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A Framework Relation Proofs

A.1 Proof of Theorem 1

Proof. We will use two episodic MDPs, M; and M, which are essentially 2-armed bandits and
hard to distinguish to prove this statement. Both MDPs have one state, horizon H = 1, and two
actions A = {1, 2}. For a fixed a > 0, the rewards are Bernoulli(1/2 + «/2) distributed for actions
1 in both MDPs. Playing action 2 in M; gives Bernoulli(1/2) rewards and action 2 in M5 gives
Bernoulli(1/2 + «) rewards.

Assume now that an algorithm in MDP M with nonzero probability plays the suboptimal action only
at most N times in total, i.e., Py, (no < N) > [ where ns is the number of times action 2 is played
andoo > N > 0,5 > 0. Then

IP)1\/11 (YOO)

IP]Wl (ng < N) = E]Wl []I{TLQ < N}] - E]Mz l:]P)A/I(H

TI{ny < N}}

where Y, = (41, R1, A2, R, ... Ay, Ry) denotes the entire sequence of observed rewards R; and
action indices A; after k episodes. Since Py, (Ak|Yi—1) = Pas, (Ak|Yi—1) and Pay, (Ri|Ar =
1Y, 1) = P, (Ri|Ap = 1,Y—1) and

Par, (RiAv=2Yi1) _ [ 12 12 | _ 1
]P)M2(Rk-|Ak=2,Yk_1) - 1/2+o¢’1/2—o¢ 1 -2«

the likelihood ratio of Y., is upper bounded by (1 + 2a)" if the second action has been chosen at
most N times. Hence

8_;3;11[31%2 [{ny < N} > (1 —2a)VEyy, [

>(1-20)V3>0

P, (Yoo)

P < N]= “Mi\Too)
M2 [nz —_ } IPMZ (YQO)

Therefore, the regret for M is for T large enough Epz, R(T) > (T — N)B(1 — 2a)Na /2 = O(T).
Hence, for the algorithm to ensure sublinear regret for M5, it has to play the suboptimal action for
M infinitely often with probability 1. This however implies that the algorithm cannot satisfy any
finite PAC bound for accuracy € < «/2. O

A.2 Proof of Theorem 2

Proof. PAC Bound to high-probability regret bound: Consider a fixed 6 > 0 and PAC bound with
Fpac = ©(1/£?). Then there is a C' > 0 such that the following algorithm satisfies the PAC bound.
The algorithm uses the worst possible policy with optimality gap H in all episodes on some event F/
and in the first C'/e? episodes on the complimentary event £ For the remaining episodes on F¢ it
follows a policy with optimality gap €. The probability of F is §. The regret of the algorithm on F is
R(T) =TH and on E€ itis R(T) = min{T,C/e?} H + min{T — C/e2,0}e. For T > C/e%, on
any event the regret of this algorithm is at least

CH () C(H—¢)
The quantity
R(T) _ C(H —¢) Ve

T2/3 T2/3¢2

takes its minimum at 7’ = % with a positive value and hence R(T) = Q(T?/3). Therefore a

PAC bound with rate 1/£2 implies at best a high-probability regret bound of order O(TQ/ 3) and is
only tight at 7 = ©(1/&3). Furthermore, by looking at Equation (8), we see that for any fixed ¢,
there is an algorithm that has uniform high-probability regret that is (7).

PAC Bound to uniform high-probability regret bound: Consider a fixed 6 > 0 and € > 0 and
a PAC bound Fpyc that evaluates to some value N for parameter €. The algorithm uses the worst
possible policy with optimality gap H in all episodes on some event E' and in the first NV episodes on
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Figure 3: Relation of PAC-bound and Regret; The area of the shaded regions are a bound on the
regret after 1" episodes.

the complimentary event £ For the remaining episodes on E€ it follows a policy with optimality
gap ¢. The probability of E is §. The regret of the algorithm on E is R(T') = TH and on E it is
R(T) = min{T, N}H + min{T — N,0}e. For T > N, on any event the regret of this algorithm is
at least

R(T)=NH+ (T —N)e =Te + H(T — N) = Q(T).

Uniform high-probability regret bound to PAC bound: Consider an MDP such that at least one
suboptimal policy exists with optimality gap € > 0. Further let L(7') be a nondecreasing function
with Fyppr(T') > L(T) and L(T) — oo as T — oo. Then the algorithm plays the optimal policy
except for episodes k where | L(k —1)/e] # | L(k)/e]. This algorithm satisfies the regret bound but
makes infinitely many ¢/2-mistakes with probability 1.

Uniform high-probability regret bound to expected regret bound: Consider an MDP such that
at least one suboptimal policy exists with optimality gap € > 0. Consider an algorithm that with
probability § always plays the suboptimal policy and with probability 1 — § always plays the
optimal policy. This algorithm satisfies the uniform high-probability regret bound but suffers regret
ER(T) = 6eT = Q(T). O

A.3 Proof of Theorem 3

Proof. Convergence to optimal policies: The convergence to the set of optimal policies follows
directly by using the definition of limits on the Ay sequence for each outcome in the high-probability
event where the bound holds.

(e,9)-PAC: Due to sub-additivity of probabilities, we have

1 1 1 1
(e (Laed) (e ()

g

1 1
=P (Ele’ : Nov > Fpac (/,log )> <.
€ é

High-Probability Regret Bound: This part is proved separately in Theorem A.1 below. O

Theorem A.1 (Uniform-PAC to Regret Conversion Theorem). Assume on some event E an algorithm
Jollows for all € an e-optimal policy Ty, i.e., A, < &, on all but at most

C cs\* G s\
= (ln 3) + % <ln 3)
€ € € €
episodes where C1 > Cy > 2 and C5 > max{H, e} and Cy, Cy, Cs5 do not depend on . Then this
algorithm has on this event a regret of

R(T) < (/CT + C1) polylog(T, Cs,Cy) = O(+/ CoT polylog(T, Cs,Cq, H))
for all number of episodes T
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Proof. The mistake bound g(g) = % (ln %) g + % (111 %)Qk < T is monotonically decreasing for
¢ € (0, H]. For a given T large enough, we can therefore find an €3, € (0, H] such that g(¢) < T
for all € € (emin, H|. The regret R(T') of the algorithm can then be bounded as follows

H
R(T) < Temin +/ g(e)de.

€min

This bound assumes the worst case where first the algorithm makes the worst mistakes possible with
regret H and subsequently less and less severe mistakes controlled by the mistake bound. For a better
intuition, see Figure 3.

We first find a suitable ;. Define y = % (ln %) then since g is monotonically decreasing, it is

sufficient to find a ¢ with g(¢) < T'. That is equivalent to Cyy + Cyy? < T for which
cs\" C,  /CT+ATC,
In —= =9y < - = —
(“ ) V=50, T T oG ¢

is sufficient. We set now

k
 In(Csa)* 20, <1n (C1+/CZ+ 4T02)03>

€min = =
a Cr+ 012 +4TCy 2C5

which is a valid choice as

1 03 k a 03(1 k a k
— <1n €min) :ln(Cga)’“ (ln ln(C3a)k) = 71n(03a)k (In(C3a) — k1InIn(C3a))

SW (In(Csa))” = a.

We now first bound the regret further as

H cs \" 71 |
R(T) <Temin +/ g(e)de < Tepmin + C1 <ln 3 > / ~de + Cy (ln . 3 > / 6—2(16

Emin

€min min min

k 2k
H 1 1
=Temin + C1 (ln Cs ) In + Cy (ln Cs ) { — }
Emin E€min €min E€min H

and then use the choice of €,,;,, from above to look at each of the terms in this bound individually. In
the following bounds we extensively use the fact In(a + b) < In(a) + In(b) = In(ab) for all a,b > 2

and that v/a + b < \/a + /b which holds for all a,b > 0.

k
2TC, (m C3(Cy 4+ /C? + 4T02)>
2

Tf':min =

C1 4+ \/C; 4+ 4TCs Cs
k
2TCy 2/TCy
< 1 1 1 1
< 4T02<nC3+ nC;+InCq; +1n 2Cs )

k
<\/TCy (m(cgo%ﬁ))
Now for a C' > 0 we first look at

Vrav] ) /72
o —nC +1n C1+ Cl +4TCy  klnln 03(01 + Cl +4TCQ)

Emin 202 202

/(12
§1n0+1n Cl + Cl +4T02

2C5
VAT Cy
2C5

In

<InC+InCy+InC; +1n

<In(CC2VT)
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Cs(C144/CE+4TCs) 03201 > e. Hence, we

where the first inequality follows from the fact that

202
can bound
C H k
Ch (mg f”) In— < Cy (m(cg,cff )) In(HCZVT).
Now since
1 C’l—&—\/C +4TCy 03 Cl+\/02+4TCQ T
< + —
Emin 202 02 CQ 02
we get
o (m &) [ <c((002f)) L
2 Emin Emin H|~ 2 s CQ C2

< (In(CsC3VT) ) G+ VTG

As a result we can conclude that R(T) < (VCoT + Cy)polylog(T,C5,C1,H) =
O(VC3T polylog(T, Cs, Cy, H)). 0

B Experimental Details

We generated the MDPs with S = 5, 50, 200 states, A = 3 actions and H = 10 tlmesteps as follows:
The transition probabilities P(s, a t) were sampled independently from Dirichlet ( 5 - 10) and
the rewards were all deterministic with their value 7 (s, a, t) set to 0 with probability 85% and set
uniformly at random in [0, 1] otherwise. This construction results in MDPs that have concentrated
but non-deterministic transition probabilities and sparse rewards.

