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Abstract

The additive model is one of the most popularly used models for high dimensional
nonparametric regression analysis. However, its main drawback is that it neglects
possible interactions between predictor variables. In this paper, we reexamine the
group additive model proposed in the literature, and rigorously define the intrinsic
group additive structure for the relationship between the response variable Y and
the predictor vector X , and further develop an effective structure-penalized kernel
method for simultaneous identification of the intrinsic group additive structure
and nonparametric function estimation. The method utilizes a novel complexity
measure we derive for group additive structures. We show that the proposed method
is consistent in identifying the intrinsic group additive structure. Simulation study
and real data applications demonstrate the effectiveness of the proposed method as
a general tool for high dimensional nonparametric regression.

1 Introduction

Regression analysis is popularly used to study the relationship between a response variable Y
and a vector of predictor variables X . Linear and logistic regression analysis are arguably two
most popularly used regression tools in practice, and both postulate explicit parametric models on
f(X) = E[Y |X] as a function of X . When no parametric models can be imposed, nonparametric
regression analysis can instead be performed. On one hand, nonparametric regression analysis is
flexible and not susceptible to model mis-specification, whereas on the other hand, it suffers from a
number of well-known drawbacks especially in high dimensional settings. Firstly, the asymptotic
error rate of nonparametric regression deteriorates quickly as the dimension of X increases. [23]
shows that with some regularity conditions, the optimal asymptotic error rate for estimating a d-
times differentiable function is O

(
n−d/(2d+p)

)
, where p is the dimensionality of X . Secondly, the

resulting fitted nonparametric function is often complicated and difficult to interpret.

To overcome the drawbacks of high dimensional nonparametric regression, one popularly used
approach is to impose the additive structure [8] on f(X), that is to assume that f(X) = f1(X1) +
· · ·+fp(Xp) where f1, . . . , fp are p unspecified univariate functions. Thanks to the additive structure,
the nonparametric estimation of f or equivalently the individual fi’s for 1 ≤ i ≤ p becomes efficient
and does not suffer from the curse of dimensionality. Furthermore, the interpretability of the resulting
model has also been much improved.

The key drawback of the additive model is that it does not assume interactions between the pre-
dictor variables. To address this limitation, functional ANOVA models were proposed to accom-
modate higher order interactions, see [7] and [19]. For example, by neglecting interactions of
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order higher than 2, the functional ANOVA model can be written as f(X) =
∑p
i=1 fi(Xi) +∑

1≤i,j≤p fij(Xi, Xj), with some marginal constraints. Another higher order interaction model,

f(X) =
∑D
d=1

∑
1≤i1,...,id≤p fj(Xi1 , . . . , Xid), is proposed by [9]. This model considers all in-

teractions of order up to D, which is estimated by Kernel Ridge Regression (KRR) [16] with the
elementary symmetric polynomial (ESP) kernel.

Both of the two models discussed above assume the existence of possible interactions between
any two or more predictor variables. This can lead to a serious problem, that is, the number of
nonparametric functions that need to be estimated quickly increases as the number of predictor
variables increases. To control the explosion of interaction terms, one approach is to impose the
sparsity assumption and then use variable selection methods such as the lasso to select only the
important interactions. For the functional ANOVA model, the COSSO method developed by [14]
followed this approach. [2] proposes hierarchical kernel learning which assumes that the kernel of
inputs is decomposable sum of many basis kernels. Then kernel selection is performed to only select
important interactions by imposing group lasso type penalty.

There exists another direction to generalize the additive model. When proposing the Optimal Kernel
Group Transformation (OKGT) method for nonparametric regression, [17] considers the additive
structure of predictor variables in groups instead of individual predictor variables. Let G := {uj}dj=1

be a index partition of the predictor variables, that is, uj∩uk = ∅ if j 6= k and ∪dj=1uj = {1, . . . , p}.
Let Xuj = {Xk; k ∈ uj} for j = 1, . . . , d. Then {X1, . . . , Xd} = Xu1 ∪ · · · ∪Xud . For any
function f(X), if there exists an index partition G = {u1, . . . ,ud} such that

f(X) = fu1(Xu1) + . . .+ fud(Xud), (1)
where fu1(Xu1), . . . , fud(Xud) are d unspecified nonparametric functions, then it is said that f(X)
admits the group additive structure G. We also refer to (1) as a group additive model for f(X). It is
clear that the usual additive model is a special case with G = {(1), . . . , (p)}.
Suppose Xj1 and Xj2 are two predictor variables. Intuitively, if Xj1 and Xj2 interact to each other,
then they must appear in the same group in an reasonable group additive structure of f(X). This
implies that the group additive model could preserve the interactions between the predictor variables.
On the other hand, if Xj1 and Xj2 belong to two different groups, then they do not interact with each
other. In other words, the group additive model assumes no interaction between different groups.
Therefore, in terms of accommodating interactions, the group additive model can be considered
lying in the middle between the original additive model and the functional ANOVA or higher order
interaction models. When the group sizes are small, for example all are less than or equal to 3,
the group additive model can maintain the estimation efficiency and interpretability of the original
additive model while avoiding the problem of a high order model discussed earlier.

However, in [17], there are two important issues not addressed. The first issue that the group additive
structure may not be unique, which will lead to the nonidentifiability problem for the group additive
model. (See discussion in Section 2.1). The second issue is that [17] has not proposed a systematic
approach to identify the group additive structure. In this paper, we intend to resolve these two issues.
To address the first issue, we rigorously define the intrinsic group additive structure for any square
integrable function, which in some sense is the minimal group additive structure among all correct
group additive structures for the function.

To address the second issue, we propose a general approach to simultaneously identifying the
intrinsic group additive structure and estimating the nonparametric functions using kernel methods
and Reproducing Kernel Hilbert Spaces (RKHSs). For a given group additive structure G =
{u1, . . . ,ud}, we first define the corresponding direct sum RKHS asHG = Hu1

⊕· · ·⊕Hud where
Hui is the usual RKHS for the variables in uj only for j = 1, . . . , d. Based on the results on the
complexity measure of RKHSs in the literature, we derive a tractable complexity measure of the
direct sum RKHSHG which is further used as the complexity measure of G. Then, the identification
of the intrinsic group additive structure G and the estimation of the involved nonparametric functions
can be performed through the following minimization problem:

f̂ , Ĝ = arg min
f∈HG,G

1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H + µC(G).

We show that when the novel complexity measure of group additive structure C(G) is used, the
minimizer Ĝ is consistent for the intrinsic group additive structure as the size of the training sample
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goes to infinity. We further develop two algorithms, one uses exhaustive search and the other employs
a stepwise approach, for identifying true additive group structures under the small p and large p
scenarios. Extensive simulation study and real data applications show that our proposed method can
successfully recover the true additive group structures in a variety of model settings.

There exists a connection between our proposed group additive model and graphical models ([4],
[10]). This is especially true when a sparse block structure is imposed [15]. However, a key difference
exists. Let’s consider the following example. Y = sin(X1 +X2

2 +X3) + cos(X4 +X5 +X2
6 ) + ε.

A graphical model typically considers the conditional dependence (CD) structure among all of the
variables includingX1, . . . , X6 and Y , which is more complex than the group additive (GA) structure
{(X1, X2, X3), (X4, X5, X6)}. The CD structure, once known, can be further examined to infer
the GA structure. In this paper, we however proposed methods that directly target the GA structure
instead of the more complex CD structure.

