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Abstract

We address the problem of multi-class classification in the case where the number of
classes is very large. We propose a double sampling strategy on top of a multi-class
to binary reduction strategy, which transforms the original multi-class problem into
a binary classification problem over pairs of examples. The aim of the sampling
strategy is to overcome the curse of long-tailed class distributions exhibited in
majority of large-scale multi-class classification problems and to reduce the number
of pairs of examples in the expanded data. We show that this strategy does not
alter the consistency of the empirical risk minimization principle defined over the
double sample reduction. Experiments are carried out on DMOZ and Wikipedia
collections with 10,000 to 100,000 classes where we show the efficiency of the
proposed approach in terms of training and prediction time, memory consumption,
and predictive performance with respect to state-of-the-art approaches.

1 Introduction

Large-scale multi-class or extreme classification involves problems with extremely large number of
classes as it appears in text repositories such as Wikipedia, Yahoo! Directory (www.dir.yahoo.com),
or Directory Mozilla DMOZ (www.dmoz.org); and it has recently evolved as a popular branch of
machine learning with many applications in tagging, recommendation and ranking. The most common
and popular baseline in this case is the one-versus-all approach (OVA) [18] where one independent
binary classifier is learned per class. Despite its simplicity, this approach suffers from two main
limitations; first, it becomes computationally intractable when the number of classes grow large,
affecting at the same time the prediction. Second, it suffers from the class imbalance problem by
construction.Recently, two main approaches have been studied to cope with these limitations. The
first one, broadly divided in tree-based and embedding-based methods, have been proposed with
the aim of reducing the effective space of labels in order to control the complexity of the learning
problem. Tree-based methods [4, 3, 6, 7, 9, 21, 5, 15] rely on binary tree structures where each
leaf corresponds to a class and inference is performed by traversing the tree from top to bottom; a
binary classifier being used at each node to determine the child node to develop. These methods have
logarithmic time complexity with the drawback that it is a challenging task to find a balanced tree
structure which can partition the class labels. Further, even though different heuristics have been
developed to address the unbalanced problem, these methods suffer from the drawback that they have
to make several decisions prior to reaching a final category, which leads to error propagation and
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thus a decrease in accuracy. On the other hand, label embedding approaches [11, 5, 19] first project
the label-matrix into a low-dimensional linear subspace and then use an OVA classifier. However,
the low-rank assumption of the label-matrix is generally transgressed in the extreme multi-class
classification setting, and these methods generally lead to high prediction error.The second type of
approaches aim at reducing the original multi-class problem into a binary one by first expanding the
original training set using a projection of pairs of observations and classes into a low dimensional
dyadic space, and then learning a single classifier to separate between pairs constituted with examples
and their true classes and pairs constituted with examples with other classes [1, 28, 16]. Although
prediction in the new representation space is relatively fast, the construction of the dyadic training
observations is generally time consuming and prevails over the training and prediction times.

Contributions. In this paper, we propose a scalable multi-class classification method based on
an aggressive double sampling of the dyadic output prediction problem. Instead of computing all
possible dyadic examples, our proposed approach consists first in drawing a new training set of much
smaller size from the original one by oversampling the most small size classes and by sub-sampling
the few big size classes in order to avoid the curse of long-tailed class distributions common in the
majority of large-scale multi-class classification problems [2]. The second goal is to reduce the
number of constructed dyadic examples. Our reduction strategy brings inter-dependency between the
pairs containing the same observation and its true class in the original training set. Thus, we derive
new generalization bounds using local fractional Rademacher complexity showing that even with a
shift in the original class distribution and also the inter-dependency between the pairs of example, the
empirical risk minimization principle over the transformation of the sampled training set remains
consistent. We validate our approach by conducting a series of experiments on subsets of DMOZ and
the Wikipedia collections with up to 100,000 target categories.

2 A doubly-sampled multi-class to binary reduction strategy

We address the problem of monolabel multi-class classification defined on joint space X × Y
where X ⊆ Rd is the input space and Y = {1, . . . ,K} .

