that
there must exist H such that for all η in this closure we have ||∇2C(η)|| ≤ H .

For any value r, we know that ηP and ηQ are r-neighboring, so we know ||ηP − ηQ|| ≤ r∆. Since D
contains lpset(η0, rn, r(λ− 1)), the bound H must apply for all η in the set {ηP + x(ηP − ηQ)|x ∈
[−λ+ 1, λ− 1]}. This allows us to use Lemma 1 to get the following expression:
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Dλ(p(θ|ηP )||p(θ|ηQ)) ≤ ||ηP − ηQ||2Hλ (30)

≤ r∆2Hλ. (31)

If we set r∗ = ε
∆2Hλ , then for r < r∗ the order λ Rényi divergence of Algorithm 2 is bounded above

by ε, which gives us the desired result.

�

The concentrated mechanism is a bit more subtle in how it reduces the influence of the data, and
so we need this result modified from Lemmas 9 and 10 in the appendix of (?). These results are
presented here in a way that matches our notation. It effectively states that if we start at a prior η0

satisfy mild but technical regularity assumptions, then the Hessians C(kη0) must converge to zero as
k grows. In practical terms, this implies the covariance of our prior distribution must shrink as we
increase the number of pseudo-observations.
Definition A.12. Let T ∗η = T (argmaxθ∈Θη · T (θ)). This represents the mode of the sufficient
statistics under the distribution p(T (θ)|η).
Lemma 4. (Lemma 9 from (?)) If A(θ) is continuously differentiable and η0 is in the interior of E,
then argmaxθ∈Θη · T (θ) must be in the interior of Θ.
Lemma 5. (Lemma 10 from (?)) If we have a minimal exponential family in which A(θ) is dif-
ferentiable of all orders, there exists δ1 > 0 such that the ball B(η0, δ1) is a subset of E, there
exists δ2 > 0 and a bound L such that all the seventh order partial derivatives of A(θ) on the
set Dη0,δ1,δ2 = {θ|minη∈B(η0,δ1) ||T (θ) − T ∗η || < δ2} are bounded by P , and the determinant of
∇2A(θ) is bounded away from zero on Dη0,δ1,δ2 , then there exists real number V,K such that for
k > K we have

∀η ∈ B(η0, δ1) ||∇2C(kη)|| < V

k
. (32)

Theorem A.13. For any ∆-bounded minimal exponential family with prior η0 in the interior of E,
for any λ > 1, and any ε > 0, there exists m∗ ∈ (0, 1] such that using m ∈ (0,m∗] in Algorithm 3
will achieve (λ, ε)-RDP.

PROOF:

For a fixed value of m, recall that Algorithm 3 selects the posterior parameter η′ = m−1η0 +∑n
i=1(S(xi), 1). For neighboring data sets X and X′, the selected posterior parameters ηP , ηQ, and

ηL = ληP + (1− λ)ηQ lie within lpset(m−1η0, n, λ− 1) = m−1η0 + nU + (λ− 1)Diff .

We start by showing that the conditions of Lemma 5 are met. As we assumed η0 is in the interior of
E, there exists δ1 > 0 such that we have the ball B(η0, δ1) ⊆ E. By Theorem 2, the log-partition
function of the data likelihood A(θ) is differentiable of all orders, and Theorem 3 tells us that
the Hessian ∇2A(θ) is non-singular with non-zero determinant on the interior of Θ. This permits
the application of Lemma 4, offering a mapping from η in the interior of E to their mode T ∗η
corresponding to a parameter θ in the interior of Θ. Knowing that A(θ) is infinitely differentiable on
the interior of Θ further implies that the seventh order derivatives are well-behaved in a neighborhood
around each mode resulting from this mapping. This provides the rest of the requirements for Lemma
5.

Therefore there exists V and K such that the following holds

∀η ∈ B(η0, δ1) : ||∇2C(kη)|| ≤ V

k
. (33)

We wish to show that ||∇2C(η)|| must be bounded on the expanded set lpset(m−1η0, n, λ− 1) =
m−1η0 +nU+(λ−1)Diff , and will do so by showing that for small enoughm we can use equation
(33) to bound the Hessians.

Let α(η) denote the last coordinate of η. This represents the pseudo-observation count of this
parameter, and notice that ∀u ∈ U : α(u) = 1 and ∀v ∈ Diff : α(v) = 0. We are going to analyze
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the scaled set cm · lpset(m−1η0, n, λ− 1) where cm is a positive scaling constant that will depend
on m.

cm · lpset(m−1η0, n, λ− 1) = cmm
−1η0 + cmnU + cm(λ− 1)Diff (34)

.