The rest of the paper is organized as follows. In Section 2, we rigorously formulate the problem
of Group Additive Structure Identification (GASI) for nonparametric regression and propose the
structural penalty method to solve the problem. In Section 3, we prove the selection consistency for
the method. We report the experimental results based on simulation studies and real data applications
in Section 4 and 5. Section 6 concludes this paper with discussion.

2 Method

2.1 Group Additive Structures

In the Introduction, we discussed that the group additive structure for f(X) may not be unique.
Here we give an example. Consider the following model Y = 2 + 3X1 + 1/(1 + X2

2 + X2
3 ) +

arcsin ((X4 +X5)/2) + ε, where ε is the error independent of X with 0 mean. According to the
definition, this model admits the group additive structure G0 = {(1) , (2, 3) , (4, 5)}. Let G1 =
{(1, 2, 3) , (4, 5)} and G2 = {(1, 4, 5) , (2, 3)}. The model can also be said to admit G1 and G2.
However, there exists a major difference between G0, G1 and G2. While the groups in G0 cannot be
further divided into subgroups, both G1 and G2 contain groups that can be further split. We define
the following partial order between group structures to characterize the difference.

Definition 1. Let G and G′ be two group additive structures. If for every group u ∈ G there is a
group v ∈ G′ such that u ⊆ v, thenG is called a sub group additive structure ofG′. This relation is
denoted as G ≤ G′. Equivalently, G′ is a super group additive structure of G, denoted as G′ ≥ G.

In the previous example, G0 is a sub group additive structure of both G1 and G2. However, the order
between G1 and G2 is not defined.

Let X := [0, 1]p be the p-dimensional unit cube for all the predictor variables X and PX be the
probability distribution. For a group of predictor variables u, we define the space of square integrable
functions as L2

u(X ) := {g ∈ L2
PX

(X ) | g(X) = fu(Xu)}, that is L2
u contains the functions that

only depend on the variables in group u. Then the group additive model f(X) =
∑d
j=1 fuj (Xuj )

is a member of the direct sum function space defined as L2
G(X ) := ⊕u∈GL

2
u(X ). Let |u| be the

cardinality of the group u. If u is the only group in a group additive structure and |u| = p, then
L2
u = L2

G and f is a fully non-parametric function.

The following proposition shows that the order of two different group additive structures is preserved
by their corresponding square integrable function spaces.

Proposition 1. Let G1 and G2 be two group additive structures. If G1 ≤ G2, then L2
G1
⊆ L2

G2
.

Furthermore, if X1, . . . , Xp are independent and G1 6= G2, then L2
G1
⊂ L2

G2
.

Definition 2. Let f(X) be an square integrable function. For a group additive structure G, if there
is a function fG ∈ L2

G such that fG = f , then G is called an amiable group additive structure for f .

In the example discussed in the beginning of the subsection, G0, G1 and G2 are all amiable group
structures. So amiable group structures may not be unique.

Proposition 2. Suppose G is an amiable group additive structure for f . If there is a second group
additive structure G′ such that G ≤ G′, then G′ is also amiable for f .
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We denote the collection of all amiable group structures for f(X) as Ga, which is partially ordered
and complete. Therefore, there exists a minimal group additive structure in Ga, which is the most
concise group additive structure for the target function. We state this result as a theorem.
Theorem 1. Let Ga be the set of amiable group additive structures for f . There is a unique minimal
group additive structure G∗ ∈ Ga such that G∗ ≤ G for all G ∈ Ga, where the order is given by
Definition 1. G∗ is called the intrinsic group additive structure for f .

For statistical modeling, G∗ achieves the greatest dimension reduction for the relationship between
Y and X . It induces the smallest function space which includes the model. In the previous example,
we have G0 being the intrinsic group additive structure. If G∗ = G0 is known, one only needs
to estimate one univariate and two bivariate non-parametric functions. Although G1 and G2 are
both amiable, they both require fitting a three-dimensional non-parametric functions. This is both
computationally and statistically inefficient. In general, the intrinsic group structure can help much
mitigate the curse of dimensionality while improving both efficiency and interpretability of high
dimensional nonparametric regression.

2.2 Kernel Method with Known Intrinsic Group Additive Structure

Consider f(X) = E[Y |X]. Suppose the intrinsic group additive structure for f(X) is known to be
G∗ = {uj}dj=1, that is, f(X) = fu1(Xu1)+ · · ·+fud(Xud). Therefore, estimating f is essentially
to estimate the functions fu1

, fu2
, . . ., fud . We will use the kernel method. Let (Kuj ,Huj ) be the

kernel and its corresponding RKHS for the j-th group uj . Then using kernel methods is to solve

f̂λ,G∗ = arg min
fG∗∈HG∗

{
1

n
(yi − fG∗(xi))2 + λ‖fG∗‖2HG∗

}
, (2)

whereHG∗ := {f =
∑d
j=1 fuj | fuj ∈ Huj}. The subscripts are used on RHS to explicitly indicate

the dependence of the soluction on the group additive structure G∗ and tuning parameter λ. The
solution is searched in the corresponding direct sum RKHS and can be solved by KRR.

In general, an RKHS is usually smaller than the L2 space defined on the same input domain. So,
it is not always that f̂λ,G∗ ≡ f , and in fact a bias exists. However, one can choose to use kernels
Kuj that are universal in the sense that their corresponding RKHSs are dense in the L2 spaces (see
[22], [5]). Two examples of universal kernel are Gaussian and Laplace. By using universal kernels,
not only can the bias of f̂λ,G∗ reduces to zero as n goes to infinity, but also can f̂λ,G∗ recover the
structural properties such as the group additive structure of f(X). This is the fundamental reason for
the consistency property of our proposed method to identify the intrinsic group additive structure.

2.3 Identification of Unknown Intrinsic Group Additive Structure

2.3.1 Penalization on Group Additive Structures

The success of the kernel method discussed in the previous subsection hinges on the knowledge of
the intrinsic group additive structure G∗. In practice, however, G∗ is seldom known, and it may be
of primary interest to identify G∗ while fitting a nonparametric regression for E[Y |X] as discussed
earlier. Recall that in Subsection 2.1, we have shown that G∗ exists and unique. The other possible
group additive structures belong to two categories, amiable and non-amiable.

Let’s consider an arbitrary non-amiable group additive structure G ∈ G \ Ga first. Suppose G is used
in the place of G∗ in the kernel method (2). The resulting fitted function f̂λ,G, as an estimator of
f , will have a systematic bias because the L2 distance between any function fG inHG and the true
function f will be bounded below. The bias remains regardless of the size of the training sample. In
other words, using a non-amiable group additive structure will result in poor fitting of the model.

