
Appendix

A Proof of Theorem 1

Proof. We prove this theorem by constructing a network architecture which can approximate any
Lesbegue-integrable function w.r.t L1 distance. We will firstly illustrate that f can be approximated
by finite weighted sum of indicator functions on n-dimensional cubes. Then we will show how a
ReLU network approximate an indicator function on an n-dimensional cube. Finally we will show
that ReLU network can "store" the quantities and sum them up.

Assume x = (x1, . . . , xn) is the input. Since f is L-integrable, for any ε > 0, there exists N > 0
which satisfies ∫

∪n
i=1|xi|≥N

|f |dx < ε

2

For simplication, the following symbols are introduced.

E , [−N,N ]n

f1(x) ,

{
max{f, 0} x ∈ E
0 x /∈ E

f2(x) ,

{
max{−f, 0} x ∈ E
0 x /∈ E

C ,
∫
Rn

|f |d~x

V 1
E , {(x, y)|x ∈ E, 0 < y < f1(x))}

V 2
E , {(x, y)|x ∈ E, 0 < y < f2(x))}

Then we have ∫
Rn

|f − (f1 − f2)|dx < ε

2
(1)

f1 denotes the positive part off , while f2 denotes the negative part. V iE is the space between fi and
y = 0 in E, i=1,2.

For i=1,2, since V iE is measurable, there exists a Lebesgue cover of V iE consisting finite (n+1)-
dimensional cubes Jj,i, satisfying

m(V iE 4
⋃
j

Jj,i) <
ε

8
(2)

. We assume the number of Jj,is is ni. Here and below m(·) denotes Lebesgue measure.

For any (n+1)-dimensional cube Jj,i, we assume

Jj,i = [a1,j,i, a1,j,i + b1,j,i]× [a2,j,i, a2,j,i + b2,j,i]× · · · × [an+1,j,i, an+1,j,i + bn+1,j,i]

Xj,i = [a1,j,i, a1,j,i + b1,j,i]× [a2,j,i, a2,j,i + b2,j,i]× · · · × [an,j,i, an,j,i + bn,j,i]
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Note that each Jj,i corresponds to an indicator function. we define

φj,i(x) =

{
1 x ∈ Xj,i

0 x /∈ Xj,i

Based on inequality (2), we have∫
E

|fi −
ni∑
j=1

bn+1,j,iφj,i|dx <
ε

8
(3)

From (1) and (3), we can prove that f can be approximated by finite weighted sum of indicator
function on n-dimensional cubes. Also we have

2∑
i=1

∫
E

|
ni∑
j=1

bn+1,j,iφj,i|dx =

2∑
i=1

ni∑
j=1

∫
E

bn+1,j,iφj,idx (4)

< C +
3ε

4
(5)

Then we will show how to use ReLU network to approximate such a function.
We wish to find functions ϕj,i, satisfying∫

Xj,i

|φj,i − ϕj,i|dx <
ε

4(C + 3ε
4 )

∫
E

|φj,i|dx (6)

=
ε

4C + 3ε

∫
E

|φj,i|dx (7)

For any I ∈ {φj,i}, we assume

I =

{
1 x ∈ X
0 x /∈ X

Here,
X = [a1, b1]× [a2, b2]× · · · × [an, bn]

Apparently,
aj , bj ∈ [−N,N ], j = 1, 2, . . . , n

Next we will construct a network A to produce a function J, satisfying∫
E

|I − J |dx < ε

4C + 3ε

∫
E

Idx (8)

=
ε

4C + 3ε

n∏
i=1

(bi − ai) (9)

We define some notations here. We denote the network by A , the function represented by the whole
network by FA , the function represented by the kth layer of the network by Fk,A , the function
represented by the jth node in the kth layer by Fk,j,A , the function represented by the first k layers
of the network after being ReLUed by Rk,A . The function represented by the jth node in the kth
layer after ReLUed is Rk,j,A . Here, without loss of generality, R0,A denotes the input layer. The
weight matrix is denoted by A and the offset vector by u. The depth is denoted by h.

For any δ > 0, k = 1, 2, . . . , n, we can design a ReLU network Ak satisfying following conditions:
(1)The width of each layer of Ak is n+4.
(2)The depth of A is 3.
(3)for i=0,1,2,3, j=1,2,. . . ,n, Ri,j,Ak

= (xi +N)+

(4)for j=n+1,n+2, all the weights related to Ri,j,Ak
are 0.