For each η in this cm · lpset, we have

α(η) = cmm
−1α(η0) + cmn · 1 + cm(λ− 1) · 0 = cm(m−1α(η0) + n) . (35)

Setting cm = α(η0)
m−1α(η0)+n thus guarantees that for all η in cm · lpset(m−1η0, n, λ − 1) we have

α(η) = α(η0). We want to know how far the points in this cm·lpset are from η0, so we simply subtract
η0 to get a set Dm of vectors. These offset vectors have the form cm · lpset(m−1η0, n, λ− 1)− η0

and therefore lie in the set

Dm = (cmm
−1 − 1)η0 + cmnU + cm(λ− 1)Diff . (36)

Using our expression of cm as a function of m, we can see the following limiting behavior:

lim
m→0

cm = lim
m→0

α(η0)

m−1α(η0) + n
= 0 (37)

lim
m→0

cmm
−1 − 1 = lim

m→0

m−1α(η0)

m−1α(η0) + n
− 1 = 1− 1 = 0. (38)

These limits lets us take the limit of the size of the vectors in Dm as m→ 0:

lim
m→0

sup
v∈Dm

||v|| ≤ lim
m→0

(cmm
−1 − 1)||η0||+ cmn sup

u1∈U
||u1||+ cm(λ− 1) sup

u2∈Diff
||u2|| (39)

≤ 0 · ||η0||+ 0 · sup
u1∈U

||u1||+ 0 · sup
u2∈Diff

||u2|| (40)

≤ 0. (41)

This limit supremum on Dm tells us that as m → 0, the maximum distance between points in the
scaled set cm · lpset(m−1η0, n, λ−1) and η0 gets arbitrarily small. This means there exists some m0

such that for m < m0 the scaled set cm · lpset(m−1η0, n, λ− 1) lies within B(η0, δ1). This scaling
mapping can be inverted, and it implies lpset(m−1η0, n, λ − 1) is contained within 1

cm
B(η0, δ1).

Being contained within this scaled ball is precisely what we need to use equation (33) with 1
k = cm.

Equation (33) bounds ||∇2C(η)|| ≤ Hm = V cm for all η in lpset(m−1η0, n, λ− 1), which in turn
lets us use Lemma 1 to bound our Rényi divergences.

Dλ(p(θ|ηP )||p(θ|ηQ)) ≤ ||ηP − ηQ||2Hmλ (42)

≤ ∆2V cmλ. (43)

As we have cm → 0 as m → 0, we know there must exist m∗ such that for m < m∗ we have
cm ≤ ε

∆2V λ . This means the order λ Rényi divergences of Algorithm 3 on neighboring data sets is
bounded above by ε, which gives us the desired result.

�

We have one last theorem to prove, the result claiming the Rényi divergences of order λ between ηP
and its neighbors is convex, which greatly simplifies finding the supremum of these divergences over
the convex sets being considered.
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Theorem A.14. Let e(ηP , ηQ, λ) = Dλ (p(θ|ηP )||p(θ|ηQ)).

For a fixed λ and fixed ηP , the function e is a convex function over ηQ.

If for any direction v ∈ Diff , the function gv(η) = vᵀ∇2C(η)v is convex over η, then for a fixed λ,
the function

fλ(ηP ) = sup
ηQ r−neighboring ηP

e(ηP , ηQ, λ) (44)

is convex over ηP in the directions spanned by Diff .

PROOF:

First, we can show that for a fixed ηP and fixed λ, the choice of ηQ in the supremum must lie on the
boundary of possible neighbors. This is derived from showing that Dλ(P ||Q) is convex over the
choice of ηQ.

Consider once again the expression for our Rényi divergence, expressed now as the function
e(ηP , ηQ, λ):

e(ηP , ηQ, λ) = Dλ(P ||Q) =
C(ληP + (1− λ)ηQ)− λC(ηP )

λ− 1
+ C(ηQ). (45)

Let ∇ηQe(ηP , ηQ, λ) denote the gradient of the divergence with respect to ηQ.

∇ηQe(ηP , ηQ, λ) = ∇C(ηQ) +
1− λ
λ− 1

∇C(ληP + (1− λ)ηQ) (46)

= ∇C(ηQ)−∇C(ληP + (1− λ)ηQ). (47)

We can further find the Hessian with respect to ηQ:

∇2
ηQe(ηP , ηQ, λ) = ∇2C(ηQ)− (1− λ)∇2C(ληP + (1− λ)ηQ). (48)

By virtue of being a minimal exponential family, we know C is convex and thus ∇2C is PSD
everywhere. Combined with the fact that λ > 1, this is enough to conclude that∇2

ηQe(ηP , ηQ, λ) is
also PSD for everywhere with λ > 1. This means e(ηP , ηQ, λ) is a convex function with respect to
ηQ for any fixed ηP and λ.

