
A Supplementary Lemmas

In the following lemma, we highlight a property of nonsingular M-matrices, which we will use in the
proof of Theorem 4.12.
Lemma A.1. [19, Theorem 2] A is a nonsingular M-matrix if and only if A�1 exists and A

�1
� 0.

We next introduce the following lemma, which is presented in variuos papers (e.g., [25, Lemma 4.12],
[16, Corollary 1.2], [9, Theorem 1]) to analyze the spectral radii of nonnegative matrices.
Lemma A.2. Let B↵ = e

↵
L + e

�↵
L
T , where L � 0 is a strictly lower triangular matrix and

↵ 2 R. Then, either ⇢(B↵) is strictly log-convex in ↵ with ⇢(B↵) > ⇢(B0) for all ↵ 6= 0 or ⇢(B↵)

is constant for all ↵ 2 R (i.e., B↵ is a consistently ordered matrix).

Proof. Suppose the largest eigenvalue of B↵ has a multiplicity of 1. Then,

⇢(B↵) = lim
t!1

[tr
�
(B↵)

t
�
]
1/t

. (19)

In order to find the diagonal entries of (B↵)
t, we consider the graph generated by the matrix B↵ and

define the weight of a walk as the product of the weights of the corresponding edges in the walk. We
then observe that the ith diagonal of the matrix (B↵)

t can be written as the summation of weights of
all closed walks of length t (from the ith node to itself). In particular, consider a valid closed walk w

that contains edges (is, is+1)
t�1
s=0 such that i0 = it = i and [B↵]is,is+1 > 0 for all s. Then, we can

define a symmetric walk w
0 with edges (is+1, is)

t�1
s=0 and the ith diagonal entry of (B↵)

t contains
the weights of both w and w

0 as summands. Furthermore, the weight of the walk w can be written as
�↵(w) = e

cw↵
�0(w), for some integer cw, where

�0(w) =

t�1Y

s=0

[B0]is,is+1 .

The weight of the symmetric walk w
0 is then found by �↵(w

0
) = e

�cw↵
�0(w) since B0 is symmetric.

Therefore, the ith diagonal entry of (B↵)
t can be found as follows

[(B↵)
t
]i,i =

X

all valid walks w

e
cw↵

+ e
�cw↵

2
�0(w).

It is easy to observe that cosh(cw↵) = ecw↵+e�cw↵

2 is a strictly log-convex function of ↵ for any
cw 6= 0. Thus, if there exists a walk w for which cw 6= 0, then tr ((B↵)

t
) is a strictly log-convex

function of ↵ since �0(w) > 0 for all valid walks. On the other hand, tr ((B↵)
t
) is constant in ↵ if

and only if cw = 0 for all valid walks, which implies that the graph is bipartite since starting from an
arbitrary node i it is not possible to return back to node i in odd number of steps. This together with
(19) imply the statement of the lemma.

For the case the largest eigenvalue of B↵ has a multiplicity of at least 2, we consider the matrix
B̃↵(✏) = B↵ + ✏I , whose largest eigenvalue has a multiplicity of 1 for any ✏ > 0. Using the same
arguments as above, we can conclude that the statement of the lemma holds for any B̃↵(✏) with ✏ > 0

and taking the limit as ✏ ! 0
+ concludes the proof of the lemma. ⌅

B Proof of Lemma 4.3

By Assumption 4.1, µ > 0 and tr (A) = n, which implies all eigenvalues of the matrix A/n are in
the interval (0, 1). Therefore, we have

⇢(R) = �max

✓✓
I �

1

n
A

◆n◆
=

✓
1�

1

n
�min(A)

◆n

=

⇣
1�

µ

n

⌘n
.

C Proof of Theorem 4.7

The eigenvalues of C are the roots of the polynomial

�C(�) = det(�I � C) = 0.
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As I � L is nonsingular and det(I � L) = 1, we have

�C(�) = det(I � L) det(�I � C)

= det(�I � �L� L
T
)

=

p

� det

✓
p

�I �

✓
p

�L+
1
p
�
L
T

◆◆
.

Therefore, if
p
� is an eigenvalue of the matrix

p
�L +

1p
�
L
T , then � is an eigenvalue of C.

Furthermore, since the eigenvalues of the matrix
p
�L+

1p
�
L
T are independent of �, then

p
� is an

eigenvalue of L+L
T as well. Consequently, we have ⇢(C) = ⇢

2
(L+L

T
) = ⇢

2
(I�A) = (1�µ)

2.

D Proof of Theorem 4.12

Since A is an M-matrix, I � L is an M-matrix as well. Then by Lemma A.1, (I � L)
�1

� 0, which
implies C = (I � L)

�1
L
T
� 0. By the Perron-Frobenius Theorem, there exists a real eigenvalue of

C denoted by �, and the corresponding unit-norm eigenvector z � 0 satisfying � = ⇢(C) � 0 and

(�L+ L
T
)z = �z. (20)

Therefore, � is an eigenvalue of the matrix �L+L
T . We then observe that �L+L

T is an irreducible
matrix as A is irreducible. Since the only nonnegative eigenvector of an irreducible nonnegative
matrix is associated with the largest real eigenvalue of that matrix (by Perron-Frobenius Theorem),
we conclude that

� = ⇢(�L+ L
T
) =

p

� ⇢

✓
p

�L+
1
p
�
L
T

◆
. (21)

In order to obtain a lower bound on the right-hand side of (21), we use Lemma A.2, which charac-
terizes the behavior of the spectral radius of the matrix in the right-hand side as � varies (note that
� < 1 since CCD converges linearly for µ > 0, see. e.g. [18]). In particular, by Lemma A.2, we
conclude that

� �

p

� ⇢
�
L+ L

T
�
,

with equality if and only if A is a consistently ordered matrix. This yields

⇢(C) � ⇢
2
�
L+ L

T
�
= ⇢

2
(I �A) = (1� µ)

2 (22)

with equality if and only if A is a consistently ordered matrix, which concludes the proof of the lower
bound in (13). In order to obtain an upper bound on ⇢(C