(5)R1,n+3,Ak
is a function of x such that

• 0 ≤ R1,n+3,Ak
(x) ≤ 1 for any x

• R1,n+3,Ak
(x) = 0 if (x1, . . . , xk−1) /∈ [a1, b1]× · · · × [ak−1, bk−1]
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• R1,n+3,Ak
(x) = 1 if (x1, . . . , xk−1) ∈ [a1 + δ(b1 − a1), b1 − δ(b1 − a1)]× · · · × [ak−1 +

δ(bk−1 − ak−1), bk−1 − δ(bk−1 − ak−1)]

(6) R3,n+3,Ak
is a function of x such that

• 0 ≤ R4,n+3,Ak
(x) ≤ 1 for any x

• R4,n+3,Ak
(x) = 0 if (x1, . . . , xk) /∈ [a1, b1]× · · · × [ak, bk]

• R4,n+3,Ak
(x) = 1 if (x1, . . . , xk) ∈ [a1 +δ(b1−a1), b1−δ(b1−a1)]×· · ·× [ak+δ(bk−

ak), bk − δ(bk − ak)]

We call this shallow ReLU network Single ReLU Unit(SRU). We will explain some details of SRU.
The first n+2 nodes in each layer is "memory element" of SRU while the last two is the "compu-
tation element" of SRU. The main idea of SRU is to process the functionR0,n+3,Ak

to getR3,n+3,Ak
.

The main idea of this process is to "chop" the function and reduce the support set of the function. See
Figure 1 for a simulation sample when n = 2.

Figure 1: cube I and hyper-trapezoid J inside I

Denote
A = An ◦ An−1 ◦ · · · ◦ A1

We will show that, for any δ > 0, J = A (x1, x2, · · · , xn) can produce exatly the same shape as the
hyper-trapezoid inscribed in cube I in Figure 1. For simplicity, define Bk = Ak ◦ Ak−1 ◦ · · · ◦ A1,
here k = 1, 2, · · · , n.
Examine B1. The input layer is identity function in every dimension.

R0,j,B1
= xj

For simplicity, define f+ = ReLU(f). The first hidden layer retains the information of the input
layer.

R1,j,B1
=


(xj +N)+ j = 1, 2, · · · , n
0 j = n+ 1, n+ 2

1 j = n+ 3

(x1 − b1 + δ(b1 − a1))+ j = n+ 4

The first n nodes remain unchanged thorough out the whole network A , which are used to record
the information of the input layer.The (n+ 1) and (n+ 2)th node are reserved for the positive and
negetive part of the whole target function respectively. In fact, the whole network A is constructed to
simulate a single indicator function I , if the function I is positive, then we will store the simulation
result J into the (n + 1)th node. Otherwise, J will be stored into (n + 2)th node. By adding up
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those simulation results in these two nodes, we can get a simulation of
∑ni

j=1(−1)i+1bn+1,j,iφj,i ,
and thus simulates the target function. We list the result in second,third and fourth layer below.

R2,j,B1 =


(xj +N)+ j = 1, 2, · · · , n
0 j = n+ 1, n+ 2

(1− (x1−b1+δ(b1−a1))+
δ )+ j = n+ 3

(x1 − a1)+ j = n+ 4

R3,j,B1 =


(xj +N)+ j = 1, 2, · · · , n
0 j = n+ 1, n+ 2

(1− (x1−b1+δ(b1−a1))+
δ )+ j = n+ 3

(1− (x1−a1)+
δ )+ j = n+ 4

R4,j,B1 =


(xj +N)+ j = 1, 2, · · · , n
0 j = n+ 1, n+ 2

L1 = ((1− (x1−b1+δ(b1−a1))+
δ )+ − (1− (x1−a1)+

δ )+)+ j = n+ 3

0 j = n+ 4

For simplicity, denote Lk = R4,j,Bk
.The network Ak (k = 2, · · · , n) is similar to the case of

k = 1.The input layer is the final layer in Bk−1.

