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1 Path simulations

The probability of simulating a path x = [x0, . . . , xK−1] in a forward simulation is

Pf [x] =

K−1∏
k=1

Tk(xk|xk−1) p0(x0) .

The probability of generating the same path in a reverse simulation is:

Pr[x] = T1(x0|x1) · · ·TK−1(xK−2|xK−1) pK(xK−1) =

K−1∏
k=1

Tk(xk−1|xk) pK(xK−1) .

The weight of a path is

w[x] =

K−1∏
k=0

fk+1(xk)

fk(xk)
.

where pk(x) = fk(x)/Zk with Zk =
∫
fk(x) dx is the stationary distribution of Tk.

1.1 Jarzynski equality

The Jarzynski equaliy (JE) states:
Z = 〈w〉f (1)

where 〈·〉f indicates an average over paths generated in forward simulations according to Pf .

JE follows from [1, 2]

〈w〉f =

∫
w[x]Pf [x]D[x]

=

∫ K−1∏
k=0

fk+1(xk)

fk(xk)
×
K−1∏
k=1

Tk(xk|xk−1) p0(x0) dx0 · · · dxK−1

=
1

Z0

∫
fK(xK−1)

K−1∏
k=1

Tk(xk|xk−1) fk(xk−1)

fk(xk)
dx0 · · · dxK−1

=
ZK
Z0

∫
pK(xK−1)

K−1∏
k=1

Tk(xk|xk−1) pk(xk−1)

pk(xk)
dx0 · · · dxK−1

=
ZK
Z0

∫
pK(xK−1) dxK−1

= Z

(2)
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where we used∫
Tk(xk|xk−1) pk(xk−1)

pk(xk)
dxk−1 =

1

pk(xk)

∫
Tk(xk|xk−1) pk(xk−1) dxk−1 =

pk(xk)

pk(xk)
= 1

We can also use the sampled paths x(i) to approximate the target distribution, because

pK(x) =
1

Z
〈TK(x|xK−1)w〉f

which follows directly from the second last expression in equations (2). For each generated path x(i)

we have to generate just one more state by drawing from x
(i)
K ∼ TK(x|x(i)K−1). These samples can

then be used to approximate the target by

pK(x) ≈
∑
i w

(i) δ
(
x− x(i)K

)∑
i w

(i)
.

1.2 Detailed fluctuation theorem

The detailed fluctuation theorem [3, 4] follows from comparing the probabilities of generating x in a
forward and reverse simulation:

Pf [x]

Pr[x]
=

TK−1(xK−1|xK−2) · · ·T1(x1|x0) p0(x0)

T1(x0|x1) · · ·TK−1(xK−2|xK−1) pK(xK−1)

=
p0(x0)

pK(xK−1)

K−1∏
k=1

Tk(xk|xk−1)

Tk(xk−1|xk)

=
p0(x0)

pK(xK−1)

K−1∏
k=1

pk(xk)

pk(xk−1)

=
ZK
Z0

K−1∏
k=0

fk(xk)

fk+1(xk)

=
Z

w[x]

= exp{W[x]−∆F}

(3)

where detailed balance was assumed in the third equation. One interpretation of the detailed fluctua-
tion theorem is that it gives the importance weights when a forward simulation is used to generate
samples of the reverse ensemble and vice versa [2]. From a physical perspective the fluctuation
theorem expresses microscopic reversibility [3, 4].

1.3 Relation to thermodynamic integration

According to inequalities (7) from the main text, 〈logw〉f = −〈W 〉f provides a lower bound of the
log evidence. In case of thermal sampling of a Bayesian model, we have:

〈W 〉f =

K−1∑
k=0

(βk+1 − βk)〈E〉qk

which approaches

〈W 〉f →
K−1∑
k=0

(βk+1 − βk)〈E〉pk

for large K and/or large N since, qk → pk.

Recall that thermodynamic integration (TI) is based on the identity [5]:

logZ = −
∫ 1

0

〈E〉β dβ
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where 〈·〉β are equilibrium averages. For a finitely spaced inverse temperature schedule, we can
approximate the TI integral by

logZ ≈ −
∑
k

(βk+1 − βk)〈E〉pk

because 〈·〉βk
= 〈·〉pk . The approximate formula is identical to the average work. That is, for large

K and/or large N the lower bound −〈W 〉f approaches the log evidence and becomes identical to
thermodynamic integration.

