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A Intermediate results
Generic controls for exact recovery

Let I be any estimator of I and let B := arg maxpgee, <K ~T, B).

Theorem A.1l. For c1,co > 0 absolute constants suppose that |f — Ty < A2 with probability
1 —¢1/n, and that

mA%(p) > ¢y (oz(n +mlogn) +V(\/n+mlogn) + 72 + 6%(v/n + m)>7 (A.1)

then we have B = B* with probability larger than 1 — c¢1 /n

~

In the case where the number of groups is unknown we study B := arg max Bec <7\ —I', B) =k tr(B)
fork € R.

Theorem A.2. For cs,cq,c5 > 0 absolute constants suppose that |f — T|oo < A2 with probability
1 — c3/n. Suppose that (AJ]) is satisfied and that the following condition on R is satisfied

Cy4 (VQ\/E +o*n+72 + 52\/5) < sk < mA% (), (A.2)
then we have B = B* with probability larger than 1 — cs/n

Concentration of random subgaussian Gram matrices

A key result in our proof is the following concentration bound on the Gram matrix of centered,
subgaussian, independent random variables.

Lemma A.1. For some absolute constant ¢, > 0, for a € [n] let E, be centered, independent
random vectors in RY, E, ~ subg(3,). Let E := [EQT} € R % then Wt > 0

P ||[EE" —E [EE"] |,, > 2mzﬁ |YalpVE+ 2 max 2a|opt} < 9"2e (A.3)
ac|n acn

B Main proofs

B.1 Proof of Proposition 1: identifiability

Suppose that X7, ..., X,, are (G, u, 6)-clustered with |G| = K, and p(G, , d) > 4. Then we remark
that for (a,b) € [n)?, a £ bis equivalent to |v, — V|2 < 26 because:
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e if a £ bthen there exist k € [K] such that |v, — vp|a < |ve — pil2 + |tk — vbl2 < 260

g
e if a 7 b then there exist (k,1) € [K]? such that |v, — vp|2 > |k — tul2 — [Va — prl2 —
[vp — pl2 > 46 — 286 > 24.

Now suppose there exist G’ such that X1, ..., X,, are (G', ', d’)-clustered with |G| = K and
p(G', ', 0") > 4. By symmetry we can assume ¢’ < d, and the previous remark shows that G’ is a
sub-partition of G, ie G preserves the structure of G’. But since |G| = |G’| this implies G = G'. O

B.2 Exact recovery with high probability

The proof for Theorem 1 (respectively Theorem 2) is a composition of Theorem [A.T] (respectively
Theorem [A.2) and Proposition .

In this section, under Hypothesis (1), we have Vk € [K],Va € Gy : X, ~ subg(X,). For k € [K],
we define 07 := maxqcc, |Salop < 0%, V7 1= maxgeq, |Zalr < V2,97 = max,eq, t1(Xq) <
72

A number of proofs in this section are adapted from the proof ensemble of [1]. In it the authors use a
latent model for variable clustering. A comparable model in this work would require to impose the
following conditions on X7, ..., X,,: identically distributed variables within a group (implying 6 = 0)
and isovolumic, Gaussian distributions.

B.2.1 Proof of Theorem[A.]]

In this theorem we only need to consider B € Ck, but the proof of Theorem [A.2]is similar to this
one, hence we will start by considering the more general B € C and use B € Ck at a later stage of
the proof. Thus we want to prove that under some conditions, with high probability:

(A—T,B*—B) > 0forall B C\ {B*} (B.1)

For (a,b) € Gy, x G| for (k,1) € [K]?, let:

(S1)ab = —lpr — pul3/2 (B.2)
(W1)ab = (Va — ik, Vb — fu1)

(W2)ab = (k. — Va + v — i1 + Ep — Ea, jug — pu1)

(W3)ab := (Ep — Eq,Va — i + f1 — Up)

(Wa)ab := ((Ea, Ep) — Tap)

Lemma B.1. Proving reduces to proving
<51 + Wi+ Wy + W3 + Wy + Wy, B¥ — B> > 0forall Be€C \ {B*} (B.3)

The proof for Lemma is found in section So we need only concern ourselves with
the quantities S1, Wy, Wy, W3, Wy, Ws5. The term S contains our uncorrupted signal and since
(S1, B*) = 0 it writes:

. 1
(S1,B" — B) = E §|Mk — ml31Baa 1 (B.4)
1<kAISK

The other parts are noisy and must be controlled. The term W5 is a simple subgaussian form controlled
through the following lemma, proved in section[B.2.4}

Lemma B.2. For ¢}, > 0 absolute constant, with probability greater than 1 — 1/n.:

YBEC, Mo B -B)I< Y (26+1/chllogn)(of + 7))l — ulal Baya i
1<k#IKK

(B.5)

To control the other noisy terms we now introduce a deterministic result:



Lemma B.3. For any symmetric matrix W € R™*"™ we have:

VBeC, [(W,B*=B)|<6BWl|w Y |Bsah
1<k£IKK

+Wlo| Y. Boralh/m+((B)=K)|.  ®6)
1<k#IKK

The proof for Lemma[B.3] will be found in [1]], p.21-22 until eq. (58).

As B*1 =1and B* > 0, |B*W|y < |W|x so we use the lemma on terms W3 and W35 by bounding
|W e and [W|,p: for the term Wy we use |[Wi|oo < 6% s0 [Wilop < 62y/n. To control the term
W3, we use the subgaussian tail bound of (B.23) with |v, — px + 1 — ]2 < 28 and a union bound
over (a,b) € [n]?. We get that for ¢4 > 0 absolute constant, with probability greater than 1 — 1/n,

[Wsloo < /¢4 (logn)o26? and |Ws|,, < +/ch(logn)o2d? x /n therefore with probability greater
than 1 — 1/n,VB € C:

B =Bl <#?] Y [Bach(®+ V) + Vin(B) - K).] ®7)

1<hAISK
(W3, B* — B)| < \/cg(logn)a%?[ Z |Bag, ¢, ]1(6 + %) +v/n(tr(B) — K)+} (B.8)
1<kAISK

For the term W, we introduce the following lemma, proved in section[B.2.3}

Lemma B.4. For ¢y, ¢ > 0 absolute constants, with probability larger than 1 — 2/n:
VBeC, |(Wy,B*—B)|< [6c4 2\/logn + o*logn)//m+
GO+ an)/m| 3 [Boeil + (tr(B) = K)+ (VA + o),
1<kAISK
(B.9)
Lastly as the term Wi is diagonal we have |W;s|op, = [Ws|oo and |B*Ws|oo < [Ws|oo/m therefore:

. 7
VBEC, |(WsB' = B)<IWile|-- > |Bagh+(t(B) - K| (®.10)
M <hA<K

Using those controls of Wy, Wa, W3, Wy, W, in combination in a union bound in (B:3) we get for
¢y > 0 absolute constant, with probability greater than 1 — ¢} /n: VB € C,

1
(S1+ Wi+ Wo+ Ws+ Wy +Ws,B* ~B) > Y [fluk—mli—

I<kAISK
2./ 2] 2 2
(26+ 2c’2(logn)‘72>|uk- — pul2 — (GCQV \/@T/%U - +CZV \/Em+0 )

7
LWl — 6+ )0 + 408 m)020)] | B,
— (tr(B) — K) 4[] (V2/n + o%n) + (62 + /¢4 (log n)0262)v/n + | W) o] (B.11)

We now use the fact that for this theorem we are only considering B € Cg, ie matrices such that
tr(B) = K so we can discard the last line of (B:IT)). In this particular context we can improve the
control provided by Lemma for Ws: as tr(B*) = K, we have fora € R : (W5, B* — B)| <
(W5 — al,, B* — B)| 4+ |a(tr(B) — K)|. So by choosing o = (max,(Ws)aa + ming (Ws)aa)/2,
we have |W5 — aly|op = |Ws5 — ol |oo = |W5|1//2 and therefore:

. 7
VB €Cx |(Ws, B" = B)| < [Wslv - > |Baail (B.12)
1<k#ISK



In consequence we can replace |Ws| by |W5|v//2 in the second line of (B:TT)), and with another
union bound, by assumption we replace |Ws|y /2 by 72 /2.