Next we consider an arbitrary amiable group additive structure Ga. Suppose Ga is used in the place
of G∗ in (2). Recall that because Ga is amiable, therefore for the true function f(X), we have
fG∗ = fGa almost surely. The bias of the resulting fitted function f̂λ,Ga will vanish as the sample
size increases. Although their asymptotic rates are in general different, under fixed sample size
n, simply using goodness of fit will not be able to distinguish Ga from G∗. The key difference
between G∗ and Ga is their structural complexities, that is, G∗ is the smallest among all amiable
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structures (i.e. G∗ ≤ G,∀G ∈ Ga). Suppose a proper measure of the complexity of a group additive
structure G can be defined (to be addressed in the next section) and is denoted as C(G). We can
then incorporate C(G) into (2) as an additional penalty term and change the kernel method to the
following structure-penalized method.

f̂λ,µ, Ĝ = arg min
fG∈HG,G

{
1

n
(yi − fG(xi))

2
+ λ‖fG‖2HG + µC(G)

}
, (3)

where HG := {f =
∑d
j=1 fuj | fuj ∈ Huj}. It is clear that the only difference between (2) and

(3) is the term µC(G). As discussed above, the intrinsic group additive structure G∗ can achieve the
goodness of fit represented by the first two terms in (3) and the penalty on the structural complexity
represented by the last term. Therefore, as the sample size n increases, by properly choosing the
tuning parameters, we expect that Ĝ is consistent in that the probability Ĝ = G∗ increases to one as
n increases (see the Theory Section below). We refer to (3) as the structure-penalized kernel method.
In the next section, we derive a tractable complexity measure for a group additive structure.

2.3.2 Complexity Measure of Group additive Structure

It is tempting to propose an intuitive complexity measure for a group additive structure C(·) such
that C(G1) ≤ C(G2) whenever G1 ≤ G2. The intuition however breaks down or at least becomes
less clear when the order between G1 and G2 cannot be defined. From Proposition 1, it is known
that when G1 < G2, we have L2

G1
⊂ L2

G2
. It is not difficult to show that it is also true that when

G1 < G2, thenHK,G1
⊂ HK,G2

. This observation motivates us to define the structural complexity
measure of G through the measure of the capacity of its corresponding RKHSHG.

There exist a number of different types of complexity measures for RKHSs in the literature, including
entropy [25], VC dimensions [24], Rademacher complexity [3], and covering numbers ([21], [25]).
After investigating and comparing these different measures, we use covering number to design a
practically convenient complexity measure for group additive structures.

It is known that an RKHS HK can be embedded in the continuous function space C(X ) (see [18],
[26]), with the inclusion mapping denoted as IK : HK → C(X ). Let HK,r = {h : ‖h‖Hk ≤
r, and h ∈ HK} be an r-ball inHK and I (HK,r) be the closure of I (HK,r) in C(X ). One way to
characterize the capacity or complexity ofHK is through the covering number of I (HK,r) in C(X ),
denoted as N (ε, I (HK,r), d∞), which is the smallest cardinalty of a cover or subset S of C(X ) such
that I (HK,r) ⊂ ∪s∈S{t ∈ C(X ) : d∞(t, s) ≤ ε}. Here ε is any small positive value, and d∞ is the
usual sup norm of C(X ).

The exact formula for N (ε, I (HK,r), d∞) is in general not available. Under certain conditions,
upper bounds for N (ε, I (HK,r), d∞) have been obtained in the literature. One such upper bound is
presented as follows.

When K is a convolution kernel, i.e. K(x, t) = k(x − t), and the Fourier transform of k decays
exponentially, then, it is given in [26] that

lnN
(
ε, I(HK,r), d∞

)
≤ Ck,p

(
ln
r

ε

)p+1

(4)

where Ck,p is a constant depending on the kernel function k and input dimension p. In particular,
when K is a Gaussian kernel, [25] has obtained more elaborate upper bounds.

The upper bound in (4) depends on r and ε through ln(r/ε). When ε→ 0 with r fixed (e,g. r = 1

when a unit ball is considered), (ln(r/ε))
p+1 becomes the dominant factor in the upper bound.

According to [11], the growth rate ofN (ε, IK) or its logarithmic version can be viewed as a measure
of the complexity of RKHS. So we use (ln(r/ε))

p+1 as the complexity measure, which is equivalent
to αp+1 where α is the reparameterization of ln(r/ε). Let C(Hk) denote the complexity measure of
Hk, which is defined as C(Hk) = (ln(r/ε))

p+1
= α(ε)p+1. We know ε is the radius of a covering

ball, which is the unit of measurement we use to quantify the complexity. The complexity of two
RKHSs with different input dimensions are easier to be differentiated when ε is small. This gives an
interpretation of α.

We have defined a complexity measure for a general RKHS. In Problem (3), the model spaceHG is a
direct sum of a number of RKHSs. Let G = {u1, . . . ,ud}; let HG,Hu1

, . . . ,Hud be the RKHSs
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corresponding to G,u1, . . . ,ud, respectively; let IG, Iu1 , . . . , Iud be the inclusion mappings of
HG,Hu1 , . . . ,Hud into C(X ). Then, we have the following proposition.

Proposition 3. Let G be a group additive structure andHG be the induced direct sum RKHS defined
in (3). Then, we have the following inequality relating the covering number ofHG and the covering
numbers ofHuj

lnN (ε, IG, d∞) ≤
d∑
j=1

lnN
(

ε

|G|
, Iuj , d∞

)
, (5)

where |G| denotes the number of groups in G.

By applying Proposition 3 and the parameterized upper bound, we have lnN (ε, IG, d∞) =
O
(∑

u∈G α(ε)|u|+1
)
, where we explicitly indicate the dependency of α on ε. Now we could

use the rate as the explicit expression of the complexity measure C(G) in Problem (3), that is
C(G) =

∑d
j=1 α(ε)|uj |+1. Recall that there is another tuning parameter µ which controls the effect

of the complexity of group structure has on the penalized risk. By factoring out the common 1
in the exponent for all groups and combining it with µ, we could further simplify the penalty’s
expression. Thus, we have the following explicit formulation for AGSI which simultaneously solves
the non-parametric regression problem.

f̂λ,µ, Ĝ = arg min
fG∈HG,G


n∑
i=1

(yi − fG(xi))
2

+ λ‖fG‖2HG + µ

d∑
j=1

α|uj |

 . (6)

2.4 Estimation

We assume that the value of λ is pre-specified. In practice, this parameter can be tuned separately. If
the values of µ and α are given, Problem (6) can be solved by following a two-step procedure. First,
when the group structure G is given, the functions fu can be estimated by using KRR to solve the
following problem

R̂λG = min
fG∈HG

{
1

n

n∑
i=1

(yi − fG(xi))
2

+ λ ‖fG‖2HG

}
. (7)

Second, the optimal group structure is chosen to achieve both small fitting error and the complexity
penalty, i.e.

Ĝ = arg min
G∈G

R̂λG + µ

d∑
j=1

α|uj |

 . (8)

The two-step procedure above is expected to identify the intrinsic group structure, that is, Ĝ = G∗.
Recall a group structure belongs to one of the three categories, intrinsic, amiable, or non-amiable
structures. If G is non-amiable, then R̂λG is expected to be large, because G is a wrong structure and
will result in a biased estimate. If G is amiable, though R̂λG is expected to be small, the complexity
penalty of G is larger than that for G∗. As a consequence, only G∗ can simultaneously achieve
a small R̂λG∗ and a relatively small complexity penalty. Therefore, when the sample size is large
enough, we expect Ĝ = G∗ with high probability. If the values of the turning parameters µ and α
are not given, a separate validation set can be used to select tuning parameters. The estimation is
summarized in Algorithm 1
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Algorithm 1: Exhaustive Search w/ Validation

1: Split data into training (T ) and validation (V)
sets.