We now wish to characterize the function fλ(ηP ), which takes a supremum over ηQ ∈ ηP + rDiff
of e(ηP , ηQ, λ).

fλ(ηP ) = sup
ηQr−neighboring ηP

e(ηP , ηQ, λ) (49)

We re-parameterize this supremum in terms of the offset b = ηQ − ηP .

fλ(ηP ) = sup
b∈rDiff

e(ηP , ηP + b, λ) (50)

Now for any fixed offset b, x we can find the expression for the Hessian of∇2
ηP e(ηP , ηP + b, λ).

∇2
ηP e(ηP , ηP + b, λ) = ∇2C(ηP + b)− λ

λ− 1
∇2C(ηP ) +

1

λ− 1
∇2C(ηp + (1− λ)b) (51)

We wish to show this Hessian is PSD, i.e. for any vector v we have vᵀ∇2
ηP e(ηP , ηP + b, λ)v is

non-negative. We can rewrite this in terms of the function gv(η) introduced in the theorem statement.

9
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(a) ρ = 1/3 (high match with η0)
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(b) ρ = 1/2
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(c) ρ = 2/3 (low match with η0)

Figure 1: Utility Comparison for a fixed η0 but varying true population parameter

vᵀ∇2
ηP e(ηP , ηP + b, λ)v = gv(ηP + b)− λ

λ− 1
gv(ηP ) +

1

λ− 1
gv(ηp + (1− λ)b) (52)

=
λ

λ− 1

(
λ− 1

λ
gv(ηP + b)− gv(ηP ) +

1

λ
gv(ηp + (1− λ)b)

)
(53)

We know λ
λ−1 > 0 and that ηP must lie between ηP +b and ηP −(λ−1)b. Our assumption that gv(η)

is convex over η for all directions v then lets us use Jensen’s inequality to see that the expression (53)
must be non-negative.

This lets us conclude that vᵀ(∇2
ηP e(ηP , ηP + b, λ)v ≥ 0 for all v, and thus this Hessian is PSD for

any ηP . This in turn means our divergence e(ηP , ηP + b, λ) is convex over ηP assuming a fixed
offset b.

We return to fλ(ηP ), and observe that it is a supremum of functions that are convex, and therefore it
is convex as well.

�

A.5 Additional Beta-Bernoulli Experiments

The utility of the prior-based methods (Algorithms 2 and 3) depends on how well the prior matches
the observed data. Figure 1 shows several additional situations for the experimental procedure of
measuring the log-likelihood of the data.

In each case, the prior η0 = (6, 18) was used, and both X and XH had 100 data points. λ = 15 was
fixed in these additional experiments. The only thing that varies is the true population parameter
ρ. In (a), ρ = 1/3 closely matches the predictions of the prior η0. In (b), ρ = 0.5, presented as
an intermediate case where the prior is misleading. Finally, in (c), ρ = 2/3, which is biased in the
opposite direction as the prior. In all cases, the proposed methods act conservatively in the face of high
privacy, but in (a) this worst case limiting behavior still has high utility. Having a strong informative
prior helps these mechanisms. The setting in which the prior is based off of a representative sample of
non-private data from the same population as the private data is likely to be beneficial for Algorithms
2 and 3.

One other case is presented in Figure 2, where ρ = 0.2 but the prior has been changed to η0 = (1, 2).
λ is still 15, and the number of data points is still 100. This prior corresponds to the uniform prior,
as it assigns equal probability to all estimated data means on (0, 1). It represents an attractive case
on a non-informative prior, but also represents a situation in which privacy is difficult. In particular,
λ∗ = 2 in this setting. When Algorithm 3 scales up this prior, it becomes concentrated around
ρ = 0.2, so this setting also corresponds to a case where the true population parameter does not
match well with the predictions from the prior.
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Figure 2: Utility Experiment for the non-informative uniform prior

A.6 Application to other exponential families

A.6.1 Dirichlet-Categorical

The Categorical family is a higher dimension generalization of the Bernoulli family. Instead of just
two possible values, (e.g. "failure" or "success", 0 or 1), a categorical variable is allowed to take any
of d discrete values. The parameters of a categorical distribution assign a probability to each of the
discrete values. These probabilities are constrained to sum to one in order to be a valid distribution,
so this family of distribution can be described with only d− 1 parameters.