= [K] the output space, made of K
classes. Elements of X × Y are denoted as xy = (x, y). Furthermore, we assume the training set
S = (xyii )mi=1 is made of m i.i.d examples/class pairs distributed according to a fixed but unknown
probability distribution D, and we consider a class of predictor functions G = {g : X × Y → R}.
We define the instantaneous loss for predictor g ∈ G on example xy as:

e(g,xy) =
1

K − 1

∑
y′∈Y\{y}

1g(xy)≤g(xy′ ), (1)

where 1π is the indicator function equal to 1 if the predicate π is true and 0 otherwise. Compared to
the classical multi-class error, e′(g,xy) = 1y 6=argmaxy′∈Y g(x

y′ ), the loss of (1) estimates the average
number of classes, given any input data, that get a greater scoring by g than the correct class. The
loss (1) is hence a ranking criterion, and the multi-class SVM of [29] and AdaBoost.MR [24] optimize
convex surrogate functions of this loss. It is also used in label ranking [12]. Our objective is to find a
function g ∈ G with a small expected risk R(g) = Exy∼D [e(g,xy)], by minimizing the empirical
error defined as the average number of training examples xyii ∈ S which, in mean, are scored lower
than xy

′

i , for y′ ∈ Y\{yi} :

R̃m(g,S) =
1

m

m∑
i=1

e(g,xyii ) =
1

m(K − 1)

m∑
i=1

∑
y′∈Y\{yi}

1
g(x

yi
i )−g(xy

′
i )≤0. (2)

2.1 Binary reduction based on dyadic representations of examples and classes

In this work, we consider prediction functions of the form g = f ◦ φ, where φ : X × Y → Rp
is a projection of the input and the output space into a joint feature space of dimension p; and
f ∈ F = {f : Rp → R} is a function that measures the adequacy between an observation x and
a class y using their corresponding representation φ(xy). The projection function φ is application-
dependent and it can either be learned [28], or defined using some heuristics [27, 16].
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Further, consider the following dyadic transformation

T (S) =

({ (
zj =

(
φ(xki ), φ(xyii )

)
, ỹj = −1

)
if k < yi(

zj =
(
φ(xyii ), φ(xki )

)
, ỹj = +1

)
elsewhere

)
j
.
=(i−1)(K−1)+k

, (3)

where j = (i− 1)(K − 1) + k with i ∈ [m], k ∈ [K − 1]; that expands a K-class labeled set S of
size m into a binary labeled set T (S) of size N = m(K − 1) (e.g. Figure 1 over a toy problem).
With the class of functions

H = {h : Rp × Rp → R; (φ(xy), φ(xy
′
)) 7→ f(φ(xy))− f(φ(xy

′
)), f ∈ F}, (4)

the empirical loss (Eq. (2)) can be rewritten as :

R̃T (S)(h) =
1

N

N∑
j=1

1ỹjh(zj)≤0. (5)

Hence, the minimization of Eq. (5) over the transformation T (S) of a training set S

S xy11 xy22 xy33 xy44

T

(z1 = (φ(xy1
1 ), φ(xy2

1 )),+1) (z2 = (φ(xy1
1 ), φ(xy3

1 )),+1) (z3 = (φ(xy1
1 ), φ(xy4

1 )),+1)

(z4 = (φ(xy1
2 ), φ(xy2

2 )),−1) (z5 = (φ(xy2
2 ), φ(xy3

2 )),+1) (z6 = (φ(xy2
2 ), φ(xy4

2 )),+1)

(z7 = (φ(xy1
3 ), φ(xy3

3 )),−1) (z8 = (φ(xy2
3 ), φ(xy3

3 )),−1) (z9 = (φ(xy3
3 ), φ(xy4

3 )),+1)

(z10 = (φ(xy1
4 ), φ(xy4

4 )),−1) (z11 = (φ(xy2
4 ), φ(xy4

4 )),−1) (z12 = (φ(xy3
4 ), φ(xy4

4 )),−1)

Figure 1: A toy example depicting the transforma-
tion T (Eq. (3)) applied to a training set S of size
m = 4 and K = 4.

