Neural Program Meta-Induction

Jacob Devlin* Rudy Bunel* Rishabh Singh
Google University of Oxford Microsoft Research
jacobdevlin@google.com rudy@robots.ox.ac.uk risin@microsoft.com
Matthew Hausknecht Pushmeet Kohli*
Microsoft Research DeepMind
mahauskn@microsoft.com pushmeet@google.com
Abstract

Most recently proposed methods for Neural Program Induction work under the
assumption of having a large set of input/output (I/O) examples for learning any
underlying input-output mapping. This paper aims to address the problem of data
and computation efficiency of program induction by leveraging information from
related tasks. Specifically, we propose two approaches for cross-task knowledge
transfer to improve program induction in limited-data scenarios. In our first pro-
posal, portfolio adaptation, a set of induction models is pretrained on a set of
related tasks, and the best model is adapted towards the new task using transfer
learning. In our second approach, meta program induction, a k-shot learning ap-
proach is used to make a model generalize to new tasks without additional training.
To test the efficacy of our methods, we constructed a new benchmark of programs
written in the Karel programming language [[17]. Using an extensive experimental
evaluation on the Karel benchmark, we demonstrate that our proposals dramatically
outperform the baseline induction method that does not use knowledge transfer. We
also analyze the relative performance of the two approaches and study conditions
in which they perform best. In particular, meta induction outperforms all existing
approaches under extreme data sparsity (when a very small number of examples are
available), i.e., fewer than ten. As the number of available I/O examples increase
(i.e. a thousand or more), portfolio adapted program induction becomes the best
approach. For intermediate data sizes, we demonstrate that the combined method
of adapted meta program induction has the strongest performance.

1 Introduction

Neural program induction has been a very active area of research in the last few years, but this past
work has made highly variable set of assumptions about the amount of training data and types of
training signals that are available. One common scenario is example-driven algorithm induction,
where the goal is to learn a model which can perform a specific fask (i.e., an underlying program
or algorithm), such as sorting a list of integers[7} 11,112} 21]]. Typically, the goal of these works are
to compare a newly proposed network architecture to a baseline model, and the system is trained
on input/output examples (I/0O examples) as a standard supervised learning task. For example, for
integer sorting, the I/O examples would consist of pairs of unsorted and sorted integer lists, and the
model would be trained to maximize cross-entropy loss of the output sequence. In this way, the
induction model is similar to a standard sequence generation task such as machine translation or
image captioning. In these works, the authors typically assume that a near-infinite amount of I/O
examples corresponding to a particular task are available.

*Work performed at Microsoft Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Other works have made different assumptions about data: Li et al. [14]] trains models from scratch
using 32 to 256 I/O examples. Lake et al. [13] learns to induce complex concepts from several
hundred examples. Devlin et al. [3]], Duan et al. [6], and Santoro et al. [19] are able to perform
induction using as few one I/O example, but these works assume that a large set of background tasks
from the same rask family are available for training. Neelakantan et al. [16] and Andreas et al. [1]]
also develop models which can perform induction on new tasks that were not seen at training time,
but are conditioned on a natural language representation rather than I/O examples.

These varying assumptions about data are all reasonable in differing scenarios. For example, in a
scenario where a reference implementation of the program is available, it is reasonable to expect that
an unlimited amount of I/O examples can be generated, but it may be unreasonable to assume that any
similar program will also be available. However, we can also consider a scenario like FlashFill [9],
where the goal is to learn a regular expression based string transformation program based on user-
provided examples, such as ¢‘John Smith — Smith, J.’’). Here, itis only reasonable to assume
that a handful of I/O examples are available for a particular task, but that many examples are available
for other tasks in the same family (e.g., ¢‘Frank Miller — Frank M’).

In this work, we compare several different techniques for neural program induction, with a particular
focus on how the relative accuracy of these techniques differs as a function of the available training
data. In other words, if technique A is better than technique B when only five I/O examples are
available, does this mean A will also be better than B when 50 I/O examples are available? What
about 1000? 100,000? How does this performance change if data for many related tasks is available?
To answer these questions, we evaluate four general techniques for cross-task knowledge sharing:

e Plain Program Induction (PLAIN) - Supervised learning is used to train a model which
can perform induction on a single task, i.e., read in an input example for the task and predict
the corresponding output. No cross-task knowledge sharing is performed.

o Portfolio-Adapted Program Induction (PLAIN+ADAPT) - Simple transfer learning is
used to to adapt a model which has been trained on a related task for a new task.

e Meta Program Induction (META) - A k-shot learning-style model is used to represent an
exponential family of tasks, where the training I/O examples corresponding to a task are
directly conditioned on as input to the network. This model can generalize to new tasks
without any additional training.

o Adapted Meta Program Induction (META+ADAPT) - The META model is adapted to a
specific new task using round-robin hold-one-out training on the task’s I/O examples.