2: for (µ, α) in grid do
3: for G ∈ G do
4: R̂G, f̂G ← solve (7) using G;
5: Calculate the sum in (8), denoted by
R̂pen,µ,α
G ;

6: end for
7: Ĝµ,α ← arg minG∈G R̂

pen,µ,α
G ;

8: ŷV ← f̂Ĝµ,α(xV);
9: e2

Ĝµ,α
← ‖yV − ŷV‖2;

10: end for
11: µ∗, α∗ ← arg minµ,α e

2
Ĝµ,α

;

12: G∗ ← Ĝµ
∗,α∗ ;

Algorithm 2: Basic Backward Stepwise

1: State with the group structure
{(1, . . . , p)};

2: Solve (6) and obtain its minimum value
R̂pen
G ;

3: for each predictor variable j do
4: G′ ← either split j as a new group or

add to an existing group;
5: Solve (6) and obtain its minimum value
R̂pen
G′ ;

6: if R̂pen
G′ < R̂

pen
G then

7: Keep G′ as the new group struc-
ture;

8: end if
9: end for

10: return G′;

Algorithm 1 selects the group additive structure by compare the results of all possible group structures.
When a model contains a large number of predictor variables, such exhaustive search suffers high
computational cost. In order to apply GASI on a large model, we propose a backward stepwise
algorithm which is illustrated in Algorithm 2.

3 Theory

In this section, we prove that the estimated group additive structure Ĝ as a solution to (6) is con-
sistent, that is the probability P (Ĝ = G∗) goes to 1 as the sample size n goes to infinity. As we
discussed before, when a non-amiable group additive structure is used, the solution of a usual kernel
nonparametric regression problem has a non-zero bias. While all amiable group additive structures
give unbiased estimates, using the intrinsic group additive structure will enjoy the fastest rate of
convergence. Thus, the new complexity penalty is used to filter out all amiable group structures with
slow convergence rate. We provide the main theorems in this section. The proof and supporting
lemmas are included in the supplemental document.

Let R(fG) := E[(Y − f(X))
2
] denote the population risk of function f ∈ HG, and R̂(f) :=

1
n

∑n
i=1(yi − f(xi))

2 be the empirical risk. First, we show that for any given amiable group additive
structure G ∈ Ga, its optimized empirical risk R̂(f̂G) converges in probability to the optimal
population risk R(f∗G∗) achieved by the intrinsic group additive structure. Here f̂G denotes the
minimizer of the regularized empirical risk (7) when the group additive structure G is used, and f∗G∗
denotes the minimizer of the population risk when the intrinsic group structure is used. The result is
given below as Proposition 4.
Proposition 4. Let G∗ be the intrinsic group additive structure, G ∈ Ga a given amiable group
structure, andHG∗ andHG the respective direct sum RKHSs. If f̂λG ∈ HG is the optimal solution of
Problem (7), then for any ε > 0, we have

P
(
|R̂(f̂G)−R(f∗G∗)| > ε

)
≤ 12n · exp

{∑
u∈G

lnN
(

ε

12|G| ,Hu, d∞

)
− ε2n

144

}
+

12n · exp

{∑
u∈G

lnN
(

ε

12|G| ,Hu, d∞

)
− n

(
ε

24
− λn‖f∗G∗‖2

12

)2
}
. (9)

Note that λn in (21) must be chosen such that ε
24 −

λn‖f∗G∗‖
2

12 is positive. For any given ε, when n
is sufficiently large, the exponents of the two terms in (21) will become negative. When n further
increases, both of the terms in (21) will decrease exponentially to zero. Therefore, Proposition 4
implies that R̂(f̂G) converges to R(f∗G∗) in probability. For a fixed p and intrinsic group additive
structure, the number of amiable group additive structures is finite. Using a Bonferroni type of
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ID Model Intrinsic Group Structure

M1 y = 2x1 + x22 + x33 + sin(πx4) + log(x5 + 5) + |x6|+ ε {(1) , (2) , (3) , (4) , (5) , (6)}
M2 y = 1

1+x2
1

+ arcsin
(
x2+x3

2

)
+ arctan

(
(x4 + x5 + x6)3

)
+ ε {(1) , (2, 3) , (4, 5, 6)}

M3 y = arcsin
(
x1+x3

2

)
+ 1

1+x2
2

+ arctan
(
(x4 + x5 + x6)3

)
+ ε {(1, 3) , (2) , (4, 5, 6)}

M4 y = x1 · x2 + sin((x3 + x4) · π) + log(x5 · x6 + 10) + ε {(1, 2) , (3, 4) , (5, 6)}
M5 y = exp

{√
x21 + x22 + x23 + x24 + x25 + x26

}
+ ε {(1, 2, 3, 4, 5, 6)}

Table 1: Selected models for the simulation study using the exhaustive search method and the
corresponding additive group structures.

technique, we can in fact obtain a uniform upper bound for all of the amiable group additive structures
in Ga. This result is stated in the following theorem.

Theorem 2. Let Ga be the set of all amiable group structures. For any ε > 0 and n > 2/ε2, we have

P

(
sup
G∈Ga

|R̂g(f̂λG)−Rg(f∗G∗)| > ε

)
≤ 12n|Ga| ·

[
exp

{
max
G∈Ga

lnN
( ε

12
,HG, d∞

)
− ε2n

144

}

+ exp

{
max
G∈Ga

lnN
( ε

12
,HG, d∞

)
− n

(
ε

24
− λn‖f∗G∗‖2

12

)2
}]

(10)

Theorem 2 implies that the convergence of R̂(f̂G) toR(f∗G∗) in probability is uniform for G in Ga.

Next we consider a non-amiable group additive structure G′ ∈ G \ Ga. It turns out that R̂(f̂G) fails
to converge to R(f∗G∗) in probability, and |R̂(f̂G) − R(f∗G∗)| converges to a positive constant in
probability. Furthermore, because the number of non-amiable group additive structures is finite, we
can show that |R̂(f̂G)−R(f∗G∗)| is uniformly bounded below from zero with probability going to 1.
We state the results as the next theorem.

Theorem 3. (i) For a non-amiable group structure G′ ∈ G \ Ga, there exists a constant C > 0 such
that |R̂g(f̂λG′)−Rg(f∗G∗)| converges to C in probability.
(ii) There exits a constant C̃ such that P (|R̂g(f̂λG′)−Rg(f∗G∗)| > C̃ for all G′ ∈ G \ Ga) goes to 1
as n goes to infinity.

By combining Theorem 2 and Theorem 3, it is not difficult to show that the probability that the
solution of (6) Ĝ is not equal to the intrinsic group additive structure goes to zero as n goes to
infinity. The structural penalty helps to distinguish amiable structures from the intrinsic group
additive structure. We state this result in the following theorem.

Theorem 4. Let λn ∗ n → 0. By choosing a proper tuning parameter µ > 0 for the structural
penalty , the estimated group structure Ĝ is consistent for the intrinsic group additive structure G∗,
that is, P (Ĝ = G∗) goes to one as the sample size n goes to infinity.

4 Simulation

In this section, we evaluate the performance of GASI using synthetic data. Table 1 shows the
five models we are using. Observations of X are simulated independently from N(0, 1) in M1,
Unif(−1, 1) in M2 and M3, and Unif(0, 2) in M4 and M5. The noise ε is i.i.d. N(0, 0.012). The
grid values of µ are equally spaced in [1e−10, 1/64] on a log-scale and each α is an integer in [1, 10].