Lastly Lemma 3 p. 17 from [[1]] shows the only matrix in Cx whose support is included in supp(B*)
is B*, therefore B € Cx \ {B*} implies >, ;1< i [Bc,c,[1 > 0. Hence for ¢ > 0 absolute

constant, the following condition on A(gu) is sufficient to ensure exact recovery with probability
larger than 1 — ¢1 /n:

1
A%(p) = c2[0®mlogn + V?\/mlogn + V*v/n + o°n+ 72 + 6*(V/n + m)] x — (B.13)

This concludes the proof for Theorem [A:1] O

B.2.2 Proof of Theorem[A.2} adaptive exact recovery

In this Theorem we need to take into account the additional penalization term x tr(B) Notice it is
equivalent to a correction by #1,, of our estimator A—T, therefore for B € C, (A —#l,, B* —-B) =

<A T,B* — B) + R x (tr(B) — K). Therefore for Theoremwe can follow the same proof
as in Theorem [AT] untll establishing (B:T1), at which point we can use a union bound to use the
assumption |Ws[o, < #42. Consequently we have with probability greater than 1 — ¢} /n: VB € C,

1
(Sy+ Wi+ W+ Ws+ Wit Ws,B*—B) > Y [§|Mk_ﬂl|%

1<kAIKK
V2y/Togn + o2 logn VZ,/n+o’n
~ (204 y /2o ) — p — (6c) OB LTI VTR,

52— (64 Y5 + o5 10gm)0?0?)] | B
tr(B) — K)[¢](V2V/n + o®n) + (82 + /¢4 (log n)a262)v/n + 73] + R(tr(B) — K)
(B.14)

I~

—~

Using the assumption (A1) of Theorem[A.2]there exist ¢, > 0 such that with probability greater than
1—¢j/n:VBeC,

(Sy+ Wi+ Wa+ Ws+ Wy, B* = B) > A (w) > |Ba,ah

1<k#AIKK
— (tr(B) = K)4[c{(V*Vn + o®n) + (6% + 1/ ¢4 (logn)o262)y/n + 72] + R(tr(B) — K)

(B.15)

From here, when tr(B) > K, the left-hand side of (A.2) is sufficient to ensure recovery. When
tr(B) = K, we already established that } 3, ., ;< e |Bc,c,[1 > 0 for all matrices B € Cx \ {B"}
so (AT) is sufficient in that case. Lastly note that K — tr(B) < = i<krick [Bawa 1 (see [ eq.
(57) p.21) so the right-hand side of (A.2) is sufficient condition for recovery when tr(B) — K < 0.
This concludes the proof of Theorem[A.2] O



B.2.3 Proof of Lemma|[B.1]

~

(A —TD)ap = (Xa, X3) = Tap = (Va, ) + (Va, Ev) + (v, Ea) + (Ba, Bp) — Tap (B.16)
<I/a, I/b> + < — Uy, Ep — Ea> + <I/a, Ea> + <I/b, Eb> + (W4 + W5)ab B.17)
<Va71/b>
+ (ke — w1, By — Eq) + (W3)ap + (Vas Ea) + Ve, Ep) + (Wa + W5)ap (B.18)

— (e, ) + (Va — s Vo — 1) + (Vas 1) + (pre, Vo)

+ (ke — s Eb — Ea) + (W3)ab + (Va, Ea) + (U, Eb) + (Wa + Ws)ap (B.19)
—(S1)ab (|Nk|2 + |1ul3) + (W) ab + (Vas ) + (pnes o)
+ (pe — m,Eb Eo) + (W3)ab + (Va, Ea) + (v, Bo) + (Wa+Ws)ap  (B.20)
~(S)as — g (lanl3 + l3) + (W)as + (v ) + ()
+ (ke — p1, v — Va + Ep — Eo) + (Wa)ab + (Va, Ea) + (Vb Eb) + (Wa + Ws)ap
(B.21)
—(S1)ab — %(Iuklg + ll3) + (Wh)ab + (Vas ) + (p, v)
+2(51)ab + (W2)ab + W3)ap + (Vas Ea) + Ve, Ep) + (Wa + W) ap (B.22)
Now since ((va, k)@ nyemr = ((Varik))acm) X Lis (k3 @neme = (1x]3)aem) X
10 (W ) @pyemr = 1o X (<Vb»/u>)be[n], (|ul|§)(a,b)e[n12 = 1 x (lml3)vem»