R1,j,Bk
=


(xj +N)+ j = 1, 2, · · · , n
0 j = n+ 1, n+ 2

Lk−1 j = n+ 3

(xk − bk + δ(bk − ak))+ j = n+ 4

R2,j,Bk
=


(xj +N)+ j = 1, 2, · · · , n
0 j = n+ 1, n+ 2

(1− (xk−bk+δ(bk−ak))+
δ )+ j = n+ 3

(xk − ak)+ j = n+ 4

R3,j,Bk
=


(xj +N)+ j = 1, 2, · · · , n
0 j = n+ 1, n+ 2

(1− (xk−bk+δ(bk−ak))+
δ )+ j = n+ 3

(1− (xk−ak)+
δ )+ j = n+ 4

R4,j,Bk
=


(xj +N)+ j = 1, 2, · · · , n
0 j = n+ 1, n+ 2

Lk = ( (xk−bk+δ(bk−ak))+
δ − (1− (xk−ak)+

δ )+ j = n+ 3

0 j = n+ 4

For each k, we "chop" two sides in the kth dimension. Finally, we get the shape J in Figure 3.It is
stored in the (n+3)th node as Lnin the last layer of A . We then use a single layer to record it in
the (n+1)th or the (n+2)th node, and reset the last two nodes to zero. Now the network is ready to
simulate another (n+1)-dimensional cube. The whole construction process is shown in Figure 4.

Using this construction, we can simulate I by J , which is produced by network A . Note that, as δ
approaches 0, the simulation error w.r.t L1 distance converges to 0.

Next we will find a value of δ to fit the need of our proof. See Figure 3. The side length of small
square on the top surface is 1 − 2δ as the side length of the top surface. We will select a suitable
δ > 0, satisfying

∫
X
|I − J |dx < ε

4C+3ε

∫
E
|I|dx.

Denote

X0 = [a1 + δ(b1 − a1), b1 − δ(b1 − a1)]× · · · × [an + δ(bn − an), bn − δ(bn − an)]
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Figure 2: The whole process to simulate a cube;every four layers are used to reshape one dimension
of the cube(seperated by thick lines)

Notice that I − J = 0 on X0, and the maximum value of I − J on X is 1. Thus,∫
X

|I − J |dx <
∫
X

1x∈X\X0
dx (10)

= (1− (1− 2δ)n)

n∏
i=1

(bi − ai) (11)

Compared with (9), we set

δ =
1− (1− ε

4C+3ε )
1
n

2
(12)

Then we have ∫
X

|I − J |dx < ε

4C + 3ε

n∏
i=1

(bi − ai) (13)

Satisfies ∫
X

|I − J |dx < ε

4C + 3ε

∫
E

|I|dx

Thus, for i = 1, 2; j = 1, 2, · · · , ni, φj,i can be approximated by network function µj,i. Satisfies∫
E

|φj,i − ϕj,i|dx <
ε

4C + 3ε

∫
E

φj,idx
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Sum those equations up, combined with (7), we have

2∑
i=1

ni∑
j=1

∫
E

|(−1)i+1bn+1,j,i(φj,i − µj,i)|dx <
ε

4C + 3ε

2∑
i=1

ni∑
j=1

∫
E

bn+1,j,iφj,idx (14)

≤ ε

4C + 3ε
∗ (C +

3ε

4
) (15)

=
ε

4
(16)

Thus, we have the approximation of cubes Jj,i. Next we show how to combine those approximation
functions together by network. There are n1 positive cubes, corresponding to n1 positive functions
µi,1;n2 negative cubes, correspond to n2 negative functions µj,2. The detailed network is shown in
Figure 3.

Figure 3: The final process to simulate target function;every shown layer is the (n+1) and (n+2)th
node in the last layer in Figure 4, which represent the simulation of a single cube. This figure shows
the process of adding those functions up to get the function we want. Notice that except for the output
layer, every result is nonnegative in the process and is produced by RELU activator. For simplicity,
we just omit the RELU mark in the graph.
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Finally, we have g ,
∑2
i=1

∑ni

j=1(−1)i+1bn+1,j,iµj,idx. f0 is the result function produced by our
designed network. Combined with (1),(3),(11), we have∫

Rn

|f − g|dx (17)

<

∫
Rn

|f − (f1 − f2)|dx+

2∑
i=1

∫
E

|fi −
ni∑
j=1

(−1)i+1bn+1,j,iφj,i|dx

+

2∑
i=1

ni∑
j=1

∫
E

|(−1)i+1bn+1,j,i(φj,i − µj,i)|dx (18)

<
ε

2
+ 2 ∗ ε

8
+
ε

4
(19)

= ε (20)

Thus, g is the function we need in the theorem.