Our propsed method works with this family as well, but the proof is a little more difficult due to the
higher dimensions.

Let the space of observations X = {1, 2, . . . , d}. The sufficient statistics of an observation x is a
vector of indicator variables, S(x) = {I1(x), . . . , Id−1(x)}. Notice that Id(x) is not included, since
it can be derived from the other coordinates of S(x). Including this last indicator variable would make
the family non-minimal where the sufficient statistics satsify the linear relationship

∑d
i=1 Ii = 1.

The conjugate prior family is the Dirichlet family. Under our construction of the conjugate prior, we
want the parameter η to satisfy the relationship ηposterior = ηprior + (S(x), 1). This means that η is
d dimensional, and the last coordinate of η measures an effective count of observations. Since each
coordinate of S(x) is bounded by one, we also have the relationship that for any posterior, η(d) ≥ η(i)

for i ∈ [d].

When d = 2, this derivation exactly matches the one from the Beta-Bernoulli system and it is
∆-bounded for ∆ = 1.

For d > 2, this family is ∆-bounded for ∆ =
√

2. For any two observations, S(x)−S(y) is non-zero
in atmost two locations, and each location has a difference of at most 1.

Further, this Dirichlet-Categorical system satisfies the requirements of Theorem A.14. The necessary
requirement is that for any direction v ∈ Diff , the function gv(η) = vᵀ∇2C(η)v is convex over η.
For this system, we have an expression for C(η) :

C(η) =

d−1∑
k=1

log
(

Γ(η(k))
)

+ log

(
Γ(η(d) −

d−1∑
i=k

η(k))

)
− log

(
Γ(η(d))

)
(54)

This value is merely the sum of the log-Gamma function applied to the count of observations at each
value, minus the log-Gamma function applied to the total count of observations. The expression
η(d) −

∑d−1
i=1 η

(i) evaluates to the count of observations located at the implicit dth value, since η(d)

carries the total count of observations seen.
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With this expression, we can calculate the gradient and Hessian. The digamma function ψ0 is the
derivative of the log-Gamma function log (Γ(·)), and the trigamma function ψ1 is the derivative of
the digamma function.

∇C(η)(i) =

ψ0

(
η(i)
)
− ψ0

(
η(d) −

∑d−1
k=1 η

(k)
)

i 6= d

ψ0

(
η(d) −

∑d−1
k=1 η

(k)
)
− ψ0

(
η(d)

)
i = d

(55)

∇2C(η)(i,j) =



ψ1

(
η(i)
)

+ ψ1

(
η(d) −

∑d−1
k=1 η

(k)
)

i = j 6= d

ψ1

(
η(d) −

∑d−1
k=1 η

(k)
)

i 6= j, i 6= d, j 6= d

−ψ1

(
η(d) −

∑d−1
k=1 η

(k)
)

i 6= j, i = d, j 6= d

−ψ1

(
η(d) −

∑d−1
k=1 η

(i)
)

i 6= j, i 6= d, j = d

ψ1

(
η(d) −

∑d−1
k=1 η

(k)
)
− ψ1(η(d)) i = j = d

(56)

When v ∈ Diff , the last coordinate of v is zero since changing one observation does not change
the total count of observations. This means the expression gv(η) = vᵀ∇2C(η)v can ignore the last
coordinate of v, as well as the last row and column of ∇2C(η). This means we are only concerned
with the entries matching the first two cases of equation (56). Let ṽ denote the vector formed by the
first d− 1 coordinates of v.

A careful examination the matrix M equal to the top d− 1 rows and and leftmost d− 1 columns of
∇2C(η) reveals that M decomposes as

M = ψ1

(
η(d) −

d−1∑
k=1

η(k)

)
[1] + diag

(
ψ1(η(1)), . . . , ψ1(η(d−1))

)
(57)

where [1] is the d− 1 by d− 1 matrix where all entries are 1, and diag constructs a diagonal matrix
from the given values. This means for all v ∈ Diff , we have the following expression:

gv(η) = vᵀ∇2C(η)v (58)
= ṽᵀMṽ (59)

= ṽᵀ

(
ψ1(η(d) −

d−1∑
k=1

η(k))[1] + diag(ψ1(η(1), . . . , η(d−1))

)
ṽ (60)

= ψ1(η(d) −
d−1∑
k=1

η(k)) (ṽᵀ[1]ṽ) +

d−1∑
i=1

ψ1(η(i))(ṽ(i))2 (61)

(62)

With the fact that [1] is PSD and that (ṽ(i))2 is always positive, the above calculations show that
gv(η) is the sum of many applications of the digamma function ψ1. Each of these applications has
a positive coefficient, and the function ψ1 is convex. This concludes the proof that gv(η) is convex
over η for any v ∈ Diff . (When d = 2, this expression for gv in fact matches the one derived from
the Beta-Bernoulli system.)