We evaluate these techniques on a synthetic domain described in Section [2] using a simple but strong
network architecture. All models are fully example-driven, so the underlying program representation
is only used to generate I/O examples, and is not used when training or evaluating the model.

2 Karel Domain

In order to ground the ideas presented here, we describe our models in relation to a particular
synthetic domain called “Karel”. Karel is an educational programming language developed at
Stanford University in the 1980s[17]. In this language, a virtual agent named Karel the Robot moves
around a 2D grid world placing markers and avoiding obstacle. The domain specific language (DSL)
for Karel is moderately complex, as it allows if/then/else blocks, for loops, and while loops,
but does not allow variable assignments. Compared to the current program induction benchmarks,
Karel introduces a new challenge of learning programs with complex control flow, where the state-
of-the-art program synthesis techniques involving constraint-solving and enumeration do not scale
because of the prohibitively large search space. Karel is also an interesting domain as it is used
for example-driven programming in an introductory Stanford programming courseE] In this course,
students are provided with several I/O grids corresponding to some underlying Karel program that
they have never seen before, and must write a single program which can be run on all inputs to
generate the corresponding outputs. This differs from typical programming assignments, since the
program specification is given in the form of I/O examples rather than natural language. An example
is given in Figure [I] Note that inducing Karel programs is not a toy reinforcement learning task.

2The programs are written manually by students; it is not used to teach program induction or synthesis.

Since the example I/O grids are of varying dimensions, the learning task is not to induce a single
trace that only works on grids of a fixed size, but rather to induce a program that can can perform the
desired action on “arbitrary-size grids”, thereby forcing it to use the loop structure appropriately.

Karel Sample Task Karel DSL

0 Underlying Program Function: Actions:

(Not used by model) def run(): move ()
def run(): block turnLeft ()
if rightTsClear(): turnRight ()
turnRight () aps
move () Conditional: putMarker ()
putMarker () if (condition): pickMarker ()
turnLeft () block .
turnLeft () ; s Conditions:
if (condition):
move () block frontIsClear ()
turnRight () else: leftIsClear()
while fiontISCleaI 0= Hl\;ck rightIsClear ()
move = t
if rightIsClear(): markerPresent
turnRight () Loops:
move () for i in range (count):
putMarker ()
body
curnLeft () hil dition) :
curnLeft () while (condition):
move () body
turnRight () while (not condition):

body

Figure 1: Karel Domain: On the left, a sample task from the Karel domain with two training I/O

examples (I1,0;), (I, O3) and one test I/O example (I,0). The computer is Karel, the circles
represent markers and the brick wall represents obstacles. On the right, the language spec for Karel.

In this work, we only explore the induction variant of Karel, where instead of attempting to synthe31ze

the program, we attempt to dlrectly generate the output grid O from a correspondlng input grid I.
Although the underlying program is used to generate the training data, it is not used by the model in
any way, so in principle it does not have to explicitly exist. For example, a more complex real-world
analogue would be a system where a user controls a drone to provide examples of a task such as
“Fly around the boundary of the forest, and if you see a deer, take a picture of it, then return home.”
Such a task might be difficult to represent using a program, but could be possible with a sufficiently
powerful and well-trained induction model, especially if cross-task knowledge sharing is used.

3 Plain Program Induction

In this work, plain program induction (denoted as PLAIN) refers to the supervised training of a
parametric model using a set of input/output examples (1, 01), ..., (In, On), such that the model

can take some new I as input and emit the corresponding O. In this scenario, all /O examples in
training and test correspond to the same task (i.e., underlying program or algorithm), such as sorting
a list of integers. Examples of past work in plain program induction using neural networks include
(7, 111 120 (81 41 201 2]

For the Karel domain, we use a simple architecture shown on the left side of Figure 2] The
input feature map are an 16-dimensional vector with n-hot encodings to represent the objects
of the cell, i.e., (AgentFacingNorth, AgentFacingEast, ..., OneMarker, TwoMarkers,