B Proof of Theorem 2

The proof is long and complicated, so we firstly define some notations for convenience afterwards.
We denote the network by A , the function represented by the whole network by FA , the function
represented by the kth layer of the network by Fk,A , the function represented by the jth node in the
kth layer by Fk,j,A , the function represented by the first k layers of the network after being ReLUed
by Rk,A . Here, without loss of generality, R0,A denotes the input layer. We define

Condition 1: dm = n and the widths of all the layers except the output layer are n.

Obviously other cases where dm ≤ n are just special cases of this setting. The weight matrix of
each layer is denoted by Ad and the offset vector by ud where d is the number of layer. The depth is
denoted by h.
Here we will introduce 2 definitions inspired by Benefits of depth in neural networks (Telgarsky
,2016).

Definition 1: A set X ⊂ Rn is a linear block if there exist t linear functions (qi)
t
i=1, and m tuples

(Uj , Lj)
m
j=1 where Uj and Lj are subsets of [t](where [t]:=1, . . . , t), such that ~x ∈ X is equivalent to

(Πi∈Lj1[qi(v) < 0])(Πi∈Uj1[qi(v) ≥ 0]) = 1

Definition 2: A function f:Rk → R is (t, α, β)− sa((t, α, β)− semi− algebraic) if there exist t
polynomials (qi)

t
i=1 of degree ≤ α, and m triples (Uj , Lj , pj)

m
j=1 where Uj and Lj are subsets of

[t](where [t]:=1, . . . , t) and pj is a polynomial of degree ≤ β, such that
f(v) = Σmj=1pj(v)(Πi∈Lj1[qi(v) < 0])(Πi∈Uj1[qi(v) ≥ 0])

We can see Theorem 2 is a direct conclusion of Lemma 1 as follows:

Lemma 1: Consider a function FA represented by a relu neural network A where dm ≤ n, the
following equation holds. ∫

Rn

|FA (~x)|d~x = 0 or +∞

We define assumption 1 here.

Assumption 1: ∫
Rn

|FA (~x)|d~x < +∞

We will prove that if assumption 1 holds,∫
Rn

|FA (~x)|d~x = 0
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, which is equivalent to Lemma 1. To prove Lemma 1, we need Lemma 2.

Lemma 2: For any given A where assumption 1 and Condition 1 hold and any k ∈ {0, 1, 2, . . . , h−
1}, there exists a linear block Xk which satisfies following conditions:

S1(k):Xk is convex.

S2(k):For any ~x /∈ Xk, FA (~x) = 0

S3(k):For any ~x in B(Xk), FA (~x) = 0, where B(Xk), the boundary set of Xk, is defined as
{~x : for any ε > 0,∃~u ∈ Xk, ~v /∈ Xks.t.||~u− ~x|| < ε, ||~v − ~x|| < ε, }

S4(k):There exists a matrix H and a vector~b such that Rk,A (~x) = H~x+~b for ~x ∈ Xk

If Lemma 2 holds and assumption 1 holds, let k = h− 1, FA is a linear function on its support set, a
linear block. It is not hard to prove Lemma 1 after that. However, the proof of Lemma 2 is difficult.
Before getting into the detail, we’d like to make some remark. Our conclusion may seem strange at
first since FA is like a linear function. Note we derive all these conclusions under assumption 1. Our
proof actually shows that assumption 1 does not hold in most cases and the expressive power of thin
neural networks is weak.
Before proving Lemma 2, we need Lemma 3 as a preparation.

Apparently, for any Relu neural network A , there exists an M0 s.t. FA is a (M0,1,1)-sa function.
This means that there exists an M s.t. Rn can be partitioned into M linear blocks where FA is a
linear function in each block. Furthermore, FA must be a Lipschitz function in each block. Since
FA is continuous in Rn, it is a Lipschitz function in Rn, which means there exists an L s.t.

|FA (~x)− F| ≤ L||~x− ~y||

for any ~x, ~y ∈ Rn. Then we can prove Lemma 3.