This means that the expression for the worst-case Rényi divergence between neighboring posterior
parameters is convex, and so the maximum must be located at the boundaries. In this case, the pset is
a shifted simplex, so the maximum must occur at one of the vertices.

The potential pairs of posterior parameters that must be checked in order to evaluate the RDP
guarantee grows as O(d3).
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A.6.2 Gaussian-Gaussian and non-∆-bounded families

Another interesting setting is estimating the mean of a Gaussian variable when the variance is known.
In this case, the conjugate prior is also a Gaussian distribution.

This system satisfies the vᵀ∇2C(η)v convexity requirement for Theorem A.14, since the variance
∇2C(η) is constant when the final coordinate (the total count of observations) is fixed. Thus for any
v ∈ Diff , the function gv(η) is constant and therefore convex.

However, this setting does not satisfy the ∆-bounded assumption. The observations can be arbitrarily
large, and changing a single observation can therefore lead to arbitrarily large changes to posterior
parameters and thus also arbitrarily large Rényi divergences between neighboring data sets.

The exponential family mathematics behind our results did not directly depend on the ∆-boundedness
assumption. Instead, this bound was used only to bound the pset of possible posterior parameters in
order to bound the distance ||ηP − ηQ|| when considering neighboring data sets. This bounded pset
then ensured our privacy guarantee was finite.

For any given data set X, we can bound the Rényi divergence between the posterior from X and
the posterior from any other data set X′ satisfying S(X)− S(X′) ≤ ∆. This is true even when the
exponential family is not ∆-bounded.

This permits two different approaches: we can relax the RDP framework further, protecting only
data sets and a select bounded range of neighboring data sets rather than all the neighbors, or we can
include a data preprocessing step that projects the observations onto a set with bounded sufficient
statistics. The latter approach permits the use of the RDP framework without introducing further
relaxations.

For example, we could replace the observations X with X̃ = f(X) where the following function f
was applied to each observation x in X:

f(x) =


−∆ x ≤ −∆

x −∆ < x < ∆

∆ ∆ ≤ x
(63)

Although the statistical model still believes arbitrarily large observations are possible, the preprocess-
ing projection step allows us to bound ||ηP − ηQ|| ≤ ∆ where ηP is the posterior for f(X) and ηQ
is the posterior for f(X′) with any neighboring set of observations X′.

This comes with the caveat that our model no longer matches reality, since it is unaware of the
distortions introduced by our preprocessing step. We leads to a potential degradation of utility for the
mechanism output, but our privacy guarantees will hold. If the data altered by f is sufficiently rare,
these distortions should be minimal.

A.7 Proofs in Section 4

A.7.1 GLMs Privacy Proof

In this section we prove Theorem 16 and 17. Here we state and prove a more general version of the
theorems. Consider any problem with likelihood in the form

p(D|w) = exp

(
−

n∑
i=1

`(w, xi, yi)

)
and posterior of the following form

p(w|D) =
exp (−

∑n
i=1 ρ`(w, xi, yi)) p(w)∫

Rd exp (−
∑n
i=1 ρ`(w

′, xi, yi)) p(w′)dw′
, (64)

where in the case of logistic regression, ` is the logistic loss function.

Then we have the following lemma.
Lemma 1. Suppose `(·, x, y) is L-Lipschitz and convex, and − log p(w) is twice differentiable and
m-strongly convex. Posterior sampling from (64) satisfies (λ, 2ρ2L2

m λ)-RDP for all λ ≥ 1.
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Proof. (of Lemma 1) The proof follows from the same idea as in the proof of Theorem 7 of (?). The
basic idea is that the posterior distribution p(·|D) satisfies Logarithmic Sobolev inequality (LSI),
which implies sub-Gaussian concentration on log p(w|D)

p(w|D′) ; and sub-Gaussian concentration implies
RDP.

Before the proof, we define LSI and introduce the relation between sub-Gaussian concentration and
LSI.

Definition A.15. A distribution µ satisfies the Log-Sobolev Inquality (LSI) with constant C if for any
integrable function f ,

Eµ
[
f2 log f2

]
− Eµ

[
f2
]

logEµ
[
f2
]
≤ 2CEµ

[
‖∇f‖2

]
.

Theorem A.16. (Herbst’s Theorem) If µ satisfies LSI with constant C. Then for every L-Lipschitz
function f , for any λ, E [exp (λ(f − Eµ [f ]))] ≤ exp

(
Cλ2L2/2

)
.