., Obstacle). Additionally, instead of predicting the output grid directly, we use an
LSTM to predict the delta between the input grid and output grid as a series of tokens us-
ing. For example, AgentRow=+1 AgentCol=+2 HeroDir=south MarkerRow=0 MarkerCol=0
MarkerCount=+2 would indicate that the hero has moved north 1 row, east 2 rows, is facing south,
and also added two markers on its starting position. This sequence can be deterministically applied to
the input to create the output grid. Specific details about the model architecture and training are given
in Section 8

4 Portfolio-Adapted Program Induction

Most past work in neural programs induction assumes that a very large amount of training data is
available to train a particular task, and ignores data sparsity issues entirely. However, in a practical
scenario such as the FlashFill domain described in Section |I| or the real-world Karel analogue

Plain Induction Network Meta Induction Network

Input Encoder Output Decoder Input Encoder Output Decoder
(- @)~ ()@ () -) 50)-(0)

Task Encoder

B-Eh
T
-
@

Figure 2: Network Architecture: Diagrams for the general network architectures used for the Karel
domain. Specifics of the model are provided in Section [§]

*L

Pool

()

described in Section 2} I/O examples for a new task must be provided by the user. In this case, it may
be unrealistic to expect more than a handful of I/O examples corresponding to a new task.

Of course, it is typically infeasible to train a deep neural network from scratch with only a handful of
training examples. Instead, we consider a scenario where data is available for a number of background
tasks from the same task family. In the Karel domain, the task family is simply any task from the
Karel DSL, but in principle the task family can be more a more abstract concept such as “The set of
string transformations that a user might perform on columns in a spreadsheet.”

One way of taking advantage of such background tasks is with straightforward transfer learning,
which we refer to as portfolio-adapted program induction (denoted as PLAIN+ADAPT). Here, we
have a portfolio of models each trained on a single background I/O task. To train an induction model
for a new task, we select the “best” background model and use it as an initialization point for training
our new model. This is analogous to the type of transfer learning used in standard classification
tasks like image recognition or machine translation [[10, [15]. The criteria by which we select this
background model is to score the training I/O examples for the new task with each model in the
portfolio, and select the one with the highest log-likelihood.

5 Meta Program Induction

Although we expect that PLAIN+ADAPT will allow us to learn an induction model with fewer I/O
examples than training from scratch, it is still subject to the normal pitfalls of SGD-based training.
In particular, it is typically very difficult to train powerful DNNs using very few I/O examples (e.g.,
< 100) without encountering significant overfitting.

An alternative method is to train a single network which represents an entire (exponentially large)
family of tasks, and the latent representation of a particular task is represented by conditioning on
the training I/0O examples for that task. We refer to this type of model as meta induction (denoted as
META) because instead of using SGD to learn a latent representation of a particular task based on I/O
examples, we are using SGD to learn how to learn a latent task representation based on I/O examples.

More specifically, our meta induction architecture takes as input a set of demonstration examples
(I1,01), ..., (Ix, O) and an additional eval input I, and emits the corresponding output O. A diagram
is shown in Figure[2] The number of demonstration examples k is typically small, e.g., 1 to 5. At
training time, we are given a large number of tasks with k£ + 1 examples each. During training,
one example is chosen at random to represent the eval example, the others are used to represent the
demonstration examples. At test time, we are given k I/O examples which correspond to a new task
that was not seen at training, along with one or more eval inputs I. Then, we are able to generate

the corresponding O for the new task without performing any SGD. The META model could also be
described as a k-shot learning system, closely related to Duan et al. [6] and Santoro et al. [19]].

In a scenario where a moderate number of I/O examples are available at test time, e.g., 10 to 100,
performing meta induction is non-trivial. It is not computationally feasible to train a model which is

directly conditioned on k£ = 100 examples, and using a larger value of k at test time than training
time creates an undesirable mismatch. So, if the model is trained using k£ examples but n examples
are available at test time (n > k), the approach we take is to randomly sample a number of k-sized
sets and performing ensembling of the softmax log probabilities for each output token. There are (n
choose k) total subsets available, but we found little improvement in using more than 2 % n/k. We set
k = 5 in all experiments, and present results using different values of n in Section|[§]

6 Adapted Meta Program Induction

The previous approach to use n > k I/0 examples at test
time seems reasonable, but certainly not optimal. An al- =D TG
ternative approach is to combine the best aspects of META
and PLAIN+ADAPT, and adapt the meta model to a partic-
ular new task using SGD. To do this, we can repeatedly i
sample k£ + 1 I/O examples from the n total examples ’
provided, and fine tune the META model for the new task ’ ; 0 5
in the exact manner that it was trained originally. For de- e ol fpocts

coding, we still perform the same algorithm as the META
model, but the weights have been adapted for the particular
task being decoded.