Since some algorithms have been proposed assuming the rewards (s, a, t) are known and we aim
for a fair comparison, we assumed for all algorithms that the immediate rewards (s, a, t) are known

and adapted the algorithms accordingly. For example, in UBEV, the min {1 — Usat) ¢}

» max{1,n(s,a,t)}
term was replaced by the true known rewards 7 (s, a, t) and the § parameter in ¢ was scaled by 9/7
accordingly since the concentration result for immediate rewards is not necessary in this case. We
used § = 1—10 for all algorithms and € = 1—10 if they require to know ¢ beforehand.

We adapted MoRMax, UCRL2, UCFH, MBIE, MedianPAC, Delayed Q-Learning and OIM to the
episodic MDP setting with time-dependent transition dynamics by using allowing them to learn
time-dependent dynamics and use finite-horizon planning. We did adapt the confidence intervals and
but did not re-derive the constants for each algorithm. When in doubt we opted for smaller constants
typically resulting better performance of the competitors. We further replaced the range of the value
function O(H) by the observed range of the optimistic next state values in the confidence bounds.
We also reduced the number of episodes used in the delays by a factor of 1000 for MoRMax and
Delayed Q-Learning and by 10~ for UCFH because they would otherwise not have performed a
single policy update even for S = 5 within the 10 million episodes we considered. This scaling
violates their theoretical guarantees but at least shows that the methods work in principle.

The performance reported in Figure 2 are the expected return of the current policy of each algorithm
averaged over 1000 episodes. The figure shows a single run of the same randomly generated MDP but
the results are representative. We reran this experiments with different random seeds and consistently
obtained qualitatively similar results.

Source code for the experiments including concise but efficient implementations of the algorithms is
available at https://github.com/chrodan/FiniteEpisodicRL. jl.

C PAC Lower Bound

Theorem C.1. There exist positive constants c, &g > 0, €0 > 0 such that for every ¢ € (0,¢0),
S >4, A > 2 and for every algorithm A that and n < 6‘45721{3 there is a fixed-horizon episodic MDP
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M}, qrq with time-dependent transition probabilities and S states and A actions so that returning an
e-optimal policy after n episodes is at most 1 — 6g. That implies that no algorithm can have a PAC

AS H ) for sufficiently small .

guarantee better than ) (

Note that this lower bound on the sample complexity of any method in episodic MDPs with time-
dependent dynamics applies to the arbitrary but fixed € PAC bound and therefore immediately to the
stronger uniform-PAC bounds. This theorem can be proved in the same way as Theorem 5 by Jiang
et al. [4], which itself is a standard construction involving a careful layering of difficult instances of
the multi-armed bandit problem.* For simplicity, we omitted the dependency on the failure probability
d, but using the techniques in the proof of Theorem 26 by Strehl et al. [5], a lower bound of order
Q ASZH3
€

log(SA/d )) can be obtained. The lower bound shows for small € the sample complexity
of UBEYV given in Theorem 4 is optimal except for a factor of H and logarithmic terms.

D Planning Problem of UBEV

Lemma D.1 (Planning Problem). The policy update in Lines 3—-9 of Algorithm 1 finds an optimal
solution to the optimization problem

pax B [Vi(5)]
Vs € S,a €At € [H]:
Viryq =0, P'(s,a,t) € Ag, r'(s,a,t) € [0,1]
Vi (s) =r'(s,7'(s,1),t) + Eg P! (s, (5,),t) [ t+1]
[(P'(s,a,t) = Pi(s,a,t) "V | < é(s,a,t)(H —t)
|7 (s,a,t) — (s, a,t)| < ¢(s,a,t)

where ¢(5 a t) _ 2llnp(n(s,aﬁt()s)—gltn)ﬂSSAH/é)

m(s',s,a,t)/n(s,a,t) are the empirical transition probabilities and i (s, a, t) = I(s, a,t)/n(s, a,t)
the empirical average rewards.

is a confidence bound and Py(s'|s,a,t) =

Proof. Since ‘N/H+1 (+) is initialized with 0 and never changed, we immediately get that it is an optimal
value for V; . (-) which is constrained to be 0. Consider now a single time step ¢ and assume V;/, ;

are fixed to the optimal values ‘7t+1- Plugging in the computation of () into the computation of
Vi(s), we get

7i(s) = max Q(e) = ma | min {1,7(5.0,0) + 6(5,0.1)

+ min {max Vier, {n(s,a,t) > 0}(P(s,a,t) Vig1) + (s, a,t)(H — t)}}

using the convention that #(s, a,t) = 0 if n(s, a,t) = 0. Assuming that V//,; = V;1, and that our
goal for now is to maximize V;(s), this can be rewritten as

Vi(s) = "(s,7'(s,t),t) + P'(s,7'(s,t),t) "V,
P/(s,ar,g?:'((s,a,t) i(s) = P'(s,a,t), TH%?); t),7 (5,8) (s, (s, 8),8) + s, m(5,8),8) Vi
st.  VYaeA:r'(s,a,t) €10,1], P'(s,a,t) € Ag

|(P/(Svavt) - Pk(s,a,t))TVt'H| S¢(S’a’t)(H - t)
|r'(s,a,t) — F1(s,a,t)| <é(s,a,t)

since in this problem either P’ (s, 7' (s,t),t)T Viy1 = P(s,7(s,1),t)T Viy1 + &(s, a, t)(H — t) if
that does not violate P’'(s,7'(s,t),t)T V;41 < maxV;,1 and otherwise P'(s’,s,7/(s,t),t) = 1

*We here only use H/2 timesteps for bandits and the remaining H /2 time steps to accumulate a reward of
O(H) for each bandit
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for one state s’ with V;1(s') = max V;;. Similarly, either +/(s, 7' (s, t),t) = #(s,7’(s,t),1) +
¢(s,m'(s,t),t) if that does not violate r'(s, 7' (s, t),t) < 1 orr'(s,n'(s,t),t) = 1 otherwise. Using
induction fort = H, H — 1...1, we see that UBEV computes an optimal solution to

/-
3%, Vi)
Vs € S,a €At € [H]:
Vireq =0, P'(s,a,t) € Ag, r'(s,a,t) € [0,1]
VZ(S) :T/(S77TI(S>t)7t) +Es NP/ srr’(s t t [ t+1]
|(PI(S’a7t) —Pk(S,a,t)) ‘/;+1| < (b( s, a, )( )
|7 (s,a,t) — (s, a,t)| < ¢(s,a,t)

for any fixed 5. The intersection of all optimal solutions to this problem for all § € S are also an
optimal solution to

Tyt
P X P Vi
Vs € S,a €At € [H]:
Vire1 =0, P'(s,a,t) € Ag, r'(s,a,t) € [0,1]

th(s) :T/(S7 Wl(s’ t)a t) + ES/NPI(SJTI(S,t) t)[ t+1]
|(P/(S’a7t)_Pk(s>a’t))—rv;fl+1| < é(s, a, t)( )
|7 (s,a,t) — F1(s,a,t)| < P(s,a,t).
Hence, UBEV computes an optimal solution to this problem. O

E Details of PAC Analysis

In the analysis, we denote the value of n(-,t) after the planning in iteration & as n (). We further
denote by P(s'|s, a,t) the probability of sampling state s’ as s;+1 when s; = s, a; = a. With slight
abuse of notation, P(s, a,t) € [0,1]” denotes the probability vector of P(-|s, a,t). We further use
Py.(s'|s,a,t) as conditional probability of s, = &' given s, = s, a; = a but in the optimistic MDP
M computed in the optimistic planning steps in iteration k. We also use the following definitions:

ECe

Wmin _wmln - HQS
1
Ce =~
3

Ly, ={(s,a) € S x A : wi(s,a) > Wpin}
llnp(z) =In(In(max{z, e}))
rng(x) = max(x) — min(x)
5

§ ==
9

In the following, we provide the formal proof for Theorem 4 and then present all necessary lemmas:

E.1 Proof of Theorem 4

Proof of Theorem 4. Corollary E.5 ensures that the failure event has probability at most §. Out-

side the failure event Lemma E.2 ensures that all but at most M polylog(A, S, H,1/¢,1/9)
episodes are friendly. Finally, Lemma E.8 shows that all friendly episodes except at most

(928& + 417S) %H(l polylog(A, S, H,1/¢,1/6) are e-optimal. The second bound follows from
replacing AS? by 1/¢ in the second term. Furthermore, outside the failure event Lemma E.2 ensures
that all but at most @ polylog(A, S, H,1/e,1/0) episodes are nice. Finally, Lemma E.7 shows
that all nice episodes except at most (4 + S) 576 AS€H4 polylog(A, S, H,1/¢,1/6) are e-optimal.
O
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E.2 Failure Events and Their Probabilities