Lemma 3: If assumption 1 and Condition 1 hold, then for any ray X, if FA (~x) is constant in X,
then

FA (~x) = 0

for any ~x in X.

Proof of Lemma 3: We assume FA is L-Lipschitz. For simplicity, let v = FA (X) and assume v ≥ 0
without loss of generality. Then we define a set X+ = {~a : ∃~x ∈ Xs.t.||~x− ~a|| ≤ v

2L}. Apparently,
FA (~x) ≥ v/2 for any ~x ∈ X+ and the volume of X+ is +∞. Thus,∫

Rn

|FA (~x)| ≥
∫
X+

|FA (~x)| (21)

≥ v

2

∫
X+

1 (22)

= +∞ (23)

Then we can prove Lemma 2.

Proof of Lemma 2: We prove this lemma with mathematical induction.

Basis: The k=0 case is simple. We let X0 = Rn. It is easy to verify that Si(0) holds for i=1,2,3,4.

Inductive step: Given that Si(k) holds for i=1,2,3,4, we will prove that Si(k+ 1) holds for i=1,2,3,4
too. Let Xk+1 = {~x : ~x ∈ Xk and for any j = 1, 2, . . . , n, Fk+1,j,A (~x) > 0}. Apparently, Xk+1

is a linear block which is a subset of Xk. We will prove Xk+1 satisfies Si(k + 1) for i=1,2,3,4.

Based on S4(k), it is easy to see Fk+1,A is a linear function on Xk. There exist a n×n matrix Wk+1

and a n× 1 vector bk+1 such that on Xk

Fk+1,j,A (~x) = Wk+1~x+ ~bk+1

. We define
Pk+1,i = {~x : Wk+1(i, )~x+ ~bk+1(i) > 0}
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for i ∈ [n]. Thus
Xk+1 = ∩ni=1Pk+1,i ∩Xk

Note Pk+1,i is convex and Xk is convex based on S1(k). Thus Xk+1 is convex and so that S1(k+ 1)
holds.

Now we are going to prove S2(k + 1) holds. For any ~x ∈ Xk\Xk+1, there exists j(~x) ∈ [n], such
that Fk+1,j(~x),A (~x) ≤ 0. Note j(~x) depends on ~x, but we write it as j for simplicity.

Since Wk+1 is an n × n matrix, there must exist an n-dimensional vector ~α(~x) 6= 0 such that
~α(~x) ⊥Wk+1(i, ) i ∈ [n], i 6= j. Note, ~α(~x) depends on ~x, however, we write it as ~α for simplicity.
We assume Wk+1(j, )~α ≤ 0. If it does not hold, we substitute −~α for ~α. Then we consider the
following set

IRX~x = {~c : ~c = ~x+ t~α ∈ Xk, t ≥ 0}
, the intersection of Xk and the ray corresponding to ~α and ~x. By S1(k), Xk is convex. Obviously,
the ray corresponding to ~α and ~x is also convex. Thus IRX~x is a convex set and so that a continuous
part of a ray. For any ~y ∈ IRX~x and any i ∈ [n], i 6= j,

Fk+1,i,A (~y) = Wk+1(i, )(~x+ t~α) + ~bk+1(i) (24)

= Wk+1(i, )~x+ ~bk+1(i) (25)
= Fk+1,i,A (~x), (26)

Thus, for i ∈ [n], i 6= j

Rk+1,i,A (~y) = Relu(Fk+1,i,A (~y)) (27)
= Relu(Fk+1,i,A (~x))) (28)
= Rk+1,i,A (~x) (29)

Besides, for any ~y ∈ IRX~x, when i=j,

Fk+1,i,A (~y) = Wk+1(i, )(~x+ t~α) + ~bk+1(i) (30)

≤Wk+1(i, )~x+ ~bk+1(i) (31)
= Fk+1,i,A (~x) (32)
≤ 0 (33)

Thus,when i=j,

Rk+1,i,A (~y) = Relu(Fk+1,i,A (~y)) (34)
= 0 (35)
= Relu(Fk+1,i,A (~x))) (36)
= Rk+1,i,A (~x) (37)

In general, we find Rk+1,A is constant on IRX~x. Therefore FA is constant on IRX~x. We define

T = sup{t : ~x+ t~α ∈ IRX~x}

Since IRX~x is a continuous part of a ray, {t : ~x+ t~α ∈ IRX~x} is an interval.

