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Abstract

In this supplementary file, we first present the proof of Theorem 2 in the main
paper. After that, we present the statistics on the data sets used in the main paper,
and a case study.

1 Proof of Theorem 2

Let Z = In − DD′ and tr be the trace notation. Eq.(2) in the main paper can be formulated as:
(1 − ε)tr(ZXX ′Z) ≤ tr(ZX̂X̂ ′Z) + τ ≤ (1 + ε)tr(ZXX ′Z). Then, we try to approximate
XX ′ with X̂X̂ ′. To prove our main theorem, we write X̂ = XR′ and our goal is to show that
tr(ZXX ′Z) can be approximated by tr(ZXR′RX ′Z). Lemma 2 provides conditions on the error
matrix E = X̂X̂ ′ − XX ′ that are sufficient to guarantee that X̂ is a ε-approximation embedded
matrix forX . For any two symmetric matrices A,B ∈ Rn×n, A � B indicates thatB−A is positive
semidefinite. Let λi(A) denote the i-th largest eigenvalue of A in absolute value. 〈·, ·〉 represents the
inner product, and 0n×d denotes an n× d zero matrix with all its entries being zero.

Lemma 2. Let C = XX ′ and Ĉ = X̂X̂ ′. If we write Ĉ = C + E1 + E2 + E3 + E4, where:

(i) E1 is symmetric and −ε1C � E1 � ε1C.

(ii) E2 is symmetric,
∑k
i=1 |λi(E2)| ≤ ε2||Xr|k||2F , and tr(E2) ≤ ε̃2||Xr|k||2F .

(iii) The columns of E3 fall in the column span of C and tr(E ′3C
+E3) ≤ ε23||Xr|k||2F .

(iv) The rows of E4 fall in the row span of C and tr(E4C
+E ′4) ≤ ε24||Xr|k||2F .

and ε1 + ε2 + ε̃2 + ε3 + ε4 = ε, then X̂ is a ε-approximation embedded matrix for X . Specifically,
we have (1− ε)tr(ZCZ) ≤ tr(ZĈZ)−min{0, tr(E2)} ≤ (1 + ε)tr(ZCZ).

The proof can be referred to [1]. We then show the following theorem:
Theorem 2. Assume r > 2k and let V2k ∈ Rd×r represent V with all but their first 2k columns
zeroed out. We define M1 = V ′2k, M2 =

√
k/||Xr|k||F (X − XV2kV ′2k) and M ∈ R(n+r)×d as

containing M1 as its first r rows and M2 as its lower n rows. We construct R = (QΦ)′ ∈ Rd̃×d,
which is shown in Algorithm 1 of the main paper. Given d̃ = O(max(k+log(1/δ)ε2 , 6

ε2δ )), then for any
X ∈ Rn×d, with a probability of at least 1−O(δ), we have
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(i) ||(RM ′)′(RM ′)−MM ′||2 < ε.

(ii) |||RM ′2||2F − ||M ′2||2F | ≤ εk.

Proof. To prove the first result, one can easily check that M1M
′
2 = 0r×n, thus MM ′ is a block

diagonal matrix with an upper left block equal to M1M
′
1 and lower right block equal to M2M

′
2.

The spectral norm of M1M
′
1 is 1. ||M2M

′
2||2 = ||M2||22 =

k||X−XV2kV
′
2k||

2
2

||Xr|k||2F
=

k||Xr|2k||22
||Xr|k||2F

. As

||Xr|k||2F ≥ k||Xr|2k||22, we derive ||M2M
′
2||2 ≤ 1. Since MM ′ is a block diagonal matrix, we

have ||M ||22 = ||MM ′||2 = max{||M1M
′
1||2, ||M2M

′
2||2} = 1. tr(M1M

′
1) = 2k. tr(M2M

′
2) =

k||Xr|2k||2F
||Xr|k||2F

. As ||Xr|k||2F ≥ ||Xr|2k||2F , we derive tr(M2M
′
2) ≤ k. Then we have ||M ||2F =

tr(MM ′) = tr(M1M
′
1) + tr(M2M

′
2) ≤ 3k. Applying Theorem 6 from [2], we can obtain that

given d̃ = O(k+log(1/δ)ε2 ), with a probability of at least 1− δ, ||(RM ′)′(RM ′)−MM ′||2 < ε.

To prove the second result in clear terms, we set B = M ′2. Let Bi denote the i-th column of B, Bi(b)
denote the column vector whose j-th coordinate is 0 if h(j) 6= b, and whose j-th coordinate is Bj,i if
h(j) = b.

EQ,h[||RB||2F ] =
∑
i∈[n]

EQ,h[||RBi||22]

=
∑
i∈[n]

∑
b∈[d̃]

EQ,h[(
∑

j:h(j)=b

Bj,iQj,j)
2]

=
∑
i∈[n]

∑
b∈[d̃]

Eh[||Bi(b)||22] = ||B||2F

(1)

We consider

EQ,h[||RB||4F ] =
∑
i∈[n]

EQ,h[||RBi||42]+
∑

i 6=z∈[n]

EQ,h[||RBi||22||RBz||22] (2)

We bound the first term in Eq.(2) as:

EQ,h[||RBi||42] =Eh

[∑
b∈[d̃]

EQ[(RBi)
4
b ]+

∑
b 6=b̃∈[d̃]

EQ[(RBi)
2
b ]EQ[(RBi)

2
b̃
]
]

=Eh

[∑
b∈[d̃]

EQ[(
∑

j:h(j)=b

Bj,iQj,j)
4]

+
∑

b6=b̃∈[d̃]