defines a binary classification over the pairs of
dyadic examples. However, this binary problem
takes as examples dependent random variables,
as for each original example xy ∈ S , the K − 1

pairs in {(φ(xy), φ(xy
′
)); ỹ} ∈ T (S) all de-

pend on xy. In [16] this problem is studied by
bounding the generalization error associated to
(5) using the fractional Rademacher complex-
ity proposed in [25]. In this work, we derive
a new generalization bounds based on Local
Rademacher Complexities introduced in [22]
that implies second-order (i.e. variance) information inducing faster convergence rates (Theorem 1).
Our analysis relies on the notion of graph covering introduced in [14] and defined as :
Definition 1 (Exact proper fractional cover of G, [14]). Let G = (V, E) be a graph. C =
{(Ck, ωk)}k∈[J], for some positive integer J , with Ck ⊆ V and ωk ∈ [0, 1] is an exact proper
fractional cover of G, if: i) it is proper: ∀k, Ck is an independent set, i.e., there is no connections
between vertices in Ck; ii) it is an exact fractional cover of G: ∀v ∈ V,

∑
k:v∈Ck ωk = 1.

The weight W (C) of C is given by: W (C) .
=

∑
k∈[J] ωk and the minimum weight

χ∗(G) = minC∈K(G)W (C) over the set K(G) of all exact proper fractional covers of
G is the fractional chromatic number of G. From this statement, [14] extended Ho-
effding’s inequality and proposed large deviation bounds for sums of dependent ran-
dom variables which was the precursor of new generalisation bounds, including a Tala-
grand’s type inequality for empirical processes in the dependent case presented in [22].

Figure 2: The dependency graph G = {1, . . . , 12}
corresponding to the toy problem of Figure 1,
where dependent nodes are connected with ver-
tices in blue double-line. The exact proper frac-
tional cover C1, C2 and C3 is shown in dashed.
The fractional chromatic number is in this case
χ∗(G) = K − 1 = 3.

With the classes of functions G and H intro-
duced previously, consider the parameterized
familyHr which, for r > 0, is defined as:
Hr = {h : h ∈ H,V[h]

.
= Vz,ỹ[1ỹh(z)] ≤ r},

where V denotes the variance.

The fractional Rademacher complexity intro-
duced in [25] entails our analysis :

RT (S)(H)
.
=

2

N
Eξ
∑

k∈[K−1]

ωkECksup
h∈H

∑
α∈Ck

zα∈T (S)

ξαh(zα),

with (ξi)
N
i=1 a sequence of independent

Rademacher variables verifying P(ξn = 1) =
P(ξn=−1) = 1

2 . If other is not specified explic-
itly we assume below all ωk = 1. Our first result
that bounds the generalization error of a function
h ∈ H; R(h) = ET (S)[R̃T (S)(h)], with respect
to its empirical error R̃T (S)(h) over a transformed training set, T (S), and the fractional Rademacher
complexity, RT (S)(H), is stated below.
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Theorem 1. Let S = (xyii )mi=1 ∈ (X × Y)m be a dataset of m examples drawn i.i.d. according to a
probability distribution D over X × Y and T (S) = ((zi, ỹi))

N
i=1 the transformed set obtained as

in Eq. (3). Then for any 1 > δ > 0 and 0/1 loss ` : {−1,+1} × R → [0, 1], with probability at
least (1− δ) the following generalization bound holds for all h ∈ Hr :

R(h) ≤ R̃T (S)(h) + RT (S)(` ◦ Hr) +
5

2

(√
RT (S)(` ◦ Hr) +

√
r

2

)√
log 1

δ

m
+

25

48

log 1
δ

m
.

The proof is provided in the supplementary material, and it relies on the idea of splitting up the
sum (5) into several parts, each part being a sum of independent variables.

2.2 Aggressive Double Sampling

Even-though the previous multi-class to binary transformation T with a proper projection function
φ allows to redefine the learning problem in a dyadic feature space of dimension p � d, the
increased number of examples can lead to a large computational overhead. In order to cope with
this problem, we propose a (π, κ)-double subsampling of T (S), which first aims to balance the
presence of classes by constructing a new training set Sπ from S with probabilities π = (πk)Kk=1.