We first show that GASI has the ability to identify the intrinsic additive group structure. For this, we
apply the two-step procedure for each (µ, α) pair multiple times. If there are (µ, α) pairs for each
model that its true group structure can be often identified, then GASI has the power to identify true
group structures. We also apply Algorithm 1 which uses an additional validation set to select the
parameters. The simulation is repeated 100 times for each model.The frequency of the true group
structure being identified is calculated for each (µ, α).
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Model Max freq. µ α Max freq. µ α Max freq. µ α

M1 100 1.2500e-06 10 59 1.2500e-06 4 99 1.5625e-02 10
M2 97 1.2500e-06 8 89 1.2500e-06 7 70 1.3975e-04 9
M3 97 1.2500e-06 9 89 1.2500e-06 7 65 1.3975e-04 8
M4 100 1.2500e-06 7 99 1.2500e-06 4 1 1.3975e-04 8
M5 100 1.2500e-06 1 100 1.2500e-06 1 100 1.2500e-06 1

Table 2: Maximum frequencies that the intrinsic group additive structures are identified for the five
models using exhaustive search algorithm without parameter tuning (left panel), with parameter
tuning (middle panel) and stepwise algorithm (right panel). If different pairs share the same maximum
frequency, a pair is randomly chosen.

In Table 2, we report the maximum frequency and the corresponding (µ, α) for each model. The
complete results are included in the supplemental document. It can be seen from the left frequency
panel that the intrinsic group additive structures can be successfully identified. When the parameters
are tuned, the middle panel shows that the performance of Model 1 deteriorated. This might be caused
by the estimation method (Kernel Ridge Regression to solve Problem (7)) used in the algorithm. It
could also be affected by λ.

When the number of predictor variables increases, we propose to use a backward stepwise algorithm.
We apply Algorithm 2 on the same models. The results are reported in the right panel in Figure 2.
The true group structures could be identified most of time for Model 1, 2, 3, 5. The result of Model 4
is not satisfying. Since stepwise algorithm is greedy, it is possible that the true group structures were
never visited. Further research is needed to better understand the role of the complexity penalty in
stepwise algorithms.

5 Real Data

In this section, we apply GASI on two real data sets, which are both available in the UCI repository.

The first data set is the Boston Housing data. It includes 13 predictor variables which are used to
predict the house median value. The sample size is 506. Our goal is to identify a probable group
structure for the predictor variables. The backward algorithm is used and the tuning parameters µ and
α are selected via 10-fold CV. The group additive structure that achieves the lowest average validation
error is {(1, 6) , (2, 11) , (3) , (4, 9) , (5, 8) , (7, 13) , (10, 12)}, which is used for further investigation.
Then the nonparametric functions for each group were estimated using the whole data set. Because
each group contains no more than two variables, the estimated functions can be visualized. Figure 1
shows the selected results.

It is interesting to see some patterns emerging in the plots. The top-left plot shows the function of the
average number of rooms per dwelling and per capita crime rate by town. We can see the house value
increases with more rooms and decreases as the crime rate increases. However, when the crime rate
is low, smaller sized houses (4 or 5 rooms) seem to be preferred. The top-right plot shows that there
is a changing point in terms of how house value is related to the size of non-retail business in the area.
The value initially drops when the percentage of non-retail business is small, then increases at around
8%. The increase in the value might be due to the high demand of housing from the employees of
those business.

The second data set is the communities and crime data (unnormalized). It combines socio-economic,
law enforcement, and crime data collected by US government agencies. There are 2215 samples and
147 variables with missing values. We choose Number of Murders in 1995 to be the response in this
study and investigate its relationship between the predictor variables. We removed the observations
with missing values.

To deal with the large number of predictor variables, a screening procedure is used to select the
most related variables. We fit OKGT for each of the 122 predictor against the response, then keep
the variables with R2 > 0.99. This ensures that the selected predictors are highly dependent to the
response. The screening procedure selects 23 predictor variables. We also remove the samples with
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Figure 1: Estimated transformation functions for
selected groups. Top-left: group (1, 6), top-right:
group (3), bottom-left: group (5, 8), bottom-
right: group (10, 12).

Figure 2: Selected results for the communities
and crime data where the number of murders is
the response. The blue dots are the transformed
observation of the predictor variable. The red
line is the estimated function.

missing values, which reduced sample size to 343. Then the backward algorithm is applied on the
prepared data set.

The procedure selected the fully additive group structure. Figure 7 includes selected results which
show highly nonlinear effect of each predictor variable. The first plot shows that the effect of Median
Family Income is almost zero until it reaches the high end where murders drop dramatically. The
second plot shows an interesting pattern for Total Requests for Police per Police Officer. As the
number of requests increases, the number of murders initially decreases slowly. One reason for this is
that increasing requests cause more presence of police in the area which is helpful to control crimes.
However, murders increase quickly as the number of requests enters the high range. An explanation
for this is that the surging number of requests for police is due to the low security and high murder
rate in the area.

6 Discussion

We use group additive model for nonparametric regression and propose a RKHS complexity penalty
based approach for identifying the intrinsic group additive structure. There are two main directions
for future research. First, our penalty is based on the covering number of RKHSs. It is of interest to
know if there exist other more effective penalty. Second, the current backward stepwise algorithm
may become unstable and fail to achieve the potential in identifying the true additive group structure.
It is of great interest to further improve the proposed method that can be applied in general high
dimensional nonparametric regression.
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Appendix

A. Theorem, Proposition, Lemma and Proof

Proposition 1. Let G1 and G2 be two group additive structures. If G1 ≤ G2, then L2
G1
⊆ L2

G2
.

Furthermore, if X1, . . . , Xp are independent and G1 6= G2, then L2
G1
⊂ L2

G2
.

Proof. First we prove the first part.

Since f ∈ L2
G1

, we have f =
∑

u∈G1
fu(xu).

If G1 ∩G2 6= ∅, then for each u ∈ G1 ∩G2, it is true that fu ∈ L2
G2

.

If u /∈ G1 ∩G2 and u ∈ G1 \G2, because G1 ≤ G2, there exists u1, . . . ,uk ∈ G2 \G1 for some
k < |G2| such that v := u ∪ u1 ∪ · · · ∪ uk ∈ G2. Since

L2([0, 1]|u|)⊕ L2([0, 1]|u1|)⊕ · · · ⊕ L2([0, 1]|uk|) ⊆ L2([0, 1]|v|), (11)

by induction, we have the desired result.

The sub-additivity in (11) is true because for two groups u and v in a group structure G, we have∫
(fu(xu) + fv(xv))2p(xu,xv)dxudxv

=

∫
f2u(xu)p(xu,xv)dxudxv +

∫
f2v(xv)p(xu,xv)dxudxv

+ 2

∫
fu(xu)fv(xv)p(xu,xv)dxudxv

≤
∫
f2u(xu)p(xu,xv)dxudxv +

∫
f2v(xv)p(xu,xv)dxudxv

+ 2

(∫
f2u(xu)p(xu,xv)dxudxv

)1/2

·
(∫

f2v(xv)p(xu,xv)dxudxv

)1/2

<∞

The second to the last inequality is due to Holder’s inequality with p = q = 2.

We further need to show the proper part (i.e. strict subset).

