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A Minimum of the complexity loss LC(α, Y )

The symmetric KL divergence between two n-dimensional normal distributions N0(u0, C0),
N1(u1, C1) is given by

DKL(N0 ‖ N1) =
1

2
tr(C−11 C0 + C−10 C1) + (u1 − u0)>(C−10 + C−11 )(u1 − u0)− n. (16)

Recall from Eq. (14) in Sec. 5.1, that is,

LC = DKL

(
q(x|Y ) ‖ p(x|α)

)
(17)

where q(x|Y ) = N (0, σ2I + Y Y >), Y ∈ Rn×p, n > p, each column of Y is normalized to one,
and p(x|α) = N (0, αI). Substituting u0 = 0, u1 = 0, C0 = σ2I + Y Y >, and C1 = αI into Eq.
(16) gives

LC =
1

2
tr
(
α(σ2I + Y Y >)−1 +

1

α
(σ2I + Y Y >)

)
− n. (18)

The second term in the right-hand side of Eq. (18) is a constant as shown below:

1

α
tr(σ2I + Y Y >) =

σ2tr(I) + tr(Y >Y )

α
=
σ2n+ p

α
. (19)

After removing the constant terms in Eq. (18), we obtain

LC =
α

2
tr
(
(σ2I + Y Y >)−1). (20)

The following propositions are used to prove that LC is minimized when the column vectors of Y are
orthogonal to each other.

Prop. 1 SupposeA ∈ Rn×n is an invertible matrix and y ∈ Rn×1 is a column vector. If (A+yy>)−1

is invertible, (A+ yy>)−1 = A−1 − A−1yy>A−1

1+y>A−1y
[1].

Prop. 2 Let B ∈ Rn× p be a full rank matrix where n > p. The eigenvalues of σ2I + BB> are
given by {σ2 + λ1, · · · , σ2 + λp, · · · , σ2} where λ1, · · · , λp are the eigenvalues of B>B.

Prop. 3 Let B ∈ Rn× p be a full rank matrix where n > p and β ∈ Rn×p contain eigenvectors of
σ2I+BB> corresponding to p largest eigenvalues in its columns, then span(β) = span(B).

Prop. 4 If two positive definite matrices P , Q share the eigenvectors, miny
y>Py
y>Qy

and

miny
y>Q−1Py

y>y
have the same minimum.
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It is straightforward to derive Prop. 2 and 3 (refer to [2] for the general idea). Prop. 4 comes from the
solution of generalized eigenvalue problems.

Let X ∈ Rn×(p−1) be a matrix obtained by omitting a column vector y from Y ∈ Rn×p in Eq. (20).
First, we show that the minimum of LC with respect to y is achieved when y is orthogonal to
span(X).

It can be easily shown that Y Y > = XX> + yy>. Let Z = σ2I + XX>. Then Z + yy> =
σ2I + Y Y > is invertible. From Prop. 1, we obtain

tr
(
(Z + yy>)−1

)
= tr(Z−1)− tr(Z−1yy>Z−1)

1 + y>Z−1y
. (21)

The numerator of the rightmost term can be rewritten as tr(Z−1yy>Z−1) = y>Z−1Z−1y because
the trace is invariant under cyclic permutations. The denominator can be rewritten as 1 + y>Z−1y =
y>(I + Z−1)y because y>y = 1. Since tr(Z−1) has no dependency on y, minimizing Eq. (21) with
respect to y is equivalent to

min
y
− y>Z−1Z−1y

y>(I + Z−1)y
, (22)

which is the generalized Rayleigh quotient. The eigenvectors of Z−1Z−1 and I + Z−1 are the same.
Applying Prop. 4 (note that y>y = 1) yields

min
y
−y>(I + Z−1)−1Z−1Z−1y. (23)

Let the eigenvalues of X be {λ1, · · · , λp−1} where λ1 > · · · > λp−1. From Prop. 2, the eigende-
composition of Z is given by

Z = V ΣV > (24)
where Σ = diag[σ2 + λ1, · · · , σ2 + λp−1, σ

2, · · · , σ2] and V is the corresponding eigenvector
matrix. From this, we have I + Z−1 = V (I + Σ−1)V >, Z−1Z−1 = V Σ−1Σ−1V >, and (I +
Z−1)−1Z−1Z−1 = V (I + Σ−1)−1Σ−1Σ−1V >. With y>y = 1 and Σ = diag[σ2 + λ1, · · · , σ2 +
λp−1, · · · , σ2], Eq. (23) is rewritten as

−y>(I + Z−1)−1Z−1Z−1y = −
p−1∑
i=1

(v>i y)2

(σ2 + λi)(σ2 + λi + 1)
−

n∑
i=p

(v>i y)2

σ2(σ2 + 1)
(25)

where vi is the eigenvector of Z corresponding to the i-th largest eigenvalue. With the subspace
condition σ2 → 0, the first term in the right-hand side can be ignored. By dropping the constant
factor and applying

∑n
i=1(v>i y)2 = 1, the optimization in Eq. (23) reduces to

min
y

p−1∑
i=1

(v>i y)2. (26)

From Prop. 3, span([v1, · · · , vp−1])=span(X). Thus, LC is minimized when y is orthogonal to
span(X).