Figure 3: Data-Mixture Regulariza-
tion

In order to mitigate overfitting, we found that it is useful

to perform “data-mixture regularization,” where the I/O examples for the new task are mixed with
random training data corresponding to other tasks. In all experiments here we sample 10% of the I/O
examples in a minibatch from the new task and 90% from random training tasks. It is potential that
underfitting could occur in this scenario, but note that the meta network is already trained to represent
an exponential number of tasks, so using a single task for 10% of the data is quite significant. Results
with data mixture adaptation are shown in Figure 3| which demonstrates that this acts as a strong
regularizer and moderately improves held-out loss.

7 Comparison with Existing Work on Neural Program Induction

There has been a large amount of past work in neural program induction, and many of these works
have made different assumptions about the conditions of the induction scenario. Here, our goal is to
compare the four techniques presented here to each other and to past work across several attributes:

e Example-Driven Induction - v = The system is trained using I/O examples as specification.
X = The system uses some other specification, such as natural language.

e No Explicit Program Representation - v/ = The system can be trained without any explicit
program or program trace. X = The system requires a program or program trace.

o Task-Specific Learning - v/ = The model is trained to maximize performance on a particular
task. X = The model is trained for a family of tasks.

e Cross-Task Knowledge Sharing - v/ = The system uses information from multiple tasks
when training a model for a new task. X = The system uses information from only a single
task for each model.

The comparison is presented in Table[I] The PLAIN technique is closely related to the example-driven
induction models such as Neural Turing Machines[7]] or Neural RAM[[12], which typically have not
focused on cross-task knowledge transfer. The META model is closely related are the k-shot imitation
learning approaches [6} 15, [19], but these papers did not explore task-specific adaptation.

8 Experimental Results

In this section we evaluate the four techniques PLAIN, PLAIN+ADAPT, META, META+ADAPT on the
Karel domain. The primary goal is to compare performance relative to the number of training I/O
examples available for the test task.

System Example- No Explicit Task- Cross-Task
Driven Program Specific Knowledge
Induction or Trace Learning Sharing

Novel Architectures Applied to Program Induction
NTM [7]], Stack RNN [11], NRAM [12]
Neural Transducers [8]], Learn Algo [21] v v v X
Others [4] 20} 2, [13]]

Trace-Augmented Induction

NPI [18] v X v v

Recursive NPT [3], NPL [14] v X v X
Non Example-Driven Induction (e.g., Natural Language-Driven Induction)

Inducing Latent Programs [[16] X v v v

Neural Module Networks [[1]]

k-shot Imitation Learning

1-Shot Imitation Learning [6]
RobustFill [3], Meta-Learning [19] / / X v

Techniques Explored in This Work

Plain Program Induction v v v X

Portfolio-Adapted Program Induction v v v v/ (Weak)
Meta Program Induction v v X v (Strong)
Adapted Meta Program Induction v v v /(Strong)

Table 1: Comparison with Existing Work: Comparison of existing work across several attributes.

For the primary experiments reported here, the overall network architecture is sketched in Figure 2]
with details as follows: The input encoder is a 3-layer CNN with a FC+relu layer on top. The output
decoder is a 1-layer LSTM. For the META model, the task encoder uses 1-layer CNN to encode the
input and output for a single example, which are concatenated on the feature map dimension and fed
through a 6-layer CNN with a FC+relu layer on top. Multiple I/O examples were combined with
max-pooling on the final vector. All convolutional layers use a 3 x 3 kernel with a 64-dimensional
feature map. The fully-connected and LSTM are 1024-dimensional. Different model sizes are
explored later in this section. The dropout, learning rate, and batch size were optimized with grid
search for each value of n using a separate set of validation tasks. Training was performed using
SGD + momentum and gradient clipping using an in-house toolkit.

All training, validation, and test programs were generated by treating the Karel DSL as a probabilistic
context free grammar and performing top-down expansion with uniform probability at each node.
The input grids were generated by creating a grid of a random size and inserting the agent, markers,
and obstacles at random. The output grid was generated by executing the program on the input grid,
and if the agent ran into an obstacle or did not move, then the example was thrown out and a new
input grid was generated. We limit the nesting depth of control flow to be at most 4 (i.e. at most 4
nested if/while blocks can be chosen in a valid program). We sample I/O grids of size n x m, where
n and m are integers sampled uniformly from the range 2 to 20. We sample programs of size upto 20
statements. Every program and I/O grid in the training/validation/test set is unique.