For u,v ∈ G1, u,v /∈ G2, u ∪ v ∈ G2, we need to show that there is a function h(xu,xv) ∈
L2([0, 1]|u∪v|) which does not belong to L2

u ⊕ L2
v . That is

inf
f∈L2

u

g∈L2
v

∫
(h(xu,xv)− f(xu)− g(xv))

2
p(xu,xv)dxudxv > 0 (12)

Define the following functional of f and g as

F (f, g) :=

∫
(h(xu,xv)− f(xu)− g(xv))

2
p(xu,xv)dxudxv (13)

Let δ(xu) be the Gâteaux’s derivative at xu, then

F (fu + tδu, gv)− F (fu, gv) =

∫ (
2tfδ + t2δ2 − 2thδ + 2tgδ

)
puvdxudxv

12



At minimum, we have

lim
t→0

F (fu + tδu, gv)− F (fu, gv)

t

= lim
t→0

∫ (
2fδ + tδ2 − 2hδ + 2gδ

)
puvdxudxv

=

∫
(2fδ − 2hδ + 2gδ) puvdxudxv

= 0 (14)

Since (14) holds for all δ ∈ L2
u, then we have∫

(f + g − h) puvdxv = 0 (15)

By symmetry, we also have the following identity.∫
(f + g − h) puvdxu = 0 (16)

Since h is given, we set C1 =
∫
hpuvdv and C2 =

∫
hpuvdu.

Solving (15) for f we have,

f =

∫
hpuvdxv −

∫
gpuvdxv∫

puvdxv
(17)

Plug (17) into (16), we have∫ ∫
hpuvdxv −

∫
gpuvdxv∫

puvdxv
puvdxu + g

∫
puvdxu −

∫
hpuvdxu = 0

⇔ g

∫
puvdxu −

∫ ∫
gpuvdxv∫
puvdxv

puvdxu =

∫
hpuvdxu −

∫ ∫
hpuvdxv∫
puvdxv

puvdxu (18)

Since Xu ⊥Xv , we have puv = pupv . Then, identity (18) is equivalent to

g −
∫
gpvdxv =

∫
hpudxu −

∫ ∫
hpvdxvpudxu.

This is a Fredholm integral equation, with solution{
f =

∫
hpvdxv − C

g =
∫
hpudxu + C

(19)

where C is any constant.

To this end, the minimum approximation error in (12) achieves 0 when the following identity is true
almost surely.

h =

∫
hpvdxv +

∫
hpudxu

A counter example is given by h(xu,xv) = sin(xu + xv) which does not assume the above
decomposition. So L2

u ⊕ L2
v is a proper subspace of h(xu,xv) ∈ L2([0, 1]|u∪v|).

Thus the proposition is proved.

Theorem 1. Let Ga be the set of amiable group additive structures for f . There is a unique minimal
group additive structure G∗ ∈ Ga such that G∗ ≤ G for all G ∈ Ga, where the order is given by
Definition 1. G∗ is called the intrinsic group additive structure for f .
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Proof. Since the partial order is defined for any subset of group structures in Ga, the existence of G∗
is the result of Zorn’s Lemma. The uniqueness is due to the fact that Ga is a finite set.

Proposition 3. Let G be a group additive structure andHG be the induced direct sum RKHS defined
in (3). Then, we have the following inequality relating the covering number ofHG and the covering
numbers ofHuj

lnN (ε, IG, d∞) ≤
d∑
j=1

lnN
(

ε

|G|
, Iuj , d∞

)
, (20)

where |G| denotes the number of groups in G.

Proof. Due to Lemma 1, we have N (ε, IG, d∞) ≤ Πu∈GN
(

ε
|G| , I(H̃u), d∞

)
=

Πu∈GN
(

ε
|G| , Iu, d∞

)
. Then, taking log on both sides gives the desired result.

Proposition 4. Let G∗ be the intrinsic group additive structure, G ∈ Ga a given amiable group
structure, andHG∗ andHG the respective direct sum RKHSs. If f̂λG ∈ HG is the optimal solution of
Problem (7), then for any ε > 0, we have

P
(
|R̂(f̂G)−R(f∗G∗)| > ε

)
≤ 12n · exp

{∑
u∈G

lnN
(

ε

12|G|
,Hu, d∞

)
− ε2n

144

}
+

12n · exp

{∑
u∈G

lnN
(

ε

12|G|
,Hu, d∞

)
− n

(
ε

24
− λn‖f∗G∗‖2

12

)2
}
. (21)

Proof. Since the following inequality holds,

|R̂g(f̂G)−Rg(f∗G∗)| ≤ |R̂g(f̂G)−Rg(f̂G)|+ |Rg(f̂G)−Rg(f∗G∗)|, (22)

the upper bound for the desired deviation can be derived from the upper bounds of the two terms on
RHS in the inequality.

The upper bound for the first term can be derived by using the uniform convergence bound in [1]
(also see Lemma 12.38 in [20]). So we have the following probabilistic upper bound for the first term.
For all n > 8

ε2 ,

P
(
|R̂g(f̂G)−Rg(f̂G)| > ε

2

)
≤12n · E

[
N
( ε

12
,HG, `X

′

∞

)]
· exp

{
− ε

2n

144

}
≤12n · exp

{
lnN (n)

( ε

12
,HG, `∞

)
− ε2n

144

}
≤12n · exp

{
lnN

( ε

12
,HG, `∞

)
− ε2n

144

}
, (23)

where `X
′

∞ denotes the sup-norm of function f ∈ F restricted to the sample X ′ = {x′1, . . . , x′n}
which is independent of the sample X = {x1, . . . , xn} used for estimation and N (n) (ε,H, `∞) is
called the ε-growth function of the spaceH which is defined as

N (n) (ε,H, `∞) := sup
x1,...,xn∈X

N
(
ε,H, `X∞

)
.

The second inequality is due to the fact that E
[
N
(
ε,H, `X′∞

)]
≤ N (n) (ε,H).
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The upper bound for the second term in 22 can be derived by repeatedly applying the same uniform
convergence bound. Due to Lemma 2, we have for all ε > 0 and all n > 2/ε2,

P
(
|Rg(f̂G)−Rg(f∗G∗)| >

ε

2

)
≤12n · lnE

[
N
(
ε2

12
,HG, `X

′

∞

)]
· exp

{
−n
(
ε

24
− λn‖f∗G∗‖2

12

)2
}

≤12n · exp

{
lnN (n)

( ε

12
,HG, `∞

)
− n

(
ε

24
− λn‖f∗G∗‖2

12

)2
}

≤12n · exp

{
lnN

( ε

12
,HG, `∞

)
− n

(
ε

24
− λn‖f∗G∗‖2

12

)2
}
. (24)

By plugging the upper bounds (23) and (24) in (22), we have

P
(
|R̂g(f̂G)−Rg(f∗G∗)| > ε

)
≤12n · exp

{
lnN

( ε

12
,HG, `∞

)
− ε2n

144

}
+

12n · exp

{
lnN

( ε

12
,HG, `∞

)
− n

(
ε

24
− λn‖f∗G∗‖2

12

)2
}

(25)

By using Lemma 3, we can bound the covering number forHG from above and obtain the following
inequality.

P
(
|R̂g(f̂G)−Rg(f∗G∗)| > ε

)
≤ 12n · exp

{∑
u∈G

lnN
(

ε

12|G|
,Hu, `∞

)
− ε2n

144

}
+

12n · exp

{∑
u∈G

lnN
(

ε

12|G|
,Hu, `∞

)
− n

(
ε

24
− λn‖f∗G∗‖2

12

)2
}
.