Algorithm: (π, κ)-DS

Input: Labeled training set S = (xyii )mi=1
initialization: Sπ ← ∅;
Tκ(Sπ)← ∅ ;
for k = 1..K do

Draw randomly a set Sπk of examples of class k from S with
probability πk;
Sπ ← Sπ ∪ Sπk ;

forall xy ∈ Sπ do
Draw uniformly a set Yxy of κ classes from Y\{y} . κ� K;
forall k ∈ Yxy do

if k < y then
Tκ(Sπ)← Tκ(Sπ) ∪

(
z =

(
φ(xk), φ(xy)

)
, ỹ = −1

)
;

else
Tκ(Sπ)← Tκ(Sπ) ∪

(
z =

(
φ(xy), φ(xk)

)
, ỹ = +1

)
;

return Tκ(Sπ)

The idea here is to overcome
the curse of long-tailed class
distributions exhibited in ma-
jority of large-scale multi-
class classification problems
[2] by oversampling the most
small size classes and by sub-
sampling the few big size
classes in S. The hyperpa-
rameters π are formally de-
fined as ∀k, πk = P (xy ∈
Sπ|xy ∈ S). In practice
we set them inversely pro-
portional to the size of each
class in the original training
set; ∀k, πk ∝ 1/µk where
µk is the proportion of class
k in S . The second aim is to
reduce the number of dyadic
examples controlled by the
hyperparameter κ. The pseudo-code of this aggressive double sampling procedure, referred to as
(π, κ)-DS, is depicted above and it is composed of two main steps.

1. For each class k ∈ {1, . . . ,K}, draw randomly a set Sπk of examples from S of that class

with probability πk, and let Sπ =

K⋃
k=1

Sπk ;

2. For each example xy in Sπ , draw uniformly κ adversarial classes in Y\{y}.

After this double sampling, we apply the transformation T defined as in Eq. (3), leading to a set
Tκ(Sπ) of size κ|Sπ| � N .

In Section 3, we will show that this procedure practically leads to dramatic improvements in terms of
memory consumption, computational complexity, and a higher multi-class prediction accuracy when
the number of classes is very large. The empirical loss over the transformation of the new subsampled
training set Sπ of size M , outputted by the (π, κ)-DS algorithm is :

R̃Tκ(Sπ)(h) =
1

κM

∑
(ỹα,zα)∈Tκ(Sπ)

1ỹαh(zα)≤0 =
1

κM

∑
xy∈Sπ

∑
y′∈Yxy

1g(xy)−g(xy′ )≤0, (6)

which is essentially the same empirical risk as the one defined in Eq. (2) but taken with respect to the
training set outputted by the (π, κ)-DS algorithm. Our main result is the following theorem which
bounds the generalization error of a function h ∈ H learned by minimizing R̃Tκ(Sπ).
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Theorem 2. Let S = (xyii )mi=1 ∈ (X × Y)m be a training set of size m i.i.d. according to a
probability distribution D over X × Y , and T (S) = ((zi, ỹi))

N
i=1the transformed set obtained with

the transformation function T defined as in Eq. (3). Let Sπ ⊆ S, |Sπ| = M , be a training set
outputted by the algorithm (π, κ)-DS and T (Sπ) ⊆ T (S) its corresponding transformation. Then for
any 1 > δ > 0 with probability at least (1− δ) the following risk bound holds for all h ∈ H :

R(h) ≤ αR̃Tκ(Sπ)(h) + αRTκ(Sπ)(` ◦ H) + α

√
(K − 1) log 2

δ

2Mκ
+

√
2α log 4K

δ

β(m− 1)
+

7β log 4K
δ

3(m− 1)
.

Furthermore, for all functions in the classHr, we have the following generalization bound that holds
with probability at least (1− δ) :

R(h) ≤αR̃Tκ(Sπ)(h) + αRTκ(Sπ)(` ◦ Hr) +

√
2α log 4K

δ

β(m− 1)
+

7β log 4K
δ

3(m− 1)

+
5α

2

(√
RTκ(Sπ)(` ◦ Hr) +

√
r

2

)√
(K − 1) log 2

δ

Mκ
+

25α

48

log 2
δ

M
,

where ` : {−1,+1} × R → [0, 1] 0/1 is an instantaneous loss, and α = maxy: 1≤y≤K ηy/πy,
β = maxy: 1≤y≤K 1/πy and ηy > 0 is the proportion of class y in S.