In this section, we define a failure event F' in which we cannot guarantee the performance of UBEV.
We then show that this event F' only occurs with low probability. All our arguments are based on
general uniform concentration of measure statements that we prove in Section F. In the following we
argue how the apply in our setting and finally combine all concentration results to get P(F') < 4. The
failure event is defined as
F={J[FYuFSNUFRf UFY UR! URT
k

1 SAH
N .
F.' =4q3s,a,t: ng(s,a) < 3 E<k wei(s,a) —In 5 }

i<k

1 S2A%H?
FEN = {Hs,a, sha  u<t:ng(s,a) < inuk(s’,a’) szi(s,abl,a’) —In (6’)

. VX 1)? AH
3s,a,t: |(Py(s,a,t) — P(s,a,t) V| > \/mg(ﬂl) (2 llnp(nsx(s,a)) + 1In 35 ) }
Nk (s, a) o

2P(s'|s,a,t)

n (s, a)

3S2AH>

(2 Inp(n(s,a)) + In 5

EF :{Els,s’,a,t: |Pe(s']s,a,t) — P(s'|s,a,t)| > \/

! 3S2AH
ot (2mp(osts,a + 1w 25

o (5.3) (2 lnp(nik(s,a)) + In 5

~ S _
F! {Hs,a,t: |P(s,a,t) — P(s,a,t)|1 z\/ 35AH(22>>}

3SAH
R _ < p _ > Ri—
F {Els,a,t Pk(s,a,t) — (s, a,t)] > \/ntk(s,a) (2 Inp(ne(s,a)) +1n 5 ) } :

We now bound the probability of each type of failure event individually:
Corollary E.1. For any &' > 0, it holds that P (UZO:1 F,X) < 26" and P (Uzozl F,CR) < 24’

Proof. Consider a fix s € S,a € A,t € [H| and denote Fj, the sigma-field induced by the first
k — 1 episodes and the k-th episode up to s; and a; but not s;;1. Define 7; to be the index of
the episode where (s, a) was observed at time ¢ the ith time. Note that 7; are stopping times with
respect to F;. Define now the filtration G; = F,, = {A € Foo : AN{r, <t} € F Vt > 0}
and X, = (V21 (s},) — P(s,a,t) TV )I{7), < oo} where s/ is the value of s, in episode 7; (or
arbitrary, if 7; = 00).

By the Markov property of the MDP, we have that X; is a martingale difference sequence with
respect to the filtration G;. Further, since E[X;|G;_1] = 0 and |X;| € [0,rng(V% )], X; condi-
tionally rng(V;% )/2-subgaussian due to Hoeffding’s Lemma, i.e., satisfies E[exp(AX;)|G;—1] <

exp(A? mg(Vi)?/2).
We can therefore apply Lemma F.1 and conclude that

P (Elk |(Pr(s,a,t) — P(s,a,t) Vi, | > \/

mg (V)2
n (s, a)

(2 Inp(n(s,a)) + In ;)) <24

Analogously

1 3
" - N 2 <26 .
P <3k [7k(s,a,t) —7(s,a,t)| > \/mk(s,a) (2 lInp(nex (s, @) + In 5’)) =
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Applying the union bound over all s € S,a € A and t € [H], we obtain the desired statement for
FV'. In complete analogy using the same filtration, we can show the statement for F'*. O

Corollary E.2. Forany §' > 0, it holds that P (U, F') < 2.

Proof. Consider first a fix s',s € S, ¢ € [H] and a € A. Let K denote the number of times the
triple s, a, t was encountered in total during the run of the algorithm. Define the random sequence
X, as follows. For i < K, let X; be the indicator of whether s’ was the next state when s, a, t
was encountered the ith time and for ¢ > K, let X; ~ Bernoulli(P(s'|s, a,t)) be drawn i.i.d. By
construction this is a sequence of i.i.d. Bernoulli random variables with mean P(s’|s, a, t). Further
the event

U { ‘Pk(S’lmvt) — P(s']s, a,t)’ >\/2P(8/|s’a’t) (2 llnp(n(s, a,t)) + In ?’SQAH>

- n (s, a) o
1 352AH
—+ m (2 an(ntk(S, a)) + ln (S/ ) }

is contained in the event

2 1 AH
U {|ﬂz —pl > \/Z'u <2 lInp(é) + In ;) +s (2 IInp(i) + In 335/) }

%

whose probability can be bounded by 26" /S?/A/H using Lemma F.2. The statement now follows by
applying the union bound. O

Corollary E.3. For any &' > 0, it holds that P (UZOZI FkLl) <¢

Proof. Using the same argument as in the proof of Corollary E.2 the statement follows from
Lemma F.3. O

Corollary E.4. It holds that

P (UFQ) <¢ and P (UF,SN> <.
k

k

Proof. Consider a fix s € S,a € A,t € [H]. We define F, to be the sigma-field induced by
the first k£ — 1 episodes and X}, as the indicator whether s, a,t was observed in episode k. The
probability wy (s, a) pf whether X, = 1 is F}, measurable and hence we can apply Lemma F.4 with

W=In% ?,H and obtain that P (U e N ) < ¢’ after applying the union bound.

For the second statement, consider again a fix s,s’ € S,a,a’ € A,u,t € [H] with u < t and
denote by Fj, the sigma-field induced by the first £ — 1 episodes and the k-th episode up to s,,
and a, but not s,1. Define 7; to be the index of the episode where (s’,a’) was observed at
time u the ¢th time. Note that 7; are stopping times with respect to F;. Define now the filtration
G =F, ={A € Fu : An{r <k} € F Vk > 0} and X, to be the indicator whether
s,a,t and s’,a’, u was observed in episode 7;. If 7; = oo, we set X; = 0. Note that the probablity
wt.(s,als’,a")I{7; < oo} of X; = 11is G;-measureable.

By the Markov property of the MDP, we have that X; is a martingale difference sequence with respect
to the filtration G;. We can therefore apply Lemma F.4 with W = In £ : ‘?;H ® and using the union
bound over all s,a, s’,a’, u,t, we get P (Uk FkCN) <4 O

Corollary E.5. The rotal failure probability of the algorithm is bounded by P (F) < 9§’ = 4.

Proof. Statement follows directly from Corollary E.1, Corollary E.2, Corollary E.3, Corollary E.4
and the union bound. O
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E.3 Nice and Friendly Episodes

We now define the notion of nice and the stronger friendly episodes. In nice episodes, all states either
have low probability of occuring or the sum of probability of occuring in the previous episodes is
large enough so that outside the failure event we can guarantee that

nek (s, a) Z wyi (s, a)
z<k
This allows us to then bound the number of nice episodes by the number of times terms of the form
H
Inp(n (s, a)) + D
> D wu(sa)
Nk (s, a)

t=1 s,a€ L

can exceed a chosen threshold (see Lemma E.3 below). In the next section, we will bound the
optimality gap of an episode by terms of such form and use the results derived here to bound the
number of nice episodes where the algorithm can follow a e-suboptimal policy. Together with a
bound on the number of non-nice episodes, we obtain the sample complexity of UBEV shown in
Theorem 4.

Similarly, we use a more refined analysis of the optimality gap of friendly episodes together with
Lemma E.4 below to obtain the tighter sample complexity linear-polylog in S.

Definition 2 (Nice and Friendly Episodes). An episode k is nice if and only if forall s € S, a € A
and t € [H| the following two conditions hold:

1 SAH
wik(s,a) < Wmin~ V 1 ;wti(s,a) > 1In 5

An episode k is friendly if and only if it is nice and for all s,s' € S, a,a’ € A and u,t € [H] with
u < t the following two conditions hold:

1 S2AZH?
why (s,als’,a) <wly, Vv 1 szi(s,a\s’,a’) > 1In —
i<k
We denote the set of all nice episodes by N C N and the set of all friendly episodes by K C N.