((Var Ea)) (@ pyen)? = ((Var Ea))aein) X 1 (U, Eb)) (@ byein)2 = 1n X ({6, Eb))ven) and since
Bl, = B*1, = (1I'B)T = 1T B*)T = 1,,, we have:

(A—T,B* = B) = (S, + Wy + Wa + Wy + W, + W5, B — B) (B.23)

O

B.2.4 Proof of Lemma control of |(IW,, B* — B)|

By definition, (W3)4, = 0 when k = [ and (B*),, = 0 when k # [ so we have (W5, B*) = 0. Let
(A, B)g,a, = Z(a,b)eGkXGl AapBap, we have:

(W2,B* — B) = —=(W2,B) = — Z (W2, B)aa, < Z |W2\GkGL|OO|BGsz|1
1<kAISK 1<kAISK
(B.24)
Let (a, b) € Gy x Gy, we look at (WQ)ab = <Eb - F, — (l/a — Mk) + (Vb — /Jl)vﬂk — Ml> =
(Eo — By, pg — ) + {(—(Wa — pg) + (Wp — 1), ok — 7). The term on the right is a constant offset
bounded by 26|, — pu)2. Let z := g — puy, by Lemma (E, — Ey, z) is a subgaussian variable

with variance bounded by (07 + 07)|z|3 therefore its tails are characteristically bounded (see for
example [4]]), there exist ¢, > 0 absolute constant such that V¢ > 0:

P {I<Eb — Ea,2)| > [2|21/ 0} + 0 % t] <elmet (B.25)

This implies that V¢ > 0, P [|(W2)ab| > g — pul2(26 + o} + o x t)} < el7%" We conclude

with a union bound over all (a,b) € G} x G, a union bound over all (k,1) € [K]?, k # [ and by
taking ¢t = /(1 + 3logn)/c.. O

B.2.5 Proof of Lemma [B.4 control of [(Wy, B* — B)|

Recall (Wy)ap = (Ea, Ep) — Tap. We will prove Lemma [B.4] by using the derivation of (B-6)
combined with Lemma [A.T] for control of the operator norm and the following lemma for the
remaining part.



Lemma B.5. For ¢} > 0 absolute constant, with probability greater than 1 — 1/n:
|B*Wy|oo < ¢ x (V2/logn 4 o2 logn)/vm. (B.26)

Proof. Let (a,b) € G, x G, we rewrite (B*Wy) 4 as the sum of the following two terms:
= |Ep|3 — T

1
|Gk‘ Ek S Te ZceGk,c;ﬁb E.

The bound for u;, uses Lemma|(C.3t V¢ > 0 P [|| E,|3 — E|Ey|3| > V2Vt + 0?t] < 2 so only
the scalar product remains to be controlled. Notice that by Lemma v/ |Gk|Ek is a centered

(B*W4) X 1p—; + <Ek, Eb> with { B.27)

sEbgaussian with variance-bounding matrix ¥ = ﬁ > ey et Ses therefore S| < V2 and
|Z]op < oz. So using Lemmaagain we find Vt > 0:
P [2V/IGHl(Br, Bl > VE(E, D) 2VE + 125, ot | < 26751 (B.28)

Therefore using a union bound, then <§3, ¥)'/2 < ViV < V? (Cauchy-Schwarz) and applying
another union bound over all (a, b) € [n]? with t = (log4 + 3logn)/c. yields the result. O

We are ready to wrap- up the proof. From Lemmam IA.1|applied to Wy, taking ¢t = (log 2 + nlog9 +
logn)/c. there exists ¢jj > 0 absolute constant such that we have with probability greater than
1—1/n: [Walop < &) (VQf—i— on). Now applying Lemmato Wy:

(Wi, B* = B)| <6|B*Wilse Y. |Be,aih
1<k#AIKK

+|W4|op[ 3 |BGkGl|1/m+(tr(B)—K)] (B.29)
1<kAIKK

Therefore combining the lemma with the derivations above and a union bound, we get with probability
greater than 1 — 2/n:

|(Wy, B* — B)| {604 2/logn 4 o?logn)/vm + c{(V*v/n + o*n) /m } Z |Ba,.c 1

1<k#ISK
+ (tr(B) — K){(V*/n + o°n) (B.30)
This concludes the proof for Lemma[B-4] O
B.3 Proof of Proposition 4, Gamma estimator Teorr