Results are presented in Figure evaluated on 25 test tasks with 100 eval examples eachE] The x-axis
represents the number of training/demonstration I/O examples available for the test task, denoted as
n. The PLAIN system was trained only on these n examples directly. The PLAIN+ADAPT system was
also trained on these n examples, but was initialized using a portfolio of m models that had been
trained on d examples each. Three different values of m and d are shown in the figure. The META
model in this figure was trained on 1,000,000 tasks with 6 I/O examples each, but smaller amounts of
META training are shown in Figure[5] A point-by-point analysis is given below:

3Note that each task and eval example is evaluated independently, so the size of the test set does not affect
the accuracy.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Test Accuracy

Induction Results (Karel Domain)

Plain
—a— Plain + Adapt (m=1, d=1000)
——Plain + Adapt (m=25, d=1000)
—@—Plain + Adapt (m=25, d=100000)
—&— Meta
—#— Meta + Adapt

1 2 3 5 10 20 50 100 1000 10000 100000
Number of Training I/O Examples (n)

Figure 4: Induction Results: Comparison of the four induction techniques on the Karel scenario.
The accuracy denotes the total percentage of examples for which the 1-best output grid was exactly
equal to the reference.

e PLAIN vs. PLAIN+ADAPT: PLAIN+ADAPT significantly outperforms PLAIN unless n is

very large (10k+), in which case both systems perform equally well. This result makes sense,
since we expect that much of the representation learning (e.g., how to encode an I/O grid
with a CNN) will be independent of the exact task.

PLAIN+ADAPT Model Portfolio Size: Here, we compare the three model portfolio settings
shown for PLAIN+ADAPT. The number of available models (m = 1 vs. m = 25) only
has a small effect on accuracy, and this effect is only present for small values of n (e.g.,
n < 100) when the absolute performance is poor in any case. This implies that the majority
of cross-task knowledge sharing is independent of the exact details of a task.

On the other hand, the number of examples used to train each model in the portfolio
(d = 1000 vs d = 100000) has a much larger effect, especially for moderate values of
n, e.g., 50 to 100. This makes sense, as we would not expect a significant benefit from
adaptation unless (a) d > n, and (b) n is large enough to train a robust model.

META vs. META+ADAPT: META+ADAPT does not improve over META for small values of
n, which is in-line with the common observation that SGD-based training is difficult using a
small number of samples. However, for large values of n, the accuracy of META+ADAPT
increases significantly while the META model remains flat.

PLAIN+ADAPT vs. META+ADAPT: Perhaps the most interesting result in the entire chart
is the fact that the accuracy crosses over, and PLAIN+ADAPT outperforms META+ADAPT by
a significant margin for large values of n (i.e., 1000+). Intuitively, this makes sense, since
the meta induction model was trained to represent an exponential family of tasks moderately
well, rather than represent a single task with extreme precision.

Because the network architecture of the META model is a superset of the PLAIN model,
these results imply that for a large value of n, the model is becoming stuck in a poor local
optimaﬂ To validate this hypothesis, we performed adaptation on the meta network after
randomly re-initializing all of the weights, and found that in this case the performance of
META+ADAPT matches that of PLAIN+ADAPT for large values of n. This confirms that the
pre-trained meta network is actually a worse starting point than training from scratch when
a large number of training I/O examples are available.

Learning Curves: The left side of Figure] presents average held-out loss for the various techniques
using 50 and 1000 training I/O examples. Epoch 0 on the META+ADAPT corresponds to the META

*Since the DNN is over-parameterized relative to the number of training examples, the system is able to
overfit the training examples in all cases. Therefore “poor local optimal” is referring to the model’s ability to
generalize to the test examples.