Lemma 2. Let U : Rd → R be a twice differential, m-strongly convex and integrable function. Let
µ be a probability measure on Rd whose density is proportional to exp (−U). Then µ satisfies LSI
with constant C = 1/m.

Now we prove RDP bound of posterior sampling from (64).

Firstly, notice that negative of log of the prior, − log p(w), is twice differentiable, m-strongly convex
and integrable. And therefore negative of log of the posterior, ρ

∑n
i=1 `(w, xi, yi) − log p(w) is

m-strongly convex. According to Lemma 2, distribution p(w|D) satisfies LSI with constant 1/m.

Then, set f in Theorem A.16 as f(D,D′, w) = log p(w|D)
p(w|D′) . Since the `(·, x, y) is L-Lipschitz, we

know that f(D,D′, w) is 2ρL-Lipschitz. According to Theorem A.16, for any λ ∈ R,

Ew∼p(w|D)

[
exp

(
λ

(
log

p(w|D)

p(w|D′)
−DKL (p(w|D)‖p(w|D′))

))]
≤ e2λ2ρ2L2/m.

Let a = 2ρ2L2/m. Equivalently, then for any λ ∈ R,

Ew∼p(w|D)

[
exp

(
λ log

p(w|D)

p(w|D′)

)]
≤ exp

(
aλ2 + λDKL (p(w|D)‖p(w|D′))

)
.

And setting λ to λ− 1, we have

Ew∼p(w|D)

[
exp

(
(λ− 1) log

p(w|D)

p(w|D′)

)]
≤exp

(
a(λ− 1)2 + (λ− 1)DKL (p(w|D)‖p(w|D′))

)
≤exp ((λ− 1) (aλ+DKL (p(w|D)‖p(w|D′))− a)) .

If λ ≥ 1, the expectation is upper bounded by

exp
(

(λ− 1)

(
aλ+ max

d(D,D′)=1
DKL (p(w|D)‖p(w|D′))− a

))
.

According to the definition of zCDP in (?), this implies zCDP with

ρ =
2ρ2L2

m
,

ξ = max
d(D,D′)=1

DKL (p(w|D)‖p(w|D′))− 2ρ2L2

m
,

which is equivalent to (λ, 2ρ2L2

m λ+ maxd(D,D′)=1DKL (p(w|D)‖p(w|D′))− 2ρ2L2

m )-RDP for any
λ ≥ 1.

Finally, we aim at bounding DKL (p(w|D)‖p(w|D′)). Let F (w) = p(w|D)
p(w|D′) . According to the

definition of KL-divergence, we have

DKL (p(w|D)‖p(w|D′)) = Ep(w|D) [logF ] = Ep(w|D′) [F logF ]− Ep(w|D′) [F ]Ep(w|D′) [logF ] ,
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which, by setting f =
√
F in Definition A.15 and having C = 1/m, can be upper bounded by

DKL (p(w|D)‖p(w|D′)) ≤ 2

m
Ep(w|D′)

[
‖∇
√
F‖22

]
. (65)

We have

‖∇ logF‖2
=ρ‖∇ log p(w|D)−∇ log p(w|D′)‖2
=ρ‖∇ log(p(D|w)p(w))−∇ log(p(D′|w)p(w))‖2
=ρ‖∇ log p(D|w)−∇ log p(D′|w)‖2
≤2ρL,

and therefore

‖∇
√
F‖22 = ‖∇exp

(
1

2
logF

)
‖22 = ‖

√
F

2
∇ logF‖22 =

F

4
‖∇ logF‖22 ≤ ρ2L2F.

So the KL-divergence in (65) is upper bounded by

2ρ2L2

m
Ep(w|D′) [F ] =

2ρ2L2

m
.

Therefore Bayesian logistic regression satisfies (λ, 2ρ2L2

m λ)-RDP for any λ.

For readers familiar with the proof of Theorem 7 in (?), the proof here is exactly the same except that
the tail bound of sub-Gaussian concentration in Equation 21 and consequently 25 there are replaced
by the moment generating function bound. The reason for not using the tail bound to imply moment
generating function bound is because that loses constant factor.

For GLMs, we have

`(w, x, y) = − log h(y) +A(w>x)− yw>x,

and thus

∇w`(w, x, y) = (µ− y)x = (g−1(w>x)− y)x.

Then, by the condition in Theorem 16 and 17, ‖∇w`(w, x, y)‖2 is upper bounded by Bc and `(·, x, y)
is Bc-Lipschitz.