Leta € Gy, by € Gy,, bz € Gy, using decomposition (1) and 2|zy| < 22 + y? we have for a € [n]:

=~ 3
|Faa - Faa| = |<Xa - Xblea - Xb2> aa| Ul + U2 + 2U3 + 3U4 (B31)

where: U; = \|Ea|2 — Dol
Uy = [va — vi, |3 + Ve — v,13
Vg —
Us:= sup <7 Ey)?
(b.o)em? [Va — Vel2’
Uy := sup |(Ey, E.)|

(b,c)€[n]?,b#c

Control of Uy = ||E,|3 — T'ual: by using the first inequality from Lemmawith t = (2logn +
log 2)/c, there exists ¢} > 0 such that with probability greater than 1 — 1/n*:

Uy < ¢ x (VE/logn + o logn) (B.32)
Control of Us = sup(, e nj2 (=55 » Ep?: writt 2 = (Vg —v.)/|Va—Ve|2 and Y =

2_1/ Eb ~ Sllbg( ) and A = 21/2 ( ZT)E})/Q, so that: <ZaEb>2 = El;TZZTEb = YTAY .



Because |z|2 = 1 and 227 is symmetric of rank 1 we have |A|r = |A|,, = tr(A) < o? therefore
we use Lemmaw1th t = (4dlogn + log 2)/c, and then a union bound over all (b, c) € [n]? so
that with probability greater than 1 — 1/n?

Us < ¢ x o?logn (B.33)

Control of Uy = SUp(y, c)c[nj2,pv-£c |{(Ebs Ee)|: using the fact that Ej, and E. are independent and the
2

second inequality of Lemma|C.3|with ¢ = (4 logn + log 2)/c., a union bound over all (b, ¢) € [n
there exists ¢/, > 0 such that we have with probability greater than 1 — 1/n?:

Uy < ¢y x (62 logn + V*4/logn) (B.34)

)

Control of Uy = |vg — p, |3 + |Va — v, |3: here we use the requirement that all groups are of length
at least m > 3, there exist (aj,a2) € Gy \ {a}, (¢,d) € ([n] \ {a,a1,a2})? let Z = (X, —
Xa)/|Xe — X4lo. Fora, € {a; (12} we have (X, — X,,,2) = (Vg — Va,, Z) + (Eq — Ea,, Z).
By independence and Lemma | (E, — E,,,Z) is subgaussian with variance bounded by 202.
Therefore using the subgaussian ta11 bounds of and a union bound, there exists ¢}, > 0 absolute
constant such that with probability over 1 — 1/n*: V(a,a1) V V(a, a2) < 26 4+ cho/logn. Hence
for b, € {by, b2} with probability over 1 — 1/n?:

[(Xoq — Xp,, Xe — Xa)| < (20 + chor/logn)| X, — Xq4l2 (B.35)

Now suppose {1 # k, choose ¢ € Gy, \ {a},d € Gi, \ {b1}. We have | X, — Xg|o < | — iy |2 +
2(5+|E Ed|2 We also have <X Xbl,X Xd> = <Va I/b1+E Ebl,l/c vg+E,. Ed> =
(e — pay + Oap + Eq — By, e — 1, + 0ca + Ec — Eq) for 6y = (Vo — v, ) — (ke — 1, ) and
0cd = (Ve — va) — (ux — pu, ). Therefore:

(X — Xp,, Xe — Xa)| = |pk — pay 13/2 — 46|k — paa, |2 (B.36)
1 — Oc
(BT R B, By Ey)2—2 sup (o B2
2 [ — |2 (bed)efn)® [Ocdlz’

—4U4 — 1262
> | — puy |3/2 — 48| pw — |2 — 8U4 — 2UY — 4U4 — 1262 (B.37)

where U} = SUp 1) en)x (1] { he ety » E6) % Us' = Sup(b,c,d)e[npﬁg%db’ Ey)?.

So combining the last derivations:

e — g, [3/2 — 40|y, — pu, |2 < (20 + cyo/log ) (|ik — puy |2 + 26 + | Ee — Eql2)
+8U4 4 2UY + 4U, + 1262  (B.38)

Notice that U}, U4 can be controlled exactly as Us was, and 51multaneously for ¢§ > 0 absolute
constant, with probablhty greater than 1 — 1/n?: 8U} + 2UY < c§o? logn.