If T = +∞, then IRX~x is a ray and thus we can conclude FA (~x) = 0 by using Lemma 3.

If T < +∞, for any ε > 0, there exist T1, T2 such that

T − ε < T1 < T < T2 < T + ε (38)
~x+ T1~α ∈ Xk (39)
~x+ T2~α /∈ Xk (40)

By the definition of B(Xk), ~x+ T~α ∈ B(Xk). By S3(k),

FA (~x+ T~α) = 0

. On the other hand, FA is constant on IRX~x. Because of continuity it is constant on

IRX~x = IRX~x ∪ {~y : for any ε > 0,∃~u ∈ IRX~x, ||~y − ~u|| < ε}
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Obviously, ~x+ T~α ∈ IRX~x. Thus,
FA (~x) = FA (~x+ T~α)

Since FA (~x+ T~α) = 0,then
FA (~x) = 0

In all, for any ~x ∈ Xk\Xk+1, if assumption 1 holds, FA (~x) = 0. Besides, since for any ~x ∈ Xc
k,

FA (~x) = 0, then S2(k + 1) holds.

Because FA is continuous and S2(k + 1) holds, we can easily find S3(k + 1) holds.

By the definition of Xk+1,
Fk+1,i,A (~x) > 0, for any i ∈ [n] and ~x ∈ Xk+1

. Thus,on Xk+1,
Rk+1,i,A (~x) = Relu(Fk+1,i,A (~x)) (41)

= Fk+1,i,A (~x) (42)

= Wk+1~x+ ~bk+1 (43)
It is a linear function. S4(k + 1) holds.

We finish the proof of Lemma 2.

Proof of Lemma 1: If assumption 1 holds, by setting k = h− 1 in Lemma 3, we find there exists a
linear block LBX = Xk such that

• LBX is convex.
• FA (~x) = 0 for any ~x /∈ LBX or ~x ∈ B(LBX)

• Rh−1,A is a linear function on LBX.

Since
FA = AhRh−1,A + uh

, FA is a linear function on LBX. As FA = 0 outside LBX, to finish the proof we just need to prove
that for any ~x ∈ LBX , FA (~x) = 0. For any ~x ∈ LBX , let

L~x = {a~x, a ∈ R}
and

IL~x = L~x ∩ LBX
Since LBX and L~x are both convex, IL~x is convex. Thus there exists an interval A such that

t~x ∈ IL~x ⇔ t ∈ A
Apparently, FA (t~x) is a linear function of t on A. Define

a = inf A

b = sup A

.

If a > −∞, b < +∞,then a~x, b~x ∈ B(LBX). Thus
FA (a~x) = FA (b~x) = 0

. Since FA (t~x) is a linear function,
FA (~x) = 0

If a > −∞, b = +∞ or a = −∞, b < +∞, we assume a = −∞, b < +∞ without loss of
generality. Then FA (b~x) = 0. If FA (~x) 6= 0, because of the linearity of FA

limt→−∞FA (t~x) = +∞ or −∞
Since FA (~x) is Lipschitz, it contradicts with

∫
Rn |FA (~x)| < +∞. So F(~x) = 0

If a = −∞, b = +∞, we can prove FA (~x) = 0 in a similar way.

In general, FA (~x) = 0 for any ~x ∈ Rn if assumption 1 holds.

Then obviously Theorem 2 is a direct result of Lemma 1.
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C Proof of Theorem 3

Proof. We denote the input by ~x = (x1, x2, ..., xn), and the value of the first layer’s nodes of A by
y = (y1, y2, ..., ym), here m < n and let

yi = (bi +

m∑
j=1

aijxj)
+

where i = 1, 2, · · · , n, j = 1, 2, · · · ,m.bi and aij are parameters of A.Since m < n, there exists a
non-zero vector x0 in Rn0 , which satisfies

~x0 ⊥ span{b1 +

j=m∑
j=1

a1jxj , · · · , bn +

j=m∑
j=1

anjxj}

Since changes along x0 don’t affect the first layer of network A: FA, which is determined by the
first layer of A itself, it is constant along ~x0 as a result. Thus FA must be constant along some fixed
direction x0.