The proof is provided in the supplementary material. This theorem hence paves the way for the
consistency of the empirical risk minimization principle [26, Th. 2.1, p. 38] defined over the double
sample reduction strategy we propose.

2.3 Prediction with Candidate Selection

The prediction is carried out in the dyadic feature space, by first consider-
ing the pairs constituted by a test observation and all the classes, and then
choosing the class that leads to the highest score by the learned classifier.

Algorithm: Prediction with Candidate Selection Algorithm
Input: Unlabeled test set T ;
Learned function f∗ : Rp → R;
initialization: Ω← ∅;
forall x ∈ T do

Select Yx ⊆ Y candidate set of q nearest-centroid classes;
Ω← Ω ∪ argmaxk∈Yx

f∗(φ(xk)) ;
return predicted classes Ω

In the large scale scenario, com-
puting the feature representations
for all classes may require a huge
amount of time. To overcome this
problem we sample over classes
by choosing just those that are the
nearest to a test example, based on
its distance with class centroids.
Here we propose to consider class
centroids as the average of vectors
within that class. Note that class centroids are computed once in the preliminary projection of training
examples and classes in the dyadic feature space and thus represent no additional computation at this
stage. The algorithm above presents the pseudocode of this candidate based selection strategy 1.

3 Experiments

In this section, we provide an empirical evaluation of the proposed reduction approach with the (π, κ)-
DS sampling strategy for large-scale multi-class classification of document collections. First, we
present the mapping φ : X × Y → Rp. Then, we provide a statistical and computational comparison
of our method with state-of-the-art large-scale approaches on popular datasets.

3.1 a Joint example/class representation for text classification

The particularity of text classification is that documents are represented in a vector space induced by
the vocabulary of the corresponding collection [23]. Hence each class can be considered as a mega-
document, constituted by the concatenation of all of the documents in the training set belonging to it,

1The number of classes pre-selected can be tuned to offer a prediction time/accuracy tradeoff if the prediction
time is more critical.
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Features in the joint example/class representation representation φ(xy).

1.
∑
t∈y∩x

log(1 + yt) 2.
∑
t∈y∩x

log

(
1 +

lS
Ft

)
3.

∑
t∈y∩x

It

4.
∑
t∈y∩x

yt
|y|
.It 5.

∑
t∈y∩x

log

(
1 +

yt
|y|

)
6.

∑
t∈y∩x

log

(
1 +

yt
|y|
.It

)
7.
∑
t∈y∩x

log

(
1 +

yt
|y|
.
lS
Ft

)
8.

∑
t∈y∩x

1 9. d(xy, centroid(y))

10. BM25 =
∑

t∈y∩x It.
2×yt

yt+(0.25+0.75·len(y)/avg(len(y))

Table 1: Joint example/class representation for text classification, where t ∈ y ∩ x are terms that are
present in both the class y’s mega-document and document x. V represents the set of distinct terms
within S, and xt is the frequency of term t in x, yt =

∑
x∈y xt, |y| =

∑
t∈V yt, Ft =

∑
x∈S xt,

lS =
∑
t∈V St. Finally, It is the inverse document frequency of term t, len(y) is number of terms of

documents in class y, and avg(len(y)) is the average of document lengths for all the classes.

and simple feature mapping of examples and classes can be defined over their common words. Here
we used p = 10 features inspired from learning to rank [17] by resembling a class and a document to
respectively a document and a query (Table 1). All features except feature 9, that is the distance of
an example x to the centroid of all examples of a particular class y, are classical. In addition to its
predictive interest, the latter is also used in prediction for performing candidate preselection. Note
that for other large-scale multi-class classification applications like recommendation with extremely
large number of offer categories or image classification, a same kind of mapping can either be learned
or defined using their characteristics [27, 28].