We now control |E. — Eg4ls: notice that by Lemma [C. 1} EC — E, is subg(X. + X4). We have
E[|E. — Ea3] < tr(Se + Sa) < 292 [Se + Salr < 2V2 < 207 and [Se + Sglop < 202
Therefore by the first inequality of Lemma with t = (4logn + log2)/c, and a union bound
over all (¢, d) € [n]?, there exists ¢4 > 0 absolute constant such that we have simultaneously with
probability greater than 1 — 1/n?:

sup |E.— Eq4|2 < 02\/7 + oyy/logn + o2logn < ¢y (v + o+/logn) (B.39)
(c,d)€[n]?

Therefore with a union bound, with probability greater than 1 — 4/n?:

bk — pu, [3/2 = (cho/logn + 66) | — pu, |2 <(26 + choy/logn) (26+

/! 404

(v + o+/logn)(cy + i + ?)) + 1262
S (B.40)



Hence for ¢ > 0 absolute constant we have with probability greater than 1 — 4/n?: |uy — u, |3 <
c5 (6 + o+/logn)(d 4+ o+/log n + ). The same control can be derived sirnultaneously for |pg — pr, |3
by replacing d € G, \ {b1} by d’ € Gy, \ {bl, bg} We conclude that for ¢f > 0 absolute constant,
we have with probability greater than 1 — 4 /n?

Ua < 2|pr — puy |3 + 2lp — pus|3 +160% < ¢5(0 + o0/logn)(6 +o\/logn +7)  (B.41)
Therefore with a union bound over all four terms Uy, Us, Us, Uy and a € [n], for cg, c; > 0 absolute

constants we have with probability greater than 1—cg /n: [T —T'|oe < c7(6+0+/Togn)(6+0+/Tog n+
7). This concludes the proof of Proposition 4 O

B.4 Proof of Proposition 2

For this proof we rely heavily on the proof of Theorem let T' = 0 so that Ws = T, notice
that W35 and W, are centered. We take expectation of (B.3), therefore proving (A + T, B* — B) >
0 for all B € Cx \ {B*} is equivalent to proving:

(Sy + W1 +E[Wo] + T, B* — B) > 0forall B € Cx \ {B"} (B.42)

Notice that for (a,b) € G x Gy, E[(Wa)ap] < 20|ur — fu]2- Using this in combination with other
arguments from the proof of Theorem that is using (B.4), and (B.12), we have VB ¢ Ck:

" 1
<S17‘B _B> = Z §|/1‘k_ﬂl|g‘BGsz‘1 (B.43)
1<kAIKK
n
WLB —BI< 3 826+ YY) Boel (B.44)
1<k#IKK m
(E[Wa],B* = B)| < > 20|uk — pul2|Ba,a,h (B.45)
1<k#IKK
. 7Ty
(W5, B*=B)| < > |Ba,cih (B.46)
1<k#IKK

Thus we have:
. 1
(S1+ Wi +E[Ws] + W5, B* = B) > > [5\/% = tul3 — 26| — pul2
1<kAIKK

7Ty
— 52 @ _
6+ m) 2m

|Bg,c,l1 (B.AT)

Hence we deduce that there exist cq absolute constant such that if p?(G, , §) > ¢(6 + /n/m) and

mA?(p) > 8|T|y, then we have argmaxpce, (A + T, B) = B*. Lastly as B* is in C O g,
this concludes the proof. O

B.5 Proof of Proposition 3
Assume X7, ..., X, is (G, p, §)-clustered with caracterizing matrix B* and define the following:

e 0 = 0 implying maximum discriminating capacity for G ie p(G, i, d) = +o0.

o Let
1
m 2/m
B* = 1 c C{O’l} and By := 2/m c C{O,l}
N ™ K 1 - - K
a m
m
1 .
where represents constant square blocks of size m and value 1/m, and the other values
m

in the matrices are zeros.



e K = 3 and for some A > 0, u; = (A/v/2,0,0)7 and py = (0,A/v/2,0)7, puz =

(0 0,A/v/2)T so that for (a,b) € G x Gz Mgy = {pr, ) = A%/2 x 1{a £ b}. Then
A%(p) = A? and A = (A?/2)mB*.