Now we can prove that: given f and a fixed unit vector x0, we have a positive ε that for all continuous
F which is constant along the direction x0, the L1 distance between f and F is lower bounded by ε.
Pick two points a0 and b0 along x0 that f(a0) < f(b0), due to the continuity of f , there exists positive
r and c that for all a in U(a0, r) and b in U(b0, r), f(b) − f(a) > c. Let the lebesgue-measure of
U(a0, r) be V , with the triangle inequality |f(b)− F (b)|+ |f(b− b0 + a0)− F (b− b0 + a0)| >
f(b)− f(b− b0 + a0) > c, we can see there exists such an ε which is >= V c.

Then treat ε as a function of x0. Since ε is positive and continuous because f and F are continuous
and have compact domain (so any such F is uniformly continuous, then ’rotating’ F by a small angle
guarantees a small uniform difference, one can easily see ε is continuous now), it has a lower bound
over all unit vector x0. Denote this lower bound as ε∗, ε∗ must be positive because the set of all unit
vector x0 is a compact set (see it as the surface of unit ball). Since FA must be constant along some
direction, ε∗ is the desired universal constant for all FA.

D Proof of Theorem 4

We first prove the case with input dimension n = 1, then the extension to n > 1 cases is trivial.

Proof. We will choose 2k4 different points x(1), x(2), . . . , x(2k
4) ∈ R and consider functions repre-

sented by ReLU network on them. Here,

x(i+2k2j) = 2j + 1− 2k2 − i
4k2

, i = 1, 2, . . . , 2k2, j = 0, 1, . . . , k2 − 1

For any ReLU network A , we define a 2k4-dimensional vector

fA = (FA (x(1)), FA (x(2)), . . . , FA (x2k
4

))

We will begin our proof by introducing 2 lemmas.

Lemma 4: We define

E0 = {(a(1), ..., a(2k
4)) : 0 < a(i+2k2j) <

1

2
a(i+1+2k2j), i = 1, 2, ..., 2k2 − 1, j = 0, 1, ..., k2 − 1}

Ew = {fA : A is a ReLU network with width 2k2, depth 3, input width and output width 1}
Then

E0 ⊂ Ew

proof of Lemma 4:

11



For any f ∈ E0, we will fabric a ReLU network A with width 2k2 and depth 3 such that f = fA .
Firstly, it is easy to choose appropriate first layer weights and bias to make

R1,A = ((x)+, (x− 1)+, . . . , (x− 2k2 + 1)+)′

Denote the weights and bias of kth layer by Wk,A and Bk,A . Wk,A is a matrix and Bk,A is a vector
such that

Fk+1,A = Wk,ARk,A +Bk,A

Define F2,i,A to be the function at the ith node in the second layer, which is a piecewise linear
function which is linear between any integral points on the x-axis. It satisfies:

F2,i,A (x(i+2k2j)) = a(i+2k2j) i = 1; j = 0, 1, ..., k2 − 1

F2,i,A (x(i+2k2j)) = a(i+2k2j) − 2a(i−1+2k2j) i = 2; j = 0, 1, ..., k2 − 1

F2,i,A (x(i+2k2j)) = a(i+2k2j)− 2a(i−1+2k2j) + a(i−2+2k2j) i = 3, 4, ..., 2k2; j = 0, 1, ..., k2− 1

and that

F2,i,A (2j + 1− 2k2 − i+ 1

4k2
) = 0, i = 1, 2, ..., 2k2; j = 0, 1, ..., k2 − 1

Together with the linearity between integral points on the x-axis, the function represented by the ith
node can be uniquely decided. Then we activate those functions by RELU, and add them up to get
the final output fA . One can easily check that

fA = (a(1), ..., a(2k
4))

Combined with the definition of E0 and Ew, we have:

E0 ⊂ Ew

Define

Fk = {A : A is a ReLU network with width 2k2, depth 3, input and output dimension 1; fA ∈ E0}

Lemma 5: For any k≥5, only a 0 measure set(Lebesgue measure on the weight and bias space) of
the networks in Fk can be equaled by a deep network whose width ≤ k 3

2 and depth ≤ k + 2.

proof of Lemma 5:

We prove a stronger statement: only a 0 measure set(Lebesgue measure on the weight and bias space)
of the networks in Fk can be equaled on specific 2k4 different points x(1), x(2), . . . , x(2k

4),by a deep
network whose width ≤ k 3

2 and depth ≤ k+ 2. Notice the fact that a network with width d and depth
h has degree of freedom = d2(h− 2) + d(h− 1) + 2d+ 1. Define B to be one of the deep networks,
with width d ≤ k 3

2 and depth h ≤ k + 2. Let g0 be the function mapping the parameters of the deep
network to fB:

g0 : Rd
2(h−2)+d(h−1)+2d+1 → R2k4

g0(all parameters) = fB

.