Lemma E.1 (Properties of nice and friendly episodes). If an episode k is nice, i.e., k € N, then on
F€ (outside the failure event) forall s € S, a € Aandt € [H] with u < t the following statement
holds:

Wik (s,a) < Wmin - V' 1uk(s; a) an s,a)
2<k
If an episode k is friendly, i.e., k € K, then on F°¢ (outside the failure event) for all s,s' € S,
a,a’ € Aandu,t € [H] with u < t the above statement holds as well as

1
whp(s,als’ a) <why, Vo (s a) > Znuk(s’7a’) Zwii(s,ab',a').

min
i<k

Proof. Since we consider the event FN °, it holds for all s, a, ¢ triples with Wi (8, @) > Wmin

SAH 1
ne(s,a) > Zw“sa 5 ZZZwti(s,a)

z<k i<k

for k € N Further, since we only consider the event FF'N “we have forall 5,5 € S, a,d’ € A,
u,t € [H) withu < t and w’, (s,als’,a’) > Wmin

S2A2H?
n2

1
nik(s,a) > inuk(s',a’) wa“-(s,a|s’,a’) -1 5

i<k
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for k € E. If nu(s',a’) = 0 then nyi(s,a) > 0 = tnyi(s',a’) X, whi(s,als’,a’) holds
trivially. Otherwise n,(s’,a’) > 1 and therefore

1 S2A%ZH?
nik (s, a) zinuk(s’, a’) Z wh;(s,als’,a’) —In —5
i<k
]‘ / !/ t / I 1 t / !/
Zinuk(s , @ ) ZU)M-(S,G,LS @ ) 2 Zwui(sva|s , @ )
i<k i<k
Zinuk(s’,a’) Zwii(s,ds’,a’)
i<k

O

Lemma E.2 (Number of non-nice and non-friendly episodes). On the good event F'¢, the number of
episodes that are not friendly is at most

3 A2 774 2 A2 772
4SSAH1nSAH
€ o’

and the number episodes that are not nice is at most

6S2AH3 SAH
In .
€ o’

Proof. If an episode k is not nice, then there is s, a, t with wy (s, a) > wmin and ), wei(s,a) <

41n £ ?,H . Since the sum on the left-hand side of this inequality increases by at least wy,;, when this

happens and the right hand side stays constant, this situation can occur at most

ASAH SAH 24S?AH3  SAH
In = In
Winin o’ € o’

times in total. If an episode k is not friendly, it is either not nice or there is s, a,t and ', a’, u with
2 42772 .
u < tandw,(s',d'|s,a) > wl,;, and >, w;(s,als’,a’) < 4In =4 Since the sum on the
left-hand side of this inequality increases by at least w/, ;, each time this happens while the right hand
. . 2 42 72 2 42772 . .
side stays constant, this can happen at most 4Sw’,4 A 1p S “3, H times in total. Therefore, there can

min

only be at most

4SAH .= SAH 4S2A2H? S2A%2H?
n + In

1
Wmin o' w;nin o’
4S2AH®  SAH 4S3A?H* S?A2H?  48S3A’H* S?A%H?
= In + In < In
C.E o’ CeE o' g2 o’
non-friendly episodes. O

Lemma E.3 (Main Rate Lemma). Let r > 1 fix and C' > 0 which can depend polynomially on the
relevant quantities and &' > 0 and let D > 1 which can depend poly-logarithmically on the relevant
quantities. Then

np\ngp(s,a r
Z Z wtk(s,a) (O(H p( k(7 ))+D)> SE/

n (s, a)

on all but at most
8CASH" _ _
— polylog(S, A, H,6*,&'71).

nice episodes.
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Proof. Define

np(n(s, a r
Ak:Z Z wtk(S,a)(O(H p( k(a ))+D)>

t s,a€Lu ntk(&a)

=3 > wnl(sa) (wtk@ a)C(an(”tk(S,a))+D)>1/7’.

t s,a€Lup nek (s, a)

We first bound using Holder’s inequality

Z Z CH"™ Ywy (s, a)(Inp(nek(s,a)) + D)

t s,a€Lyy ntk(s CL)

Using the property in Lemma E.1 of nice episodes as well as the fact that w;(s,a) < 1 and

ik weils,a) > 4In 2482 > 41n(2) > 2, we bound

n (s, a) Ewnsa Ewnsa

z<k z<k

The function W

allows us to bound
INESD CH™ 'wy,(s, a) (Inp(nx(s, a)) + D)

n(s, a)

is monotonically decreasing in x > 0 since D > 1 (see Lemma E.6). This

t s,a€Lyy
wek (s, a) (llnp (% D icr weil(s, a)) + D)
C r—1 =
<8CH gs,anLm Zigk wy; (s, a)
. wik (5, a) (llnp (ZK,C wy; (s, )) + D)
<8CH"! zt:w;m > i<k wii(s, ) .

Assume now Ay, > ¢’. In this case the right-hand side of the inequality above is also larger than &'
and there is at least one (s, a, t) with wy (s, a) > W, and

8CSAH" (llnp (Zigk wy (s, a)) + D)
Zigk wti(s’ a’)

llnp (Zigk Wtg (5, a)) + D el
Zi<k wyi (s, a) >SCSAHT'

>EIT’

=

Let us denote C" = 8¢45H°  Since Imp@)+D s monotonically decreasing and « = C"2 + 3C" D

satisfies an(xHD ‘f+D < &, we know that if D ik Wei(s,a) > C'? 4+ 3C' D then the above
condition cannot be satlsﬁed for s,a,t. Since each time the condition is satisfied, it holds that

Wik (S, a) > Wmin and so D, wtz(s a) increases by at least wy,;y, it can happen at most

< ASH(C"? +3C'D)

Wmin
times that A, > ¢’. Define K = {k : Ay > &’} N N and we know that |K| < m. Now we consider
the sum

Z AL < Z p— Z Z Wi (s, a) (llnp (EKk wy; (s, )) + D)

keK kEK t s,a€Luk 2i<k Wei(s, a)

<8CH"~' (Imp (C?+3¢'D)+D) > S % wik (s, a)

T et bere ik Wil a){wii(s, @) 2 wiin}
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For every (s, a,t), we consider the sequence of wy;(s,a) € [Wmin,1] withi € I = {i € N :
wy; (8, @) > wpmin } and apply Lemma E.5. This yields that

wek (s, a) < me >
<1+ In(m/wmin In
ke K Zz<k wtz(s a)H{wtz(S a) > wmm} ( / ) Wmin

and hence

> A} <8CASH"In ( > (Inp (C" +3C'D) + D)
keK Wmin
Since each element in K has to contribute at least €’” to this bound, we can conclude that

8CASH’ In ( me

Wmin

S KAL) A=< K| <

) (Inp (C" +3C'D) + D).
keN keK

Since In (wﬁen) (Ilnp (C"? + 3C'D) + D) is polylog(S, A, H,6~*,&'~"), the proof is complete.

O

Lemma E.4 (Conditional Rate Lemma). Let r > 1 fix and C' > 0 which can depend polynomially
on the relevant quantities and &' > 0 and let D > 1 which can depend poly-logarithmically on the
relevant quantities. Further T' C [H| is a subset of time-indices with u < t for all t € T. Then

DY whilsals, a)(C(llnp(ntk(37“))"‘D))l/rSE,(llnp(nuk(sl,a’)—&-D—l—l)l/T

teT s,acLut nek (s, ) nuk (', @')

on all but at most
8CAS|T|" 1
% polylog(S, A, H, 67, &'~ 1).
friendly episodes E.

Proof. The proof follows mainly the structure of Lemma E.3. For the sake of completeness, we still
present all steps here. Define

np(nw (s, a L

teT s,acLut nek (s, )

_Z Z (s,als’, a)l—l/r (wtk(s als’ a,)c(llnp(ntk(87a))_|_D)>1/7".

teT s,acLut nek (s, )

We first bound using Holder’s inequality

c|T|m=t(1 D
Z Z (s,a|s,a) | T|"~" (np(ne (s, @) + D)
t>u 5,0 L0t nui(s, @)
Using the property in Lemma E.1 of friendly episodes as well as the fact that w! (s, a|s’,a’) <1
and Y, _, wh;(s,als’,a’) > 41n% > 41n(2) > 2, we bound
1 1
(s, a) > Znuk(s’7a’) gwii(s,ﬂs',a') > gnuk(s’, a’) ;wzi(s,a\s’7a’).
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The function 12R@)+D

allows us to bound

A <Z Z (s,als’, a)C‘TV_ (lnp(nyk(s,a)) + D)

ne (s, a)

is monotonically decreasing in x > 0 since D > 1 (see Lemma E.6). This

teT s aeL""t
t (s,a\s’,a’)(llnp < nuk(s a ) Zz w'ﬁi(sﬂ a|s’, a’)) + D)
<8CIT YOS <k ul
teT ety nuk(s,a)zigkwm(s,ab,a)

t AN t ! !
wuk(&a‘s ,a )(an Zi kwui(57a|5 ,a ) + llnp(nUk(S , @ )) + D + 1)
<8CITH Y > ( < )

teT s,acLyt nuk (s’ a’) Zz<k w},;(s,als’,a’)

)

where for the last line we used the first and last property in Lemma E.6. For notational convenience,
/ 1/r
we willuse D’ = D + 1 + llnp(n,,(s', a’)). Assume now Ay > ¢’ (W) . In this case the

right-hand side of the inequality above is also larger than &' (%) and there is at least one

(s,a,t) withw!, (s,als’,a’) > Wi and
8CSA|T|" (llnp (Eigk wzi(s,a|s',a')) + D’)
Zi<k witu(sv a|5/7 a/)

(llnp (ZKk w!;(s,als’,a )) + D’) Dl
ik whi(s, als’, a’) ZRCSAIT]"

>D'e™

=4

8CAS\T\T _ Since

Let us denote C’ = “np(fﬂ) +D g monotonically decreasing and = = C"% + 3C’

satisfies an(xHD < IJFD <D ‘fﬂ < D7 we know that if Yick Whi(s,als’,a’) > C"?+3C"
then the above condition cannot be satlsﬁed for s, a t. Since each time the condition is satisfied, it
holds that wy, (s, als’,a’) > wmin and so 37, wi,; (s, als’, a’) increases by at least wpin, it can
happen at most