3.2 Experimental Setup

Datasets. We evaluate the proposed method using popular datasets from the Large Scale Hierarchical
Text Classification challenge (LSHTC) 1 and 2 [20]. These datasets are provided in a pre-processed
format using stop-word removal and stemming. Various characteristics of these datesets including the
statistics of train, test and heldout are listed in Table 2. Since, the datasets used in LSHTC2 challenge
were in multi-label format, we converted them to multi-class format by replicating the instances
belonging to different class labels. Also, for the largest dataset (WIKI-large) used in LSHTC2
challenge, we used samples with 50,000 and 100,000 classes. The smaller dataset of LSHTC2
challenge is named as WIKI-Small, whereas the two 50K and 100K samples of large dataset are
named as WIKI-50K and WIKI-100K in our result section.

Datasets # of classes, K Train Size Test Size Heldout Size Dimension, d
LSHTC1 12294 126871 31718 5000 409774
DMOZ 27875 381149 95288 34506 594158

WIKI-Small 36504 796617 199155 5000 380078
WIKI-50K 50000 1102754 276939 5000 951558

WIKI-100K 100000 2195530 550133 5000 1271710
Table 2: Characteristics of the datasets used in our experiments

Baselines. We compare the proposed approach,2 denoted as the sampling strategy by (π, κ)-DS,
with popular baselines listed below:

• OVA: LibLinear [10] implementation of one-vs-all SVM.

• M-SVM: LibLinear implementation of multi-class SVM proposed in [8].

• RecallTree [9]: A recent tree based multi-class classifier implemented in Vowpal Wabbit.

2Source code and datasets can be found in the following repository https://github.com/bikash617/Aggressive-
Sampling-for-Multi-class-to-BinaryReduction
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Data OVA M-SVM RecallTree FastXML PfastReXML PD-Sparse (π, κ)-DS
LSHTC1 train time 23056s 48313s 701s 8564s 3912s 5105s 321s

m = 163589 predict time 328s 314s 21s 339s 164s 67s 544s
d = 409774 total memory 40.3G 40.3G 122M 470M 471M 10.5G 2G
K = 12294 Accuracy 44.1% 36.4% 18.1% 39.3% 39.8% 45.7% 37.4%

MaF1 27.4% 18.8% 3.8% 21.3% 22.4% 27.7% 26.5%
DMOZ train time 180361s 212356s 2212s 14334s 15492s 63286s 1060s

m = 510943 predict time 2797s 3981s 47s 424s 505s 482s 2122s
d = 594158 total memory 131.9G 131.9G 256M 1339M 1242M 28.1G 5.3G
K = 27875 Accuracy 37.7% 32.2% 16.9% 33.4% 33.7% 40.8% 27.8%

MaF1 22.2% 14.3% 1.75% 15.1% 15.9% 22.7% 20.5%
WIKI-Small train time 212438s >4d 1610s 10646s 21702s 16309s 1290s
m = 1000772 predict time 2270s NA 24s 453s 871s 382s 2577s
d = 380078 total memory 109.1G 109.1G 178M 949M 947M 12.4G 3.6G
K = 36504 Accuracy 15.6% NA 7.9% 11.1% 12.1% 15.6% 21.5%

MaF1 8.8 % NA <1% 4.6% 5.63% 9.91% 13.3%
WIKI-50K train time NA NA 4188s 30459s 48739s 41091s 3723s

m = 1384693 predict time NA NA 45s 1110s 2461s 790s 4083s
d = 951558 total memory 330G 330G 226M 1327M 1781M 35G 5G
K = 50000 Accuracy NA NA 17.9% 25.8% 27.3% 33.8% 33.4%

MaF1 NA NA 5.5% 14.6% 16.3% 23.4% 24.5%
WIKI-100K train time NA NA 8593s 42359s 73371s 155633s 9264s
m = 2750663 predict time NA NA 90s 1687s 3210s 3121s 20324s
d = 1271710 total memory 1017G 1017G 370M 2622M 2834M 40.3G 9.8G
K = 100000 Accuracy NA NA 8.4% 15% 16.1% 22.2% 25%

MaF1 NA NA 1.4% 8% 9% 15.1% 17.8%

Table 3: Comparison of the result of various baselines in terms of time, memory, accuracy, and
macro F1-measure

• FastXML [21]: An extreme multi-class classification method which performs partitioning in
the feature space for faster prediction.

• PfastReXML [13]: Tree ensemble based extreme classifier for multi-class and multilabel
problems.