A.7.2 Logistic Regression Tightness

Lemma 3. For any d > 1 and any n ≥ 1, there exists neighboring datasets D and D′, each of
size n, such that for any λ, Rényi Divergence for logistic regression with Gaussian prior is of order

1
2nβ (λ− 1).

Proof. (of Lemma 3) For convenience, here we assume Y = {−1, 1} instead of 0, 1, and thus
p(y|w, x) can be written as 1/(1 + e−yw

>x) for both values of y.

Consider any x ∈ Rd with ‖x‖ = 1. Let D = {(x, y)} and D′ = {(x′, y′)}, where x′ = x and
y′ = −y = −1. Let p(D|w) be the probability of seeing dataset D given classifier w, we have∫

p(w|D)λ

p(w|D′)λ−1
dw =

∫
p(w)

p(D|w)λ

p(D′|w)λ−1
dw ×

[
∫
p(w)p(D′|w)dw]λ−1

[
∫
p(w)p(D|w)dw]λ

. (66)

Let σ2 = (nβ)−1 denote the variance of the Gaussian prior.
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Firstly, we prove an equation that will be used later. Let xj be the j-th dimension of x and wj be the
j-th dimension of w, for any i, we have

1
√

2πσ2
d

∫
Rd

exp
(
−‖w‖

2

2σ2

)
exp

(
−iw>x

)
dw (67)

=

d∏
j=1

1√
2πσ2

∫
R

exp

(
−
w2
j

2σ2

)
exp (−iwjxj) dwj

=

d∏
j=1

1√
2πσ2

∫
R

exp
(
− (wj + ixjσ

2)2

2σ2

)
exp

(
i2x2

jσ
2

2

)
dwj

=

d∏
j=1

exp

(
i2x2

jσ
2

2

)

=exp
(
i2σ2‖x‖2

2

)
.

Now we will consider the two terms in (66) separately for D, D′ specified above.

For the first term, we have∫
Rd

p(w)
p(D|w)λ

p(D′|w)λ−1
dw

=
1

√
2πσ2

d

∫
Rd

exp
(
−‖w‖

2

2σ2

)
(1 + exp

(
−y′w>x′

)
)λ−1

(1 + exp (−yw>x))λ
dw

=
1

√
2πσ2

d

∫
Rd

exp
(
−‖w‖

2

2σ2

)
(1 + exp

(
w>x

)
)λ−1

(1 + exp (−w>x))λ
dw

=
1

√
2πσ2

d

∫
Rd

exp
(
−‖w‖

2

2σ2

)
exp

(
(λ− 1)w>x

)
1 + exp (−w>x)

dw.

Let S+ be any half-space of Rd and S− = Rd\S+. The above equals to

1
√

2πσ2
d

∫
S+

exp
(
−‖w‖

2

2σ2

)
exp

(
λ− 1w>x

)
1 + exp (−w>x)

dw +
1

√
2πσ2

d

∫
S−

exp
(
−‖w‖

2

2σ2

)
exp

(
λ− 1w>x

)
1 + exp (−w>x)

dw

For any x and any w ∈ S−, we have −yw>x = y(−w)>x. By changing variable in the second
integral from w to −w, the above equals to

1
√

2πσ2
d

∫
S+

exp
(
−‖w‖

2

2σ2

)
exp

(
(λ− 1)w>x

)
1 + exp (−w>x)

dw +
1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

)
exp

(
−(λ− 1)w>x

)
1 + exp (w>x)

dw

=
1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

)(
exp

(
(λ− 1)w>x

)
1 + exp (−w>x)

+
exp

(
−(λ− 1)w>x

)
1 + exp (w>x)

)
dw

=
1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

) λ−1∑
i=−λ+1

exp
(
−iw>x

)
(−1)i+λ−1dw

=
−1∑

i=−λ+1

(−1)i+λ−1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

)
exp

(
−iw>x

)
dw +

(−1)λ−1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

)
dw

+

λ−1∑
i=1

(−1)i+λ−1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

)
exp

(
−iw>x

)
dw.
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The middle term equals to (−1)λ−1/2. And changing variable from w to −w in the first term, the
above equals to

=

λ−1∑
i=1

(−1)−i+λ−1

√
2πσ2

d

∫
S−

exp
(
−‖w‖

2

2σ2

)
exp

(
−iw>x

)
dw

+

λ−1∑
i=1

(−1)i+λ−1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

)
exp

(
−iw>x

)
dw +

(−1)λ−1

2

=

λ−1∑
i=1

(−1)−i+λ−1

√
2πσ2

d

∫
Rd

exp
(
−‖w‖

2

2σ2

)
exp

(
−iw>x

)
dw +

(−1)λ−1

2
.