2 Gaussian kernel

This section provides background information about the toy model used in sections 4 and 5 of the
main text. Let’s define the normal distribution as

N
(
x;µ, σ2) =

1√
2πσ2

exp

{
− 1

2σ2
(x− µ)2

}
with mean µ and standard deviation σ > 0. The following convolution theorem holds for Gaussian
distributions: ∫

N
(
x;µ1, σ

2
1)N

(
x;µ2, σ

2
2) dx = N

(
µ1;µ2, σ

2
1 + σ2

2) .

Furthermore we have:

N
(
x; a+ bx′, c) =

1

|b|
N
(
x′; (x− a)/b, c/b2)

Let us now consider the following transition kernel which involves three parameters a, b, c:

T (x|x′) = N
(
x; a+ b x′, c) .

Then the action of the kernel on a normal distribution with parameters µ, σ is:∫
T (x|x′)N

(
x′;µ, σ2) dx =

∫
1

|b|
N
(
x′; (x− a)/b, c/b2)N

(
x′;µ, σ2) dx′

=
1

|b|
N
(
µ; (x− a)/b, c/b2 + σ2)

= N
(
x; a+ bµ, c+ b2σ2) .

We choose a, b, c such that N
(
x;µ, σ2) is the invariant distribution of T (x|x′):

a = (1− b)µ, c = (1− b2)σ2 .

Then for any τ ∈ [0, 1]

T (x|x′) = N
(
x; τy + (1− τ)µ, (1− τ2)σ2) (4)

has the desired stationary distribution. The parameter τ determines how quickly the Markov chain
generated by T converges to the stationary distribution. For τ = 0, the convergence is immediate; for
τ → 1, the convergence becomes infinitely slow.

The composition of two transition kernels with parameters τ1, µ1, σ1 and τ2, µ2, σ2 results in a new
kernel with parameters:

τ = τ1τ2

µ =
1

1− τ1τ2
[

(1− τ1)µ1 + τ1(1− τ2)µ2

]
σ2 =

1

1− (τ1τ2)2
[

(1− τ21 )σ2
1 + τ21 (1− τ22 )σ2

2

]
.

Repeated composition of the same transition kernel gives the n-th power

Tn(x|x′) = N
(
x; (1− τn)µ+ τnx′, (1− τ2n)σ2)

that is, we simply have to raise τ to its n-th power: Tnτ = Tτn . If we let n → ∞, τn → 0 and
Tn(x|x′)→ N

(
x;µ, σ2) as it should.
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3 Bennett’s acceptance ratio

For two work distributions pi(W ) = qi(W )/ci (i = 0, 1), we have∫
h(W ) q0(W ) q1(W ) dW = c0〈hq1〉0 = c1〈hq0〉1

where h is a general function of the work. Therefore the ratio

r ≡ 〈hq0〉1
〈hq1〉0

is an estimator of the ratio of the normalizing constants c1/c0. Assuming we have equally many
samples Wij from pi(W ), the sample version of the ratio estimator is

r̂ =

∑
j h(W1j) q0(W1j)∑
j h(W0j) q1(W0j)

In [6, 7, 5], it is shown that the relative mean squared error〈
(r − r̂)2

r2

〉
is minimized for

h(W ) ∝ 1

p0(W ) + p1(W )

resulting in an implicit estimator, because pi depends on ci. Therefore, we have:

r̂ =

∑
j

q0(W1j)
p0(W1j)+p1(W1j)∑

j
q1(W0j)

p0(W0j)+p1(W0j)

=

∑
j

q0(W1j)
q0(W1j)+r q1(W1j)∑

j
q1(W0j)

q0(W0j)+r q1(W0j)

.