e Foryy > > 0letI' = diag (Y4 oo Vs Yo voes Vs Vs w0 V=)
—_— —— Y—~—

m m m

Then we have the following: (B*,T') = v, + 2v_, (By,[') = 2y, +~_, (B*,A) = A%/2 x 3m,
(B1,A) = A?/2x2m. Thus we have (B*, A+T") < (By, A+T") as soon as mA?(p) < 2(y4 —v-).
This concludes the proof. O

C Subgaussian properties and controls

Lemma C.1. Va € [n] let Y, ~ subg(3,), independent, 3, € R*4 then

Y = (YlTv e YJ)T ~ subg(diag (Za)ae[n])a (Cl)
Z = Z coYy ~ subg( Z cZZa). (C.2)
a€ln] a€ln]
Proof. By independence for z = {21, ..., 2T}T € R 2, € R we have

E |:ezT(Y_]EY)} HE[ 2T (Yu—EY, )] Hez Daza/2 — o diag(Ta)ae(m /2
a=1

E {ezT(Z—]E Z)} H E [ 2] ca(Ya,—IEYa)} H oA aTa21/2 _ o5 (Taem) aSa)z1/2

a=1
O
Lemma C.2. Hanson-Wright inequality for subgaussian variables
Let'Y be a centered random vector, Y ~ subg(Iy), let A be a matrix of size d x d. There exists
¢« > 0 such that for any t > 0
i [|YTAY ~E[YTAY]| > |A|lpVE+ |A|Opt] < 2e7c, (C.3)
Proof. A variation of the original Hanson-Wright inequality (Theorem 1.1 from [3]), itholdsas o =1

bounds the subgaussian norm |Y|y, 1= sup,cs, , sup,s;, p~/?(E|27Y|)}/?, a consequence of
Lemma 5.5 from [4]. O

Lemma C.3. Subgaussian quadratic forms
Let E, E' be centered, independent random vectors, E ~ subg(X), E' ~ subg(X'), then fort > 0

P 1B — EIBB| > [SrvE+ [Slopt] < 267 (C4)
P [2|(E,E’>| > V2B, Y2+ |21/22’1/2|0pt} < 2eCt, (C.5)

Proof. For the first inequality, we use Lemma[C.2with Y = £~ /2 and A = X. As for the second
inequality, by Lemma we have Y = (ETE-1/2 BTy ~V/2T)T _ subg(I,4). Then let us use

LemmalC2with
0 21/2211/2
A= ( /2T 5127 0 )
Notice that |A|2 = 2(X, %) and |A|,, < |E1/251/2|,, so the results follow. O



Proof of Lemma concentration of random subgaussian Gram matrices.

Let W := EE” — E[EE”]. Using the epsilon-net method as in Lemma 4.2 from [2], let A" be a
1/4-net for S,,_ such that |A/| < 9" (see Lemma 5.2 [4]), we have for u,v € S2_; : uTWv <
maxzen ! Wo + % maxyes, , Ul Wo < max, ,en? 2TWy + % max, ,es? uTWv hence

Wlop <2 max "Wy and P[[Wl, >t < Y Pla"Wy>t/2] (C.6)
2 yEN? z,yEN?
Notice that this rewrites z7Wy = S S 2(EYE, — Tap)us =
X Ere ) El )T — ECn_ ETx,) (X Efy)T. For z,y € NZ let
@S2 = (1,217, 2, 2T € RP and Y = (BTS2, ETS, V2T e Rpx? (by
Lemma|C.1|we have Y ~ subg(1,,;,)). We have

TWy =vT(z o2V (y e 2/)TYy —EYT(z @ 2V2)(y @ ©1/2)TY] (el))
Now define A := (z ® L¥?)(y ® SY2)T: we have |Al,, < maxeep |Salop be-
cause for z € R’, [(z @ T3 = S aRl%23 < maxeeqn [Talopl2f3

As for the Frobenius norm, by Cauchy-Schwarz: |[(z ® 2'/2)(y @ SV/2)T|%
DTS P x§y§|2(11/222/2|2F < maX,epy) [Xalf. Therefore using Lemma on Y we have

VEZ2 0:P[[YTAY —E [YTAY ]| > maxeepy) [Sa| pVE + max,epn) |[Salopt] < 267, Hence in
conjunction with (C.6) we conclude the proof. O
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