EQ[(
∑

j:h(j)=b

Bj,iQj,j)
2]EQ[(

∑
j:h(j)=b̃

Bj,iQj,j)
2]
]

≤Eh
[∑
b∈[d̃]

( ∑
j:h(j)=b

B4
j,i + 6

∑
j<l:h(j)=h(l)=b

B2
j,iB

2
l,i

)
+
∑

b6=b̃∈[d̃]

||Bi(b)||22||Bi(b̃)||22
]

(3)

For a fixed b, we have Eh[
∑
j<l:h(j)=h(l)=bB

2
j,iB

2
l,i] ≤ ||Bi||42

d̃2
, so

6Eh[
∑
b∈[d̃]

∑
j<l:h(j)=h(l)=bB

2
j,iB

2
l,i] ≤ 6/d̃||Bi||42. Thus, Eq.(3) can be bounded as:

EQ,h[||RBi||42] ≤Eh[||Bi||44]+ 6/d̃||Bi||42+Eh
[ ∑
b 6=b̃∈[d̃]

||Bi(b)||22||Bi(b̃)||22
]

≤Eh
[ ∑
b∈[d̃]

||Bi(b)||42
]

+ 6/d̃||Bi||42 + Eh

[ ∑
b 6=b̃∈[d̃]

||Bi(b)||22||Bi(b̃)||22
]

≤(1 + 6/d̃)||Bi||42

(4)
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Next, for i 6= z ∈ [n], we bound the second term in Eq.(2) as:

EQ,h[||RBi||22||RBz||22] =EQ,h

[∑
b∈[d̃]

( ∑
j:h(j)=b

Bj,iQj,j

)2( ∑
l:h(l)=b

Bl,zQl,l

)2]
+EQ,h

[ ∑
b6=b̃∈[d̃]

( ∑
j:h(j)=b

Bj,iQj,j

)2( ∑
l:h(l)=b̃

Bl,zQl,l

)2]
=EQ,h

[∑
b∈[d̃]

( ∑
j:h(j)=b

B2
j,iQ

2
j,j+

∑
j 6=l:h(j)=h(l)=b

Bj,iBl,iQj,jQl,l

)
( ∑
j:h(j)=b

B2
j,zQ

2
j,j+

∑
j 6=l:h(j)=h(l)=b

Bj,zBl,zQj,jQl,l

)]
+EQ,h

[ ∑
b6=b̃∈[d̃]

( ∑
j:h(j)=b

Bj,iQj,j

)2( ∑
l:h(l)=b̃

Bl,zQl,l

)2]
=EQ,h

[∑
b∈[d̃]

( ∑
j 6=l:h(j)=h(l)=b

Bj,iBl,iQj,jQl,l

)
( ∑
j 6=l:h(j)=h(l)=b

Bj,zBl,zQj,jQl,l

)]
+Eh

[∑
b∈[d̃]

||Bi(b)||22||Bz(b)||22+
∑

b 6=b̃∈[d̃]

||Bi(b)||22||Bz(b̃)||22
]

=4Eh

[∑
b∈[d̃]

∑
j<l:h(j)=h(l)=b

Bj,iBl,iBj,zBl,z

]
+||Bi||22||Bz||22

≤4Eh

[∑
b∈[d̃]

〈Bi(b), Bz(b)〉2
]

+ ||Bi||22||Bz||22

≤4Eh

[∑
b∈[d̃]

||Bi(b)||22||Bz(b)||22
]

+ ||Bi||22||Bz||22

≤4/d̃
∑
j,l∈[d]

B2
j,iB

2
l,z

]
+ ||Bi||22||Bz||22

=(1 + 4/d̃)||Bi||22||Bz||22

(5)

Combining Eqs.(1), (2), (4) and (5), we bound the variance of ||RB||2F , which is denoted by
V ar(||RB||2F ), as:

V ar(||RB||2F ) =EQ,h[||RB||4F ]− (EQ,h[||RB||2F ])2

≤
∑
i∈[n]

(1+ 6/d̃)||Bi||42+
∑

i 6=z∈[n]

(1+4/d̃)||Bi||22||Bz||22−||B||4F

≤6/d̃||B||4F

(6)

Using Chebyshev’s inequality, we arrive at

P (|||RB||2F − ||B||2F | ≥ ε||B||2F ) ≤ V ar(||RB||2F )

ε2||B||4F
≤ 6

ε2d̃
(7)

By setting δ = 6
ε2d̃

, we can obtain that with a probability of at least 1 − δ, |||RB||2F − ||B||2F | ≤
ε||B||2F . As ||B||2F ≤ k, we complete the proof of the second result.
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Table 1: Data sets used in the main paper.

Data Set # INSTANCE # FEATURES # CLASSES
COIL20 1440 1024 20
SECTOR 9619 55,197 105
RCV1 534,135 47,236 53
ILSVRC2012 1,331,167 4,096 1,000

Figure 1: Illustration of cluster samples from ILSVRC2012 data set that are generated by the proposed
SE. Each row illustrates several representative images of one cluster.

2 Data Sets

This paper evaluates the performance of the proposed method on four real-world data sets: COIL20,
SECTOR, RCV1 and ILSVRC2012. The COIL20 [3] and ILSVRC2012 [4] data sets are collected
from website23, and other data sets are collected from the LIBSVM website4.

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://www.image-net.org/challenges/LSVRC/2012/
4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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3 Case Study

This section presents a case study in which the proposed SE is applied to a large-scale image clustering
application. Figure 1 shows some sample clusters from ILSVRC2012 that are generated by SE.
Each row illustrates several representative images of one cluster. We observe from this figure that
similar images are well clustered. This case study suggests that SE works well in practical large-scale
clustering applications.
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