Using the equation in (67) with the fact that ‖x‖2 = 1, the above equals to

λ−1∑
i=1

(−1)−i+λ−1exp
(
i2σ2

2

)
+

(−1)λ−1

2
=

λ−1∑
i=0

(−1)−i+λ−1exp
(
i2σ2

2

)
.

As for the second term in (66), we have∫
p(w)p(D|w)dw =

1
√

2πσ2
d

∫
Rd

exp
(
−‖w‖

2

2σ2

)
1

1 + exp (−yw>x)
dw.

Let S+ be any half-space of Rd and S− = Rd\S+. The above equals to

1
√

2πσ2
d

∫
S+

exp
(
−‖w‖

2

2σ2

)
1

1 + exp (−yw>x)
dw +

1
√

2πσ2
d

∫
S−

exp
(
−‖w‖

2

2σ2

)
1

1 + exp (−yw>x)
dw.

For any x and any w ∈ S−, we have −yw>x = y(−w)>x. By changing variable in the second
integral from w to −w, the above equals to

1
√

2πσ2
d

∫
S+

exp
(
−‖w‖

2

2σ2

)
1

1 + exp (−yw>x)
dw +

1
√

2πσ2
d

∫
S+

exp
(
−‖w‖

2

2σ2

)
1

1 + exp (yw>x)
dw

=
1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

)(
1

1 + exp (−yw>x)
+

1

1 + exp (yw>x)

)
dw

=
1

√
2πσ2

d

∫
S+

exp
(
−‖w‖

2

2σ2

)
dw

=
1

2
.

The above results holds for any D, which implies that the second term of (66) equals to 2.

Therefore, (66) equals to

2

λ−1∑
i=0

(−1)−i+λ−1exp
(
i2σ2

2

)
.

As (λ− 1)→∞, this formula is of order

O
(

exp
(

(λ− 1)2σ2

2

))
.

A.8 Additional Experiments for GLMs

In this section, we present more experimental results on the same datasets with slightly different
privacy requirement.
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Figure 3: Test error vs. privacy parameter ε. λ = 1 for upper row; λ = 10 for lower row.

Firstly we present the test error of all algorithms under the three dataset at λ = 1 and 10 in Figure 3.
The same pattern as in λ = 100 can be observed – both of our proposed algorithms achieve better
utility than OPS, and the diffused algorithm is always better than the concentrate algorithm. We can
also see the degradation in utility as λ increase.

We next show the negative log-likelihood at λ ∈ {1, 10, 100} in Figure 4. We can see the same trend
as that in test error. Both of our proposed algorithms achieves smaller negative log-likelihood, and
the diffused algorithm achieves lower negative log-likelihood than the concentrate algorithm.

18



-4 -2 0 2

100

101

T
es

t l
og

(-
lo

g(
lik

el
ih

oo
d)

)

Concentrated
Diffuse
OPS
True Posterior

(a) Abalone.

-4 -2 0 2

100

101
T

es
t -

lo
g(

lik
el

ih
oo

d) Concentrated
Diffuse
OPS
True Posterior

(b) Adult.

-4 -2 0 2

100

101

T
es

t -
lo

g(
lik

el
ih

oo
d) Concentrated

Diffuse
OPS
True Posterior

(c) MNIST 3vs8.

-4 -2 0 2

100

101

T
es

t -
lo

g(
lik

el
ih

oo
d) Concentrated

Diffuse
OPS
True Posterior

(d) Abalone.

-4 -2 0 2

100

101

T
es

t -
lo

g(
lik

el
ih

oo
d) Concentrated

Diffuse
OPS
True Posterior

(e) Adult.

-4 -2 0 2

100

101

T
es

t -
lo

g(
lik

el
ih

oo
d) Concentrated

Diffuse
OPS
True Posterior

(f) MNIST 3vs8.

-4 -2 0 2

100

101

T
es

t -
lo

g(
lik

el
ih

oo
d) Concentrated

Diffuse
OPS
True Posterior

(g) Abalone.

-4 -2 0 2

100

101

T
es

t -
lo

g(
lik

el
ih

oo
d) Concentrated

Diffuse
OPS
True Posterior

(h) Adult.

-4 -2 0 2

100

101

T
es

t -
lo

g(
lik

el
ih

oo
d) Concentrated

Diffuse
OPS
True Posterior

(i) MNIST 3vs8.

Figure 4: Negative log-likelihood vs. privacy parameter ε. λ = 1, 10, 100 from upper to lower row.
y-axis plotted in log scale.
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