Learning Curves Varying the Model Size Varying the META Training
1000 I/O Examples
-

50 I/O Examples

100%

Plain (Large)
Plain (Medium)
Plain (Small)
Meta (Large)

o
o
b

=

b
‘

Negative Log Likelihood
%

o
7
@
&

S

- 0%
20 0 0 10 20 30 PO PRI S S S o2 35 100 20 50
s
S

°
|
S|y

Number of Epochs Number of Training 1/0 Examples (n) Number of Training 1/0 Examples (2)

Figure 5: Ablation results for Karel Induction.

loss. We can see that the PLAIN+ADAPT loss starts out very high, but the model able to adapt to the
new task quickly. The META+ADAPT loss starts out very strong, but only improves by a small amount
with adaptation. For 1000 I/O examples, it is able to overtake the META+ADAPT model by a small
amount, supporting what was observed in Figure [4]

Varying the Model Size: Here, we present results on three architectures: Large = 64-dim feature
map, 1024-dim FC/RNN (used in the primary results); Medium = 32-dim feature map, 256-dim
FC/RNN; Small = 16-dim feature map, 64-dim FC/RNN. All models use the structure described
earlier in this section. We can see the center of Figure [5|that model size has a much larger impact on
the META model than the PLAIN, which is intuitive — representing an entire family tasks from a given
domain requires significantly more parameters than a single task. We can also see that the larger
models outperform the smaller models for any value of n, which is likely because the dropout ratio
was selected for each model size and value of n to mitigate overfitting.

Varying the Amount of META Training: The META model presented in Figure] represents a very
optimistic scenario which is trained on 1,000,000 background tasks with 6 I/O examples each. On
the right side of Figure[5} we present META results using 100,000 and 10,000 training tasks. We see a
significant loss in accuracy, which demonstrates that it is quite challenging to train a META model
that can generalize to new tasks.

9 Conclusions

In this work, we have contrasted two techniques for using cross-task knowledge sharing to improve
neural program induction, which are referred to as adapted program induction and meta program
induction. Both of these techniques can be used to improve accuracy on a new task by using models
that were trained on related tasks from the same family. However, adapted induction uses a transfer
learning style approach while meta induction uses a k-shot learning style approach.

We applied these techniques to a challenging induction domain based on the Karel programming
language, and found that each technique, including unadapted induction, performs best under certain
conditions. Specifically, the preferred technique depends on the number of I/O examples (n) that
are available for the new task we want to learn, as well as the amount of background data available.
These conclusions can be summarized by the following table:

Technique Background Data Required When to Use
PLAIN None n is very large (10,000+)
PLAIN+ADAPT Few related tasks (1+) with a large n is fairly large (1,000 to

number of I/O examples (1,000+) 10,000)
META Many related tasks (100k+) with a n is small (1 to 20)

small number of I/O examples (5+)

META+ADAPT Same as META n is moderate (20 to 100)

Although we have only applied these techniques to a single domain, we believe that these conclusions
are highly intuitive, and should generalize across domains. In future work, we plan to explore
more principled methods for adapted meta adaption, in order to improve upon results in the very
limited-example scenario.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]
[13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. pages 39-48,
2016.

Marcin Andrychowicz and Karol Kurach. Learning efficient algorithms with hierarchical attentive memory.
CoRR, abs/1602.03218, 2016.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize via
recursion. In ICLR, 2017.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalchbrenner, and Alex Graves. Associative long short-
term memory. ICML, 2016.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy I/O. CoRR, abs/1703.07469, 2017.

Yan Duan, Marcin Andrychowicz, Bradly C. Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter
Abbeel, and Wojciech Zaremba. One-shot imitation learning. CoRR, abs/1703.07326, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to transduce
with unbounded memory. NIPS, 2015.

Sumit Gulwani, William R Harris, and Rishabh Singh. Spreadsheet data manipulation using examples.
Communications of the ACM, 2012.

Mi-Young Huh, Pulkit Agrawal, and Alexei A. Efros. What makes imagenet good for transfer learning?
CoRR, abs/1608.08614, 2016. URL http://arxiv.org/abs/1608.08614,

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In
NIPS, pages 190-198, 2015.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. /CLR, 2016.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332-1338, 2015.

Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, and Nate Kushman. Neural program
lattices. In ICLR, 2017.

Minh-Thang Luong and Christopher D. Manning. Stanford neural machine translation systems for spoken
language domains. 2015.

Arvind Neelakantan, Quov V. Le, and Ilya Sutskever. Neural programmer: Inducing latent programs with
gradient descent. ICLR, 2016.

Richard E Pattis. Karel the robot: a gentle introduction to the art of programming. John Wiley & Sons,
Inc., 1981.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. /CLR, 2016.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learning,
pages 1842-1850, 2016.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks. NIPS,
2015.

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple algorithms from
examples. CoRR, abs/1511.07275, 2015. URL http://arxiv.org/abs/1511.07275,

http://arxiv.org/abs/1608.08614
http://arxiv.org/abs/1511.07275