- AS|T|(C" + 3C")

Wmin

, 1/r , 1/r
times that Ay > &’ <%> . Define K = {k AL > € (#) } N E and we know

nuk(s VG‘I nuk/(s 70‘/)

that | K| < m. Now we consider the sum

why (s, als’, @) (Inp (Y, wh(s,als', @) + D)
PIEVED LD DD -

keK keK teT s,acLyt Mk (8',0) 2icp, wei(s, als’s @)

8C\T|’“ '(Ilnp (C" + 3C")

+ D) wt, (s, als’,a
i k(S a) Z Z Z uk(t ‘ ,)

teT s, aEL‘” keK Zigk w“i(s’ a|8 ’a’)

SC\T|T 1D'(Inp (C™ 4+ 3C") +1)

wy, (s, als’, a’)
Z Z Z Zz<kw (S G‘S a )]I{w (S’G"S/,a/) Z wmin}

Nk (s, a")
uk( teT s,ac Lyt keK

For every (s, a,t), we consider the sequence of w!;(s,als’,a’) € [wmin, 1] withi € [ = {i e N :
wt.(s,als’,a’) > wpin } and apply Lemma E.5. This yields that

Z wt (s, als’,a’) - ln< me >

= D i<k Whi(s,als’s @) {wy, (s, als’,a’) > wmin} ~ Winin
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and hence

SCAS|T|"D' (11 C"”? 4+ 3¢’ 1
ZAZS 7| (np( + )+)1n me
Nk (s, a")

Wmin

keK

Since each element in K has to contribute at least % to this bound, we can conclude that

S A= =) A, =€}

keE keK

<|K| <

8CAS|T|"
- In

! ( me ) (lnp (C"2 +3C") +1).

Wmin
Since In (Ium—e) (Ilnp (C" + 3C") + 1) is polylog(S, A, H,6~*,&'~1), the proof is complete. [
Lemma E.5. Ler a; be a sequence taking values in [amin, 1] with amin > 0 and m > 0, then

$ (),

k .
k=1 Zi:l a; Gmin

Proof. Let f be a step-function taking value a; on [i — 1,4) for all <. We have F(t) := fot f(z)dz =
Zle a;. By the fundamental theorem of Calculus, we can bound
- ak a1 " f(=)
:——i—/ ——————dx=1+InF(m)—InF(1)
kzz:l Zle a; @ 1 F(x) - F(0)

<l+In(m) —Inamm, =1n ( me > ,

Gmin

where the inequality follows from a; > ap,i, and 221 a; <m. O]

Lemma E.6 (Properties of llnp). The following properties hold:
1. llnp is continuous and nondecreasing.

2. f(x) = W withn > 0 and D > 1 is monotonically decreasing on R .

3. llnp(zy) < llnp(z) + Unp(y) + 1 for all z,y > 0.

Proof. 1. For z < e we have llnp(z) = 0 and for > e we have llnp(z) = In(In(x)) which is
continuous and monotonically increasing and lim,~ . In(In(z)) = 0.

2. The function llnp is continuous as well as 1/x on Ry and therefore so it f. Further, f is
differentiable except at x = e/n. For x € [0,e/n), we have f(x) = D/x with derivative
—D/x? < 0. Hence f is monotonically decreasing on x € [0,e/n). For z > e/n, we have
flx) = 7111(1“(’?)”[) with derivative

D + In(In(nx)) 1 _ 1 —In(nz)(D + In(In(nx)))

x? 22 In(nz) x? In(nx)

The denominator is always positive in this range so f is monotonically decreasing if and
only if In(nz)(D — In(In(nz))) > 1. Using D > 1, we have In(nz)(D + In(Iln(nx))) >
1(1+0) =1

3. First note that for zy < e® we have llnp(zy) < 1 < llnp(z) + llnp(y) + 1 and therfore the
statement holds for z,y < e.

Then consider the case that z,y > e and llnp(z) + llnp(y) + 1 — llnp(zy) = Inlnz +
Inlny+ 1 —In(In(x) + In(y)) = —In(a 4+ b) + 1 + In(a) 4+ In(d) where a = Inx > 1 and
b =1Iny > 1. The function g(a,b) = —In(a + b) + 1 + In(a) + In(b) is continuous and
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differentiable with % = a(a 5y > 0 and ag = b(a Ty > 0. Therefore, g attains its minimum

on [1,00) x [1,00) ata = 1,b = 1. Since g(1,1) = 1 — In(2) > 0, the statement also holds
for x,y > e.

Finally consider the case where z < e < y. Then llnp(zy) < llnp(ey) = In(1 + Iny) <
Inlny + 1 <llnp(z) + lnp(y) + 1. Due to symmetry this also holds for y < e < z.

E.4 Decomposition of Optimality Gap

In this section we decompose the optimality gap and then bound each term individually. Finally, both
rate lemmas presented in the previous section are used to determine a bound on the number of nice /
friendly episodes where the optimality gap can be larger than €. The decomposition in the following
lemma is a the simpler version bounding the number of e-suboptimal nice episodes and eventually
lead to the first bound in Theorem 4.

Lemma E.7 (Optimality Gap Bound On Nice Episodes). On the good event F¢ it holds that
Vi¥(s0) — V™ (s0) < € on all nice episodes k € N except at most
144(4+ 3H* + 4SH?*)ASH?
o2

polylog(A, S, H,1/¢,1/0)

episodes.

Proof. Using optimism of the algorithm shown in Lemma E.16, we can bound
Vi (so) = V™ (s0)
<|V” s0) = V1" (s0)]

H
<ZZwtk (s,a) (s,a,t) — P(s,a,t))T‘N/tTﬂ +ZZwtk(s,a)\fk(s,a7t) —r(s,a,t)|

t=1 s,a t=1 s,a
Z Z wy(s,a)|(Pe(s, a,t) — P(s,a,t)) Vt’fﬁl| +Z Z wik (8, a)|Tr(s,a,t) —r(s,a,t)]
t=1 s,a€Ly t=1 s,a€ Ly

H
—I—Z Z wtk(s,a)|(l5k(s,a,t) P(s,a,t)) Vti’“l| —|—Z Z wik(s,a)|Tk(s,a, t) —r(s,a,t)|

t=1 s,a¢ Lk t=1s,a¢ Lk

H H
S D) DTS D DT [ ATETRS et

s,a¢ Ly t=1 s,a€ Ly
+ |(]5k(s7a,t) — P(s,a,t))T‘ZTﬂ + |7k (s, a,t) — (s, a,t)} 9)

The first term is bounded by c.c = % We now can use Lemma E.9, Lemma E.10 to bound the other
terms by

H /
D3 wtk@,av 8(H + HVS +2)° (unpmtk(s?a)) w2 )

t=1s,a€ Lok nek (s, )

We can then apply Lemma E.3 with r = 2, C' = 8(H + H\F+ 2)%, D = $1n 8524 (> 1 for any
nontrivial setting) and ¢’ = 2¢/3 to bound this term by on all nice eplsodes except at most
64(H + V'SH + 2)?ASH?3?
4¢?
< 144(4 + 3H? + 4SH?)ASH?
< -

polylog(A, S, H,1/e,1/9)

polylog(A, S, H,1/e,1/5)

Hence V*(s9) — V™" (s0) < € holds on all nice episodes except those. O
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The lemma below is a refined version of the bound above and uses the stronger concept of friendly
episodes to eventually lead to the second bound in Theorem 4.

Lemma E.8 (Optimality Gap Bound On Friendly Episodes). On the good event F° it holds that
po (Vi — V™) < ¢ on all friendly episodes E except at most

4
(92516 n 4175) ASH

polylog(S, A, H,1/¢,0)

. . 2
episodes if 0’ < ?ﬂ#.

Proof. We can further decompose the optimality gap bound in Equation (9) in the proof of Lemma E.7
as

H H
SN HADwmn+Y. > wtk(s7a)[|(]5k(s,a,t)—Pk(s,a,t))—rﬂfr’“ﬂ—&-|77k(s,a,t)—r(s7a,t)|

t=1 s,a¢ Ly t=1 s,a€ Ly
+(Pe(s, a,t) — P(s,a,4) "V |+ |(Pa(s, a,t) — P(s,a, 1) T (Vi — Vi)l -

Scce+ Y Y wu(s,a) D(ﬁk(s, a,t) — Py(s,a,8) TV |+ [7x(s,a,t) — r(s,a,t)|
t=1 s,a€ Ly

n (Pe(s.a,1) — P<s7a,t>>Tvt*H|}

+3 3 wals l(Bu(s,a,t) — Plsat) (Vi - V)L

t=1 s,a€ Ly
The second term can be bounded using Lemmas E.11, E.10 and E.9 by

Z S \/32(H+ 1)2 (an(ntk(s,a)) . %m 65;11{)

t=1 s,a€ Ly ntk(s a)

which we bound by £/3 using Lemma E.3 with 7 = 2, C = 32(H + 1)%, D = 11n %324 and
¢’ =¢/3 onall friendly episodes except at most

SCAS 9216 ASH*

polylog(S A H,1/e,1/0) < (S, A, H,1/e,1/9).

polylog

Finally, we apply Lemma E.12 bound to bound the last term in Equation E.4 by £/3 on all friendly
epsiodes but at most

417AS?H*
UTASTHT polylog(S, A, H,1/6,1/¢).