Theorem 2. Let Ga be the set of all amiable group structures. For any ε > 0 and n > 2/ε2, we have

P

(
sup
G∈Ga

|R̂g(f̂λG)−Rg(f∗G∗)| > ε

)
≤ 12n|Ga| ·

[
exp

{
max
G∈Ga

lnN
( ε

12
,HG, d∞

)
− ε2n

144

}

+ exp

{
max
G∈Ga

lnN
( ε

12
,HG, d∞

)
− n

(
ε

24
− λn‖f∗G∗‖2

12

)2
}]

(26)

Proof. Denote D(n)
G,ε =

{
(xi, yi)

n
i=1 ∈ X × Y

∣∣∣|R̂(f̂G, g)−R(f∗G∗ , g)| > ε
}

, then we have

P

( ⋃
G∈Ga

DG,ε

)
≤
∑
G∈Ga

P (DG,ε)

≤ |Ga|12n exp

{
max
G∈Ga

lnN
( ε

12
,HG, `∞

)
− ε2n

144

}
+

|Ga|12n exp

{
max
G∈Ga

lnN
( ε

12
,HG, `∞

)
− n

(
ε

24
− λ‖f∗G∗‖2

12

)2
}

where the second inequality is due to the proof of Proposition 4.

Theorem 3. (i) For a non-amiable group structure G′ ∈ G \ Ga, there exists a constant C > 0 such
that |R̂g(f̂λG′) − Rg(f∗G∗)| converges to C in probability. (ii) There exits a constant C̃ such that
P (|R̂g(f̂λG′)−Rg(f∗G∗)| > C̃ for all G′ ∈ G \ Ga) goes to 1 as n goes to infinity.
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Proof. We start with the following triangle inequality

|R̂g(f̂G′)−Rg(f∗G∗)| ≤ |R̂g(f̂G′)−Rg(f̂G′)|+ |Rg(f̂G′)−Rg(f∗G∗)|. (27)

The first term on the RHS can be bounded by using the same uniform convergence bound (12.135) in
[20]. For any ε > 0 and all n > 2/ε2,

P
(
|R̂g(f̂G′)−Rg(f̂G′)| > ε

)
≤ 12n · E

[
N
( ε

6
,HG′ , `X

′

∞

)]
exp

{
−ε

2n

36

}
≤ 12n · exp

{
lnN

( ε
6
,HG′ , `∞

)
− ε2n

36

}
. (28)

In order to derive an upper bound for the second term, we first decompose each risk into bias and
variance. According to [6], the risk of the empirical estimate of f̂G′ can be decomposed as

Rg(fG′) =

∫
X×Y

(
g(y)− f̂G′(x)

)2
dPXY

=

∫
X×Y

(
g(y)− fY |X(x)

)2
dPXY +

∫
X×Y

(
fX|Y (x)− f̂G′(x)

)2
dPXY , (29)

where fX|Y (x) :=
∫
Y g(y)dPY |X is the optimal regression function.

By assuming fX|Y (x) = f∗G∗ (this is the assumption we use throughout this chapter), we have

|Rg(f̂G′)−Rg(f∗G∗)| =
∫
X×Y

(
f∗G∗(x)− f̂G′(x)

)2
dPXY (30)

According to Theorem 2.1 in [13], we have the following decompositions for the two function on the
RHS of (30):

f∗G∗ =
∑

u⊆{1,...,p}

f∗G∗,u with f∗G∗,u :=
∑
v⊆u

(−1)|u|−|v| P{1,...,p}\v(f∗G∗),

f̂G′ =
∑

u⊆{1,...,p}

f̂G′,u with f̂G′,u :=
∑
v⊆u

(−1)|u|−|v| P{1,...,p}\v(f̂G′).

Since G′ is an non-amiable group structure, there is at least one subset1 of u ⊆ {1, . . . , p} such

that f∗G∗,u 6= f̂G′,u. Let C = minu⊆{1,...,p}
∫
X×Y

(
f∗G∗,u − f̂G′,u

)2
dPXY > 0 and denote

uc = {1, . . . , p} \ u, then we have∫
X×Y

(
f∗G∗(x)− f̂G′(x)

)2
dPXY

=

∫
Xu×Y

(
f∗G∗,u(xu)− f̂G′,u(xu)

)2
dPXuY +

∫
Xuc×Y

(
f∗G∗,uc(xuc)− f̂G′,uc(xuc)

)2
dPXucY

≥C +

∫
X×Y

(
f∗G∗,uc(xuc)− f̂G′,uc(xuc)

)2
dPXY

>0. (31)

where the first equality is due to the orthogonality possessed by a direct sum Hilbert space.

By using (27), (28), (30) and (31), we can obtain

P
(
|R̂g(f̂G′)−Rg(f∗G∗)| > ε+ C

)
≤ 12n · exp

{
lnN

( ε
6
,HG′ , `∞

)
− ε2n

36

}
(32)

1 If G′ is amiable, then a subset u of G′ always assumes an additive structure. So there is no error between
f∗G∗ and f̂G′ after such a decomposition.
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Theorem 4. Let λn ∗ n → 0. By choosing a proper tuning parameter µ > 0 for the structural
penalty, the estimated group structure Ĝ is consistent for the intrinsic group additive structure G∗,
that is, P (Ĝ = G∗) goes to one as the sample size n goes to infinity.

Proof. According to Theorem 3, by choosing ε < C, an agreeable group structure will be chosen
with high probability.

For an amiable group structure, let ε1 = |R̂g(f̂λG)−Rg(f∗G∗)| and ε2 = µC(G)− µC(G∗). Since
C(G) > C(G∗) when G is not the true group structure, we have ε2 > 0. Because ε1 converges to 0
in probability. Thus the true group structure G∗ will be picked with high probability if Problem (7) is
solved.

Lemma 1. Let S, T : F1 → F2 be operators in Banach spaces and ε1, ε2 > 0. Then we have
N (ε1 + ε2, T + S) ≤ N (ε1, S) · N (ε2, T ) .

Lemma 2. For all ε > 0 and all n > 2/ε2,

P
(
|Rg

(
f̂G
)
−Rg (f∗G∗)| >

ε

2

)
≤ 12n · lnE

[
N
(
ε2

12
,HG, `X

′
∞

)]
exp

{
−n
(
ε

24
− λn‖f∗G∗‖2

12

)2
}
.

Proof. Due to the uniform convergence bound (12.135) in [20], given f̂G,, we have for all ε > 0 and
all n ≥ 2/ε2,

P
(
|R̂g

(
f̂G

)
−Rg

(
f̂G

)
| > ε

)
≤ 12n · E

[
N
(
ε2

12
,HG, `X

′

∞

)]
exp

{
−ε

2n

36

}
.

By setting δ = 12n · E
[
N
(
ε2

12 ,HG, `
X′

∞

)]
exp

{
− ε

2n
36

}
and solve for ε, we have

ε = 6n−1/2
(

ln 12n+ lnE
[
N
(
ε2

12
,HG, `X

′

∞

)]
− ln δ

)1/2

.

Equivalently with probability at least 1− δ,

|R̂g
(
f̂G

)
−Rg

(
f̂G

)
| ≤ 6n−1/2

(
ln 12n+ lnE

[
N
(
ε2

12
,HG, `X

′

∞

)]
− ln δ

)1/2

.