• PD-Sparse [30]: A recent approach which uses multi-class loss with `1-regularization.

Referring to the work [30], we did not consider other recent methods SLEEC [5] and LEML [31] in our
experiments, since they have been shown to be consistently outperformed by the above mentioned
state-of-the-art approaches.

Platform and Parameters. In all of our experiments, we used a machine with an Intel Xeon 2.60GHz
processor with 256 GB of RAM. Each of these methods require tuning of various hyper-parameters
that influence their performance. For each methods, we tuned the hyperparameters over a heldout set
and used the combination which gave best predictive performance. The list of used hyperparameters
for the results we obtained are reported in the supplementary material (Appendix B).

Evaluation Measures. Different approaches are evaluated over the test sets using accuracy and
the macro F1 measure (MaF1), which is the harmonic average of macro precision and macro recall;
higher MaF1thus corresponds to better performance. As opposed to accuracy, macro F1 measure is
not affected by the class imbalance problem inherent to multi-class classification, and is commonly
used as a robust measure for comparing predictive performance of classification methods.

4 Results

The parameters of the datasets along with the results for compared methods are shown in Table 3.
The results are provided in terms of train and predict times, total memory usage, and predictive
performance measured with accuracy and macro F1-measure (MaF1). For better visualization and
comparison, we plot the same results as bar plots in Fig. 3 keeping only the best five methods while
comparing the total runtime and memory usage. First, we observe that the tree based approaches
(FastXML, PfastReXML and RecallTree) have worse predictive performance compared to the other
methods. This is due to the fact that the prediction error made at the top-level of the tree cannot be
corrected at lower levels, also known as cascading effect. Even though they have lower runtime and
memory usage, they suffer from this side effect.

For large scale collections (WIKI-Small, WIKI-50K and WIKI-100K), the solvers with competitive
predictive performance are OVA, M-SVM, PD-Sparse and (π, κ)-DS. However, standard OVA and
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Figure 3: Comparisons in Total (Train and Test) Time (min.), Total Memory usage (GB), and MaF1 of
the five best performing methods on LSHTC1, DMOZ, WIKI-Small, WIKI-50K and WIKI-100K.

M-SVM have a complexity that grows linearly with K thus the total runtime and memory usage
explodes on those datasets, making them impossible. For instance, on Wiki large dataset sample
of 100K classes, the memory consumption of both approaches exceeds the Terabyte and they take
several days to complete the training. Furthermore, on this data set and the second largest Wikipedia
collection (WIKI-50K and WIKI-100K) the proposed approach is highly competitive in terms of
Time, Total Memory and both performance measures comparatively to all the other approaches.
These results suggest that the method least affected by long-tailed class distributions is (π, κ)-DS,
mainly because of two reasons: first, the sampling tends to make the training set balanced and
second, the reduced binary dataset contains similar number of positive and negative examples. Hence,
for the proposed approach, there is an improvement in both accuracy and MaF1 measures. The
recent PD-Sparse method also enjoys a competitive predictive performance but it requires to store
intermediary weight vectors during optimization which prevents it from scaling well. The PD-Sparse
solver provides an option for hashing leading to fewer memory usage during training which we used
in the experiments; however, the memory usage is still significantly high for large datasets and at the
same time this option slows down the training process considerably. In overall, among the methods
with competitive predictive performance, (π, κ)-DS seems to present the best runtime and memory
usage; its runtime is even competitive with most of tree-based methods, leading it to provide the best
compromise among the compared methods over the three time, memory and performance measures.

5 Conclusion

We presented a new method for reducing a multiclass classification problem to binary classification.
We employ similarity based feature representation for class and examples and a double sampling
stochastic scheme for the reduction process. Even-though the sampling scheme shifts the distribution
of classes and that the reduction of the original problem to a binary classification problem brings
inter-dependency between the dyadic examples; we provide generalization error bounds suggesting
that the Empirical Risk Minimization principle over the transformation of the sampled training set
still remains consistent. Furthermore, the characteristics of the algorithm contribute for its excellent
performance in terms of memory usage and total runtime and make the proposed approach highly
suitable for large class scenario.
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