It hence follows that pJ (V;* — V™) < ¢ on all friendly episodes but at most

<9216ASH4 n 417AS2H4>
€

= polylog(S, A, H,1/5,1/¢).

Lemma E.9 (Algorithm Learns Fast Enough). I holds forall s € S,a € Aandt € [H]

2

[(Pe(s, a,t) — Pe(s, a,t)) Vig| <\/ 1 3SAH>.

— (1 =1
nix (8, a) ( np(nui (s, @)) + 2 . o’
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Proof. Using the definition of the constraint in the planning step of the algorithm shown in Lemma D. 1
we can bound

~ N H?
|(Pr(s,a,t) — Pg(s, a,t))TVtH\ <y —— <2 llnp(n(s,a)) + In
n (s, a)

2H? 1. 3SAH
<G —— (11 -1 .
_\/ntk(S,a) ( np(ne (s 0)) + 2 Ty )

Lemma E.10 (Basic Decompsition Bound). On the good event F€ it holds for all s € S,a € A and
t € [H]

3SAH
o’ '

O

. ~ 8H2S 1. 6SAH
_ T <, 2= -
|(Pr(s,a,t) — P(s,a,t)) Vigi| _\/ntk(s,a) <llnp(ntk(s,a)) + 5 In 5 )
4 1. 3SAH
r — </ —— (11 -1 .
|Tk(87a’t) T(S7a’t)| _\/’ntk(s,a) ( np(ntk(&a)) + 2 . o )

Proof. On the good event (F kLl )c we have using Holder’s inequality
|(Py(s,a,t) = Pls,a,8)) " Viga| <[ Pa(s, a,t) = P(s, a,0) |1l Visa oo

1 3SAH(25 —2)
SH\/W (2 llnp(n(s,a)) +In 6’)

H? 1 AH
S\/SS (an(ntk(s, a)) + 3 In 655, )

n (s, a)

Further, on (F%)¢ we have
|7k (s,a,t) — r(s,a,t)| <|x(s,a,t) —r(s,a,t)] + |Fx(s,a,t) — #(s,a,t)|

1 3SAH
< PR —
—2\/ntk<s7 a) (2 11np(ntk (S? a’)) + ln 6/ >

O

Lemma E.11 (Fixed V Term Confidence Bound). On the good event F€ it holds forall s € S,a € A
andt € [H|

. . 2H? 1 3SAH
|(Px(s,a,t) — P(S,a,t))T\/t+1\ S\/ntk(s,a) <llnpntk(5,a) + B In 5 )

Proof. Since we consider the event (F}) )¢, we can bound

2

|(Pi(s,a,t) — P(s,a,t)) V| <\/ 35AH>

1
] (llnpntk(s,a) + 5 In 5

n (s, a
O

Lemma E.12 (Lower Order Term). Assume ¢’ < ?’Aeﬂ. On the good event F° on all friendly
episodes k € E except at most w polylog(S, A, H,1/4,1/¢). it holds that

H
Z Z wtk(sva”(ﬁ)k(svaat) - P(sva7t))T(‘~/;f7r1 - Vt*+1)| <

t=1 s,a€ Ly

Wl m
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H
Z wtk(saa”([:)k(saa)t)_P(57a’7t))T<‘7tT1 _V;:Fl”
t=1 s,a€ Ly
H
2P(s'|s,a,t SQAH 71' *
SZ wyi (s, a) Z nfk(|sa)) (2 lnp(nex(s, a)) +In —=— )thl( ) = V(s
t=1 s,a€Lyy,

1 - W BSPAHY oo
+Z Z wer (s, a Zntk(s ) np(nek(s, a)) + N Vi3 (sT) = Vi ()]

t=1 s,a€E Ly

H
s'|s,a,t) 3S2AHYN (o o, e o\
; Z wyr (8, a) Z\/ nex (s, @) 211np(ntk(s,a)) JFIHT (‘/;5+k1(5 ) = V(s ))

H

VH 2AH
Z Z wtk s, 0)HS (2 llnp(nik(s,a)) +1In 355 )
t=1s,a€ Ly

n (s, a)

H
25 352AH L\
PP >\/nk() (2t + 10 222 Py (7 - Vi)
€L

H

VH 2AH
Z Z W“ S(Qllnp<ntk<s,a))+1n35 E )
t=1 s,a€ Ly

The first inequality follows since we only consider outcomes in the event (F{)¢, the sec-

ond from the fact that value function are in the range [0, H] and the third is an application
of the Cauchy-Schwarz inequality. Using of optimism of the algorithm (Lemma E.16), we

- 2 . 2
now bound P(s,a,t)’ (Vti"l - th_l) < P(s,a,t)" (‘/t:-kl - th_"l) which we bound by
2 ’
cee + (055 + \/% (Inp(nyk(s,a) + 3 1In 3’455#)) < cee + (cee + %\/J(s,a,t))2

using Lemma E.13. To keep the notation concise, we use here the shorthand J(s,a,t) =

Fyew) <llmp(ntk(s7 a))+1iln 3"456#). This bound holds on all friendly episodes except at

most (32ASH2 + 48ASZH3 + AS?H* + 16A52) polylog(S, A, H,1/4,1/¢) . Plugging this into
the bound from above, we get the upper bound

H

H
% wtk(s,a)\/4SJ(s,a,t) (et (e + CVT(5,a,0/5)?) + 30 D 2winls, ) HSI(s,0,0)

t=1 s,a€ Ly t=1 s,a€ Ly

H H
Z Z wek (8, a) 4SJ(s,a,t)cE€—|—Z Z wtk(s,a)\/4SJ(s,a,t)(cgs+C’ J(s,a,t)/S)?
t=1 s,a€Lex

t=1 s,a€ Ly

H
+Z Z 2wk (s,a)HSJ(s,a,t)
t=1s

5,a€ Lty

H H
:Z Z wtk(s,a)\/él(cgs+c§52)SJ(s,a,t)—1—2 Z 2wy (s,a)J (s,a,t)(C" + SH),

t=1 s,a€ Ly t=1 s,a€ Ly
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where we used va+b < y/a + vb. We now bound the first term using Lemma E.3 with
r=2¢ = 52/6,2D =1 364%#,0 = 4(cee + c2€%)S on all but SC?%‘EHZpolylog(...) =
19265(1“;5)’45 B~ bolylog(. .. ) friendly episodes by /6.

Applying LemmaE3 withr = 1,6/ =¢/6,D = £ In 7354*?;‘“{ and C = 2(C’'+ HS), we can bound

the second term by /6 on all but 845H polylog(...) = w

episodes. Hence, it holds :

polylog(...) friendly

H
Yo Y wals@)l(Pls.a,t) = P(s,a,0) T (VT = Vi)l <

t=1 s,a€ L

wl ™

on all friendly episodes except at most

<96AS(C’/ + HS)H? N 192¢.(1 + c.e)AS?H?

3 3

+ 32ASH? + 48AS?H® + AS?H* + 16AS2) polylog(S, A, H,1/5,1/¢)

episodes. Since C’ = polylog(S, A, H,1/0,1/¢), this simplifies to
96AS 96AS?H3 64AS%H?
+ + =

+ 64AS?H?
& &

+32ASH? + 48AS*H3 + AS*H* + 16A52) polylog(S, A, H,1/6,1/¢)

<((64+32+48+1+ 16)AS*H* +

4
WASQH?’) polylog(S, A, H,1/6,1/¢)

failure episodes in . We can finally bound the failure episodes by

2774
% polylog(S, A, H,1/4,1/¢).

O
Lemma E.13. On the good event F€ forany s € S, a € Aand t € [H] with ' < %ﬁ it holds

. 1 1. 3AS2He4
T ™ ™
P(s,a,t) (V] — thl)Z <cce + (cge + \/ntk(57 Y (llnp(ntk(s,a) + 3 In — 5 ))

where C' =1+ 4/ % In 362%# on all friendly episodes except for at most
(32ASH? + 48AS*H® + AS?H" + 16 AS?) polylog(S, A, H,1/6,1/¢)

episodes.