It follows that if all the column vectors of Y are orthogonal to each other, LC is minimized with
respect to all the parameters in Y . Since it is always possible to find such a set of column vectors if
n > p, it is guaranteed that the minimum of LC can be reached in any case.

B The direction of the gradients of LC(α, Y ) and LO(α, Y )

In this section, we show that the negative of the gradient of the regularization loss LO(α, Y ) in
Eq. (15) is a descent direction of the original objective LC(α, Y ) in Eq. (14). Specifically, the inner
product of their gradients is shown to be nonnegative. We start the proof from Eq. (22), which is
equivalent to LC(α, Y ) except constant terms. Taking the partial derivative of Eq. (22) with respect
to a selected column vector y gives

∂LC(α, y)

∂y
=
−(y>Qy)Py + (y>Py)Qy

(y>Qy)2
(27)
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where P = Z−1Z−1 and Q = I + Z−1.

The eigendecompositions of P and Q can be derived from Eq. (24) as follows: P = V Σ1V
> and

Q = V Σ2V
> where

Σ1 = diag
[

1

(σ2 + λ1)2
, · · · , 1

(σ2 + λp−1)2
, · · · , 1

σ4

]
(28)

and

Σ2 = diag
[
1 +

1

σ2 + λ1
, · · · , 1 +

1

σ2 + λp−1
, · · · , 1 +

1

σ2

]
. (29)

It follows that Py, Qy, y>Py, and y>Qy can be computed as:

Py =

p−1∑
i=1

v>i y

(σ2 + λi)2
vi +

1

σ4

n∑
i=p

(v>i y)vi (30)

y>Py =

p−1∑
i=1

(v>i y)2

(σ2 + λi)2
+

1

σ4

n∑
i=p

(v>i y)2 = r (31)

Qy = y +

p−1∑
i=1

v>i y

σ2 + λi
vi +

1

σ2

n∑
i=p

(v>i y)vi (32)

y>Qy = 1 +

p−1∑
i=1

(v>i y)2

σ2 + λi
+

1

σ2

n∑
i=p

(v>i y)2 = w (33)

where vi is the i-th column of V in Eq. (24). Note that r and w are greater than zero because P and
Q are positive definite.

We are only interested in the direction of the gradient. The denominator of Eq. (27) can be discarded
since it is always positive. Substituting the equations above into the numerator of Eq. (27) yields

g1 = ry +

p−1∑
i=1

(
− w

(σ2 + λi)2
+

r

σ2 + λi

)
(v>i y)vi +

(
− w

σ4
+

r

σ2

) n∑
i=p

(v>i y)vi (34)

where r and w are given in Eq. (31) and (33).

On the other hand, the regularization loss function in Eq. (15) can be rewritten with respect to the
same selected column vector y as follows, given that Y Y > = XX> + yy> and y>y = 1:

LO(α, Y ) =
α

2
‖ Y >Y − I ‖2F (35)

=
α

2

{
tr(Y >Y Y >Y )− 2tr(Y >Y ) + tr(I)

}
(36)

=
α

2

{
tr(XX>XX>) + 2y>XX>y + y>y − 2tr(XX>)− 2y>y + tr(I)

}
(37)

=αy>XX>y +
α

2

{
tr(XX>XX>)− 2tr(XX>) + tr(I)− 1

}
. (38)

Taking the derivative with respect to y and ignoring the constants, the direction of the gradient of
LO(α, Y ) is given by

g2 = XX>y =

p−1∑
i=1

λi(v
>
i y)vi. (39)

Taking the inner product of g1 and g2 yields

g>1 g2 = r

p−1∑
i=1

λi(v
>
i y)2 +

p−1∑
i=1

λi

(
− w

(σ2 + λi)2
+

r

σ2 + λi

)
(v>i y)2v>i vi. (40)
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The first term is nonnegative since λi and r are nonnegative. To see the second term is nonnegative, we
need to show r

σ2+λi
> w

(σ2+λi)2
. Since Y is a full-rank n-by-p matrix, there exists an i ∈ {p . . . n}

such that v>i y is nonzero. It follows that
∑n
i=p(v

>
i y)2 > 0. Under the subspace condition σ → 0, it

is easily shown that r � w. Since λi are finite numbers, we obtain r
σ2+λi

� w
(σ2+λi)2

.

From above, we have shown that g>1 g2 ≥ 0. The equality holds when
∑p−1
i=1 (v>i y)2 = 0 (that is, the

column vector y is orthogonal to all the other column vectors in Y ). Therefore, the negative of the
gradient of the regularization loss LO(α, Y ) in Eq. (15) is a descent direction of the original objective
LC(α, Y ) in Eq. (14).
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