Due to the symmetry of the above bound, we have with probability at least 1− δ,

Rg
(
f̂G

)
≤ R̂g

(
f̂G

)
+ 6n−1/2

(
ln 12n+ lnE

[
N
(
ε2

12
,HG, `X

′

∞

)]
− ln δ

)1/2

≤ R̂g
(
f̂G

)
+ λ‖f̂G‖2 + 6n−1/2

(
ln 12n+ lnE

[
N
(
ε2

12
,HG, `X

′

∞

)]
− ln δ

)1/2

≤ R̂g (f∗G∗) + λ‖f∗G∗‖2 + 6n−1/2
(

ln 12n+ lnE
[
N
(
ε2

12
,HG, `X

′

∞

)]
− ln δ

)1/2

≤ Rg (f∗G∗) + λ‖f∗G∗‖2 + 12n−1/2
(

ln 12n+ lnE
[
N
(
ε2

12
,HG, `X

′

∞

)]
− ln δ

)1/2

where the third inequality is due to the definition of f̂G as the minimizer of the empirical problem.
We applied the uniform convergence bound twice, one for the first inequality and the other for the
last inequality.

Since it is always true that Rg (f∗G∗) ≤ Rg
(
f̂G

)
, we have the symmetric upper bound with

probability 1− δ,

|Rg
(
f̂G

)
−Rg (f∗G∗)| ≤

λ‖f∗G∗‖2 + 12n−1/2
(

ln 12n+ lnE
[
N
(
ε2

12
,HG, `X

′

∞

)]
− ln δ

)1/2

.
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By setting λ‖f∗G∗‖2 + 12n−1/2
(

ln 12n+ lnE
[
N
(
ε2

12 ,HG, `
X′

∞

)]
− ln δ

)1/2
= ε/2 and solve for

δ, we have

δ = 12n · lnE
[
N
(
ε2

12
,HG, `X

′

∞

)]
exp

{
−n
(
ε

24
− λn‖f∗G∗‖2

12

)2
}

Thus the bound for the second term is for all ε > 0 and all n > 2/ε2,

P
(
|Rg

(
f̂G

)
−Rg (f∗G∗)| >

ε

2

)
≤

12n · lnE
[
N
(
ε2

12
,HG, `X

′

∞

)]
exp

{
−n
(
ε

24
− λn‖f∗G∗‖2

12

)2
}

The following Lemma is taken from Lemma 1 in [12], which shows the relationship between the
covering number of the direct sum of two operators and the covering numbers of the individual
operators.
Lemma 3. Let S, T : B1 → B2 be operators in real Banach spaces and ε, δ > 0. Then,

N (ε+ δ, T + S) ≤ N (ε, T ) · N (δ, S) .
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B. Complete Simulation Results

µ α M1 M2 M3 M4 M5
1.0000e-10 1.00 0 0 0 0 100
1.0000e-10 2.00 0 0 0 0 100
1.0000e-10 3.00 0 0 0 0 100
1.0000e-10 4.00 0 0 0 0 99
1.0000e-10 5.00 0 0 0 0 10
1.0000e-10 6.00 0 0 0 0 0
1.0000e-10 7.00 0 0 0 0 0
1.0000e-10 8.00 0 0 0 0 0
1.0000e-10 9.00 0 0 0 0 0
1.0000e-10 10.00 0 0 0 0 0
1.1180e-08 1.00 0 0 0 0 100
1.1180e-08 2.00 0 0 0 0 98
1.1180e-08 3.00 0 0 0 0 0
1.1180e-08 4.00 0 0 0 0 0
1.1180e-08 5.00 0 0 0 0 0
1.1180e-08 6.00 0 0 0 0 0
1.1180e-08 7.00 0 0 0 0 0
1.1180e-08 8.00 0 0 0 1 0
1.1180e-08 9.00 0 0 0 77 0
1.1180e-08 10.00 0 0 0 92 0
1.2500e-06 1.00 0 0 0 0 100
1.2500e-06 2.00 0 0 0 0 0
1.2500e-06 3.00 14 0 0 84 0
1.2500e-06 4.00 81 3 4 99 0
1.2500e-06 5.00 90 77 77 99 0
1.2500e-06 6.00 94 92 90 99 0
1.2500e-06 7.00 96 96 95 100 0
1.2500e-06 8.00 98 97 96 100 0
1.2500e-06 9.00 98 97 97 100 0
1.2500e-06 10.00 100 97 97 100 0
1.3975e-04 1.00 0 0 0 0 100
1.3975e-04 2.00 0 95 93 100 0
1.3975e-04 3.00 100 95 92 90 0
1.3975e-04 4.00 100 28 23 9 0
1.3975e-04 5.00 100 13 12 3 0
1.3975e-04 6.00 100 5 7 3 0
1.3975e-04 7.00 100 0 0 2 0
1.3975e-04 8.00 100 0 0 0 0
1.3975e-04 9.00 100 0 0 0 0
1.3975e-04 10.00 100 0 0 0 0
1.5625e-02 1.00 0 0 0 0 100
1.5625e-02 2.00 0 0 0 100 0
1.5625e-02 3.00 100 0 0 0 0
1.5625e-02 4.00 100 0 0 0 0
1.5625e-02 5.00 100 0 0 0 0
1.5625e-02 6.00 100 0 0 0 0
1.5625e-02 7.00 100 0 0 0 0
1.5625e-02 8.00 100 0 0 0 0
1.5625e-02 9.00 100 0 0 0 0
1.5625e-02 10.00 100 0 0 0 0

Table 3: Frequencies that the true group structures are selected under different parameter pairs for the
five models. Exhaustive search algorithm without parameter turning.
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Figure 3: The 3D surface of the frequencies (out of 100) that the true group structures are identified for
the five chosen models in Table 1 over the entire parameters grid. Given a (µ, α) pair, the penalized
goodness of fit is calculated for all group structures. We recorded each time the true group structure
is identified. The values of µ are reported in log-scale. Each surface plot is accompanied with three
contour plots as the 2D projections of the surface to enhance the effect of the visualization.

Figure 4: The 3D surfaces of the frequencies (out of 100) that the true group structures are identified
for the five chosen models in Table 1 over the entire parameter grids. The training procedure uses
a separate validation data set to select the optimal tuning parameters (µ, α). The values of µ are
reported in log-scale. Each surface plot is accompanied with three contour plots as the 2D projections
of the surface to enhance the effect of the visualization.
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Figure 5: The 3D surfaces of the frequencies (out of 100) that the true group structures are identified
for the five chosen models in Table 1 over the entire parameter grids. The training uses the backward
stepwise algorithm and the procedure uses a separate validation data set to select the optimal tuning
parameters (µ, α). The values of µ are reported in log-scale. Each surface plot is accompanied with
three contour plots as the 2D projections of the surface to enhance the effect of the visualization.

C. Complete Results of Real Data Applications

Application 1: Boston Housing Data

Figure 6: The results of applying the backward step-wise algorithm on Boston Housing data with
10-fold CV. The 3D surfaces shows the average validation error over the entire grid of (µ, α) pairs.
The surface plot is accompanied with three contour plots as the 2D projections of the surface to
enhance the effect of the visualization.

21



Application 2: Communities and Crime Data

Figure 7: Selected results for the communities and crime data where the number of murders is the
response. The blue dots are the transformed observation of the predictor variable. The red line is the
estimated function.
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