30,252
llnp nt+1k(s/,al)+% In 3'9“2#
nyy1x(s’,a’)

where ' = my(s', ¢t + 1) and C" = 1 + /1 In 23S AH sing Lemma E. 14, we bound

P(S7a7t)—r(‘~/t1k1 - Vtﬁ-kl)Q = ZP(51|5,aat)(‘Z§1k1(3/) - Vtik1(3/))2

<SwminH? + Z P(s'|s,a,t) (Cs€+ C'«/J(s’))2

Proof. Define L' = {s' : wi'(s',a'|s,a) > w!;,} and J(s') =

min

s'eL!
<c.e +C"? Z P(s'|s,a,t)J(s") + c2e* + 2c.eC’ Z P(s'|s,a,t)\/J(s)
s'eL’ s'€L’
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on all friendly episodes except at most (32 + 48SH + SH?) ASH? polylog(S, A, H,1/5,1/¢).
Define now L” = {(s,a’) : s’ € L',a’ = mp(s',t +1)}. We apply Lemma E.4 with |T| =
{t+1},C=1,D = %lnS“"Q%# >1,r=1ande’ =1/Sto

t+1lc.r 1 202
1 AH
Z P(s|s,a,t)J(s") = w <llnpnt+1k(s/,a’) +-In 365,)
s'eL’ s',a’eL” nt"l‘lk(s y @ ) 2 )
L 1. 3S%AHe*
<——— (1l lp T
77'Ltk($704)8 ( np(ntk(sva)) + 9 n 5 )

on all but at most 8452 polylog(A, S, H,1/§,1/¢) friendly episodes. Similarly, we bound

> P(s']s,a,t)\/J(s')

s'el’

1 1. 3e2S2AH
= > wiil(s’,a’ls,a)\/w <11Hpnt+1k(5'7a') +5In 5,)

s’,a’€L"

1 1. 3S2AHe*
<y ——— il PNl
_\/ntk(s,a)S (an(ntk(sv a)) + 5 In 5 )

on all but at most 8452 polylog(A, S, H,1/6,1/¢) friendly episodes. Hence on all friendly episodes
except those failure episodes, we get

2
- Cr 1. 3AS?Het
P(s,a,t) (V7 — V)2 <cee + <c€5 + \/ntk(sa)S (llnp(ntk(s,a) t3 In = = € )) .

O

Lemma E.14. Consider afix s’ € Sandt € [H), §' < 3‘46# and the good event F°. On all but at
most

(32 +48SH + SH?) ASH? polylog(S, A, H,1/6,1/)
friendly episodes FE it holds that

- 202 202
VR (s") — V™ (s) <c.e + (1 +4/121n 325 AH) \/ (1 (11np (s, a’) + %ln 3252 AH AH),
Ntk

o s, a’) 5

where o/ = 7 (s, t).

Proof. For any t,s’ and a’ = 7 (s, t) we use Lemma E.15 to write the value difference as

H
‘N/tﬂk (Sl) - ‘/tﬂk (Sl) = Z Z w?k(s’ CL|S/, a/)(Pk(S7 a, u) - P(S, a, u))TVu-H
u=t s,a
H
+ Z Z wii (s, als’,a') (T (s, a,u) —r(s,a,u))
u=t s,a

Let L} = {s,a € S x A : wp (s,als’,a’) > wmin} be the set of state-action pairs for which the
conditional probability of observing is sufficiently large. Then we can bound the low-probability
differences as

H
Z Z wi,(s,als’,a)[(Fe(s, a,u) — (s, a,u)) + (P(s,a,u) — P(s,a,u)) " Vi)

u=t s,ac(Ly?)°

H
2
< Z Z Winin < Wnin 7S = c.e.

u=t s,ae(Ly?)e
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For the other terms with significant conditional probability, we can leverage the fact that we only
consider events in (F?)¢ and (F{¥)* to bound

H
Z Z wgk(57a|s/aa/)(7;k(saavu)_T(Saaau))

u=t s,ae L}t
H
32 1. 3SAH
<X 3 ittty (it 5 )
,acLyt
and

H ~ ~

Z wt (s,als’,a')(P(s,a,u) — Pp(s,a,u)) " Vyi1

u=t s,ac L}t

H B 17 2
Z wiy (s, als’,a’) Z Vqﬁl(s,,)\/QP(sLs,a,u) (2 llnp(nyk(s,a)) +In S(SAH)

u=t s,acL}* nUk(S, a)

H W " 2 AH
+ Z wfk s, a|8 CL)Z M (211np(nuk(s7a)) +1n 35 )

u=t s,ac L}t s nUk(s’a) o'

H
25 H? 3S2AH
S Z Z wtk S a|s a )\/nuk(s,a) <2 llnp(nuk(s, CL)) + In o )

u=t g eLuf

2
Jrz Z wiy (s, als’, a) ( )(211np(nuk(s,a))+ln S(SAH)

u=t s,acL}*

where we use Cauchy Schwarz for the last inequality. Combining these individual bounds, we can
upper-bound the value difference as

UoH () = V(o)
H . S
<cee + Z Z wii (s, als’, a’)\/(4\/§ +2vSH) <1lnp(nuk(s, a)) + %ln ?)SAH)

u=t s,acL}* nuk(s’ a) o

2SH 1. 3S?AH
+ Z Z wyy, (s a|s’,a/)n7 <llnp(nuk(5,a)) + iln > (10)

u=t s,acL}* uk (5’ CL) ¢

We now apply Lemma E.4 with r =2, D = %ln 3521”1,6’ = (4V2+2VSH)?2 T = {t+1,t +
2,...H} and ¢’ = 1 and get that the second term above is bounded by

1 1. 3e2S2AH
¢<> R

on all friendly episodes but at most

2
w polylog(S, A, H,1/5,1/¢) = (32 4+ 16V2SH + SH?)ASH? polylog(S, A, H,1/5,1/¢)

episodes We apply Lemma E.4 again to the final term in Equation (10) above withr = 1, D =

I 3SAHL > | T = {t 4 1,¢+2,...H},C = 2SH and & = 1. Then the final term is bounded

by — (llnp nu(s',a’) 4+ 4 In 36%#) on all friendly episodes but

N (s’,a’)

A
&polylog(s A, H,1/6,1/e) = 16 AS? H? polylog(S, A, H,1/6,1/¢)
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many. Combining these bounds, we arrive at

VTrk 5/) tﬂ'k

1. 3e2S52AH
<c.e+ \/ llnpntk(s’,a’) + 3 In e)
1

ny (s, a’) o’
1 36252AH>

11 + -1
+ntk(8 o) ( np ny(s',a’) + 5 In 5

ceet (14 11 3e2S2AH 1 1 (s /)+11 3e2S2AH
<cee 5 o 5 (5 npn (s, a g —s— )

s’ a')

since it is de-

where we bounded \/n e (an nk(s', @) + 3 1In 3ELARY) by L1y 382%#

creasing in nu, (s, a’) and we therefore can simply use n.(s’, a’) = 1 (entire bound holds trivially
for ny(s',a’) = 0). O

E.5 Useful Lemmas

Lemma E.15 (Value Difference Lemma). For any two MDPs M’ and M" with rewards v’ and r"
and transition probabilities P' and P”, the difference in values with respect to the same policy m can
be written as

H H

V!(s)—V!(s) =E" Z(r’(st,at,t) — 1" (s¢,a4,t))|s;i = s| + E” Z(P'(st, ap, t) — P (sp,a6,t)) " Vi ]si = 5]
t=i t=1

where Vi | = Vi | = 0 and the expectation E' is taken w.r.t to P’ and 7 and B w.r.t. P" and .

Proof. Fori = H + 1 the statement is trivially true. We assume now it holds for 7 4 1 and show it
holds also for ¢. Using only this induction hypothesis and basic algebra, we can write

Vi(s) = V{(s)
:Eﬂ[r’(si,a“ )—‘,—V/Jrl P (s“az,z) [y (3“%, ) ‘/;11TPN(SZ7CLM )‘Sz _ S]
Z z+1 |slval7 ) — PN( /‘Siaahi))

s'eS

=E.[r'(ss, ai,i) — 1" (si,a4,1)|s;i = 8] + Er

Si:8‘|

+ Er ZP”( [siyai, ) (Vi (s") = Vi (s)

s'eS

:EW[T/(SZ‘,G/Z‘,Z') _T//(Si7aza )|Sz —3 +E Z ,L+1 |Szval7 ) P//( /‘Siaaiyi))

Si:S‘|

s'eS
+E [ Tr1(siv1) = Vi (si41))|si = 5}
:EW[T/(SZ‘,GZ‘,Z') - T//(Si7aza )|Sz = 3 +E Z V;/Jrl I |527a17 ) PN( /\si,ai,i)) S; = 8]
s'eS
H H
+E" |E” l Z (r' (seyat, t) — 1" (se, ae,t))|Si41 | + E” Z (P'(s¢yae,t) — P" (s, a4, 1)) V4 3i+1] 5 = s]
t=i+1 t=i+1
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H H

=E" Z(T/(St,at,t) —1"(st,ap,1))|si = s| +E” Z(P,(St,at,t) = P"(st,a0,1)) Vi |si = 5]
t=i t=1

where the last equality follows from law of total expectation O

Lemma E.16 (Algorithm ensures optimism). On the good event F¢ it holds that for all episodes k,
t € [H], s € S that

V™ (s) < Vi (s) < V™ (s).

Proof. The first inequality follows simply from the definition of the optimal value function V*.