When d ≤ k
3
2 and h ≤ k + 2, the degree of freedom of the deep network ≤ k4 + k3 < 2k4, and

g0 is C1-derivable almost everywhere. Thus, B: the set of all β, which is the solution space of g0
has a zero measure in R2k4 according to Differential Homeomorphism Theorem. In fact, we can
implement the original mapping to a new function g1

g1 : R2k4 → R2k4 , g1(all parameters, p1, ...) = g0(all parameters)

in the way of adding variables p1, p2, ..., p2k4−d2(h−2)−d(h−1)−2d−1 which have no effect on the
value of F , then the Jacobian of g1 is zero now because the differential of F to pis is 0, thus by the
transform formulation of integration, the measure of the range is zero.

m(range(g1)) =

∫
R2k4

dg1 =

∫
R2k4

∂g1
∂~x

d~x = 0
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It’s obvious that m(E0) > 0, so E0 ∩ range(g1) is a negligible subset in E0 and as a result only a
negligible set of the functions in this family of wide networks can be equaled by such deep networks.

Then because all parameters in these deep networks are bounded, we can extend the difference on
finite points to integration on input domain.

Apparently, the shape of such a deep network can be denoted by a vector whose mth entry denotes
the width of the mth layer except for the output layer. We denote the shape vector of a network N by
S(N). Thus for all networks with h ≤ k + 2 and dm ≤ k1.5,

S(N) ∈ V

here V = {(w1, w2, ..., wh)| h ≤ k + 2 and wm ≤ k1.5 for any m}

Denote the all elements of V by {Vj}, we only need to prove Lemma 6 as followed,then n = 1 case
is proved directly by setting ε = minj≤|V |{εj}:

Lemma 6: For any wide network Nw which can’t be equaled by deep networks with width ≤ k1.5
and depth ≤ k + 2 as above, there exists a εj > 0 for all deep network Nd with S(N) = Vj satisfies∫ 2k2

0

(Nd(x)−Nw(x))2 ≥ εj

Set εj = inf{
∫ 2k2

0
(Nd(x) − Nw(x))2, S(Nd) = Vj} We are going to prove εj > 0. With the

conclusion of inequability above and continuity of the function Nd and Nw, we know for any

S(Nd) = Vj ,

∫ 2k2

0

(Nd(x)−Nw(x))2 > 0

Thus, if εj = 0 There must be a sequence Ndi satisfies∫ 2k2

0

(Ndi(x)−Nw(x))2 <
1

i

Since every bounded sequence(here the assumption of parameters’ bound is used, so for different
choice of b, ε changes) has a convergent subsequence and parameters of a network are bounded as well,
we can find a subsequence Ndij , j = 1, 2, . . . ,every parameter of which converges. We define the

network they converge to is Ñ . Then for any x, (Ndij (x)−Nw(x))2 converges to (Ñ(x)−Nw(x))2.
Besides, the values of them are uniformly bounded. Thus, with Dominated Convergence Theorem,
we can find ∫ 2k2

0

(Ñ(x)−Nw(x))2

=

∫ 2k2

0

lim
j→∞

(Ndij (x)−Nw(x))2

= lim
j→∞

∫ 2k2

0

(Ndij (x)−Nw(x))2

=0

This causes contradiction to our conclusion of inequability above. So εi > 0 and we are finished with
the proof of the case with n = 1.

For cases with n > 1, we denote these n inputs by x1, ..., xn. We construct the same wide network
for x1 only and ignore other inputs(set the weights from them to the first later to be 0). Our wide
network still has width 2k2 and depth 3, and for any deep network with width ≤ k1.5 and depth
≤ k + 2 all our results above hold as well (for the choice of the prechosen 2k4 points, their value on
x2, ..., xn can be arbitary). The whole proof is finished now.
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