According to Crooks’ fluctuation theorem, we have q0 ∝ pf and q1 ∝ pfe
−W , resulting in the

implicit equation

r̂ =

∑
j

1
1+r̂ exp{−W1j}∑
j

1
r̂+exp{W0j}

= r̂ ×
∑
j

1
1+r̂ exp{−W1j}∑

j
1

1+r̂−1 exp{W0j}
.

Identifying simulation 0/1 with the forward/reverse simulation gives:

r̂ ← r̂ ×

∑
i

1

1+r̂ exp{−W (i)
r }∑

i
1

1+r̂−1 exp{W (i)
f }

.

Now r = c1/c0 = 1/Z, resulting in the multiplicative update:

Ẑ ← Ẑ ×

∑
i

1

1+Ẑ exp{W (i)
f }∑

i
1

1+Ẑ−1 exp{−W (i)
r }

(5)

which are the iterations used to compute the BAR estimator.

4 Histogram estimator

In DOS estimation [8, 9], we want to reconstruct the density of states g(E) from energy samples
that we generated according to Ei ∼ g(E) e−βiE/Z(βi). We use the following analogy to use DOS
estimation algorithms for the estimation of the work distribution pf :

E ↔W, g(E)↔ pf (W ), β ∈ {0, 1} .

According to Crooks’ fluctuation theorem, we have:

W
(i)
f ∼ pf (W ), W (i)

r ∼ pf (W )e−W /Z .
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We want to estimate pf from all samples W = {W (1)
f , . . .}∪{W (1)

r , . . .} where Wj are the elements
of the joint set. We define the normalization constant of the work distribution:

c(α) =

∫
e−αW pf (W ) dW

then the evidence is Z = c(1)/c(0) according to Crooks’ fluctuation theorem.

Given pf , the likelihood of generating W (i)
f ,W

(i)
r is:

L[pf ] =
∑
j

log pf (Wj)−Nf log c(0)−Nr log c(1) .

The maximum likelihood estimator is obtained by setting the functional derivative

δL[pf ]

δ pf (W )
=

∑
j δ(W −Wj)

pf (W )
− Nf
c(0)

− Nr
c(1)

e−W

to zero, which gives the implicit equation

p̂f (W ) =
h(W )

Nf

c(0) + Nr

c(1) e
−W

where h(W ) =
∑
j δ(W −Wj) is the histogram of all simulated work values. This is an implicit

equation, since c(0) and c(1) depend on pf . We have:

ĉ(α) =

∫
p̂f (W ) dW =

∑
j

e−αWj

Nf

ĉ(0) + Nr

ĉ(1)e
−Wj

.

We can show that by iterating these equations, we obtain the unique maximum likelihood estimate of
pf and c(α) [8]. After convergence of the iterations, the maximum likelihood estimate of pf is:

p̂f (W ) =
∑
j

pj δ(W −Wj) with pj ∝
1

Nf

ĉ(0) + Nr

ĉ(1)e
−Wj

.

If we are only interested in the evidence, we have to cycle over the following iterations:

Ẑ =

∑
j

e−Wj

Nf
Nr

Ẑ+e−Wj∑
j

1
Nf
Nr

Ẑ+e−Wj

For Nf = Nr, this equation simplifies to

Ẑ =

∑
j

1

1+ẐeWj∑
j

1

Ẑ+e−Wj

A similar equation can be obtained from BAR:

Ẑ =

∑
i

1

1+Ẑ exp{W (i)
f }∑

i
1

Ẑ+exp{−W (i)
r }

.

Following [9], we can also derive a Gibbs sampler for pf and c(α):

pj ∼ G
(
1, a0 + a1 exp{−Wj}

)
a0 ∼ G

(
Nf ,

∑
j

pj
)

a1 ∼ G
(
Nr,

∑
j

pj exp{−Wj}
) (6)

where the interpretation of the auxiliary parameters is ai = Ni/ci.
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5 Sequential Monte Carlo

Instead of using an inverse temperature we define:

fk(x) = π(x)

k∏
l=1

p(yl|x,M), f0(x) = π(x)

assuming that the data are independent. The weight of an entire path is:

w[x] =

K−1∏
k=0

fk+1(xk)

fk(xk)
=

K−1∏
k=0

p(yk+1|xk,M)

where K is the number of data.
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