Since all outcome we consider are in the event (F} )¢, we know that the true transition probabilities P,
the optimal policy 77* and optimal policy V'* are a feasible solution for the optimistic planning problem
in Lemma D.1 that UBEV solves. It therefore follows immediately that p, Vf”‘ > pg Vi O

F General Concentration Bounds

Lemma F.1. Let X1, X5, ... be a martingale difference sequence adapted 1o filtration {F;};~ | with
X conditionally o*-subgaussian so that E[exp(A(X; — p))|Fi—1] < exp(A\20?/2) almost surely
forall A € R. Then with ji; = % 2221 X; we have for all § € (0,1]

2
P (Elt: = \/4‘Z <2llnp(t) +1n§>> <95,

Proof. Let S, = ). Then

(315 e — \/ 4%‘2 (2 lnp(t) + In Z’) )
<P (3:& Sy > \/40215 (2 llnp(¢) + In ‘2))

= 3
< ZP <E|t € [2F, 2. 5, > \/4a2t <2 IInp(¢) + In 5))

k=0

< ZIP <Elt <2k g > \/2022k+1 (2 llnp(2%) + In 2))

k=0

We now consider M; = exp(AS;) for A > 0 which is a nonnegative sub-martingale and use the
short-hand f = \/ 2022k+1 (21lnp(2¥) + In 2). Then by Doob’s maximal inequality for nonnegative
submartingales

k . _ E[M2k+1] & )\ o2
P(3t<2+1.5t>f)—]f”<t512%x Mt>eXp()\f)>exp()\f)< (2 tZ Af)

Choosing the optimal \ = ﬁ we obtain the bound

2
k+1 . f _ k 3 _ 0 k
P (ﬂt < oktl. g, > f) <exp (—W) = exp (—211np(2 ) —In 5) = g exp (—2llnp(2 ))
(11)

:gexp (— max{0,2In max{0,In2"}}) = gmin{l, (kn2)~%}
i
=3 me S
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Plugging this back in the bound from above, we get

402 3 5 — 1
Sy — >y — =z < ;
P (Elt fit ,u\/ : <2llnp(t)+ln6>> <3 E_Omln{l, kzln(Q)}

For the other side, the argument follows completely analogously with
P(3t<2":5, <—f)=P(3t<2": -5, > f)

—P ( max_ exp(—AS;) > exp(ﬁ))

t<2k+1
Elexp(—ASqk+1)] 1 A20?
< 2o .
exp(Af) =2 2 M

O

Lemma F.2. Let X1, X, ... be a sequence of Bernoulli random variables with bias p € [0, 1]. Then
forall § € (0,1]

2 1
P (375 T \/f (211np(t) + In 2) + n (211np(t) +In 2)) <2

Proof.

P

2 1
Ity —p > \/tu (211np(t) +In 2) + n (2 llnp(t) + In 2))

Jt: S > \/2,ut <2 llnp(t) + In 2) + 21lnp(¢) + In ?)

=P

/N -/

< Z]P’ (Elt <2kl g, > \/2,u2k <2 lInp(2*) + In ?) + 21Inp(2*) + In ?)

Let g = 21lnp(2¥) + In2 and f = \/2¥*1ug + g. Further define S, = >/, X; — ty and
M; = exp(\S;) which is by construction a nonnegative submartingale. Applying Doob’s maximal
inequality for nonnegative submartingales, we bound

< E[M2k+1]

S (V) = exp (InE[Myr+1] — Af).

P (ﬂt < oktl. g > f) =P ( max M; > exp(Af))

i§2k+l

Since this holds for all A € R, we can bound
P (Ht <okl g > f) < exp (— sup (Af — lnE[Mng]))
AER

and using Corollary 2.11 by Boucheron et al. [25] (see also note below proof of Corollary 2.11)
bound that by
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We now argue that this quantity can be upper-bounded by exp(—g). This is equivalent to

I S
20+ f3) = 9

2 2
22292+ £/3) = S9f +
2 k+1 2 2 2 2k+2
g+ 2V 2 ugg + 25 g 229" + o/ 25 ugg +

3
1, 4 1
39"+ 3V2 ugg + 525 g >0.

k+2
3

ng

K9

Each line is an equivalent inequality since g, f > 0 and each term on the left in the final inequality
is nonnegative. Hence, we get P (3t < 281 : S, > f) < exp(—g). Following now the arguments
from the proof of Lemma F.1 in Equations (11)—(12), we obtain that

P <3t Sy — > \/25 <2an(t) +ln§> + % (2an(t) —|—ln2)> <.

For the other direction, we proceed analogously to above and arrive at

P(3t<2F!: -8, > f) <exp <— sup (—=Af — 1DE[M2k+1]))
AER

which we bound similarly to above by

o (mﬁ—f/s)) = o (M) < ep(=g)

Lemma F.3 (Uniform L1-Deviation Bound for Empirical Distribution). Let X1, Xo,... be a se-
quence of i.i.d. categorical variables on [U] with distribution P. Then for all § € (0,1]

P<3t I =Py > \/;l (211np(t)—|—ln3(2U5_2))> <§

where P, is the empirical distribution based on samples X1 ... X;.

Proof. We use the identity ||QQ — P||1 = 2maxpcp Q(B) — P(B) which holds for all distributions
P, Q defined on the finite set B to bound

P (Elt L || =Py > \/;l <211np(t) +1n 3(2[’5—2)))
—P (tglgfé] By(B) — P(B) > ;\/j (2 Inp(f) + In 3(2U(s_2))>

<) P (mgxPAB) - P(B) > \/ 3 (211np(t) +ln 3<2U52))> .

BC[U]
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Define now S; = S°/_, I{X; € B} — tP(B) which is a martingale sequence. Then the last line

above is equivalent to

max n nw
B;J]P< S, > \/t(2llp(t)+1 : )>

U _
Z P ( max Sy > \/t <2 llnp(t) + In 3(22)>>
kEN,te[2F 2k +1] §

BC[U]

> 327-2)
Z kz_: ( gl:‘i;gﬂ]st > \/t (211np(t)_|_1n - >>

BC[U] k=

< P ( max S; > \/2k (211np(2k) +1n 3())>
t§2k+1 5
BC[U] k=0

- f:zp ( max_exp(\S;) > exp(M))

t<2k+1

i]}» ( max_exp(AS;) > exp(M))

t<2k+1
BC[U],B#0,BA[U] k=0

(]

where f = \/Qk (2 llnp(2*%) + In 3(2 ) and A € R and the last equality follows from the

fact that for B = () and B = [U] the difference between the distributions has to be 0. Since
I{X; € B} — tP(B) is a centered Bernoulli variable it is 1/2-subgaussian and so S; satisfies
Elexp(AS;)] < exp(A\?t/8)]. Since S; is a martingale, exp(\S;) is a nonnegative sub-martingale
and we can apply the maximal inequality to bound

P ( max exp(A\S;) > exp()\f)> < exp <é)\22k+1 — /\f> .

t<2k+1
Choosing A = 2;1{1, we get P (max;<or+1 exp(AS;) > exp(Af)) < exp ( ) Hence, us-
ing the same steps as in the proof of Lemma F.1, we get P (max;<or+1 exp(AS;) > exp(Af)) <

é
m min {]-7 %2 1n2} and then

P (Elt B = Py > \/j <2an(t) +1In ?’(QU(SQ)))

3277 - 2)

BC[U],B#0,BA[U] BB, BAU)

Lemma F.4. Let F; fori =1... be a filtration and X1, ... X,, be a sequence of Bernoulli random
variables with P(X; = 1|F;_1) = P; with P; being F;_1-measurable and X; being JF; measurable.

It holds that
P (Eln : ZXt < ZPMQW) <e W
t=1 t=1

Proof. P, — X, is a Martingale difference sequence with respect to the filtration F;. Since X; is
nonnegative and has finite second moment, we have for any A > 0 that E [e‘A(Xt_P t) | Fi1] <

e)‘ZPf/2 (Exercise 2.9, Boucheron et al. [25]). Hence, we have

E [eA(Ptfxt)f)\QPtﬂ']:t_l <1
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and by setting A = 1, we see that

M, = 32?:1(—Xt+Pt/2)

is a supermartingale. It hence holds by Markov’s inequality

P (zn:(—xt + P,/2) > W) =P (M, >e") <eVEM,) <e W
t=1

wich gives us the derised result

P (iXt < iPt/Q - W) <e W
t=1 t=1

for a fixed n. We define now the stopping time 7 = min{t € N : M; > "'} and the sequence
T, = min{t € N : M; > e vt > n}. Applying the convergence theorem for nonnegative
supermartingales (Theorem 5.2.9 in Durrett [26]), we get that lim;_, ., M, is well-defined almost
surely. Therefore, M., is well-defined even when 7 = oco. By the optional stopping theorem for
nonnegative supermartingales (Theorem 5.7.6 by Durrett [26]), we have E[M.. | < E[M;] < 1 for all
n and applying Fatou’s lemma, we obtain E[M,] = E[lim,,_, M, ] < liminf,, . E[M, ] < 1.
Using Markov’s inequality, we can finally bound

n n
1 ~ _
P(Eln: ZXt<QZPt—W> <P(r<oo) <P(M, >eV)<e VEM,]<e W,
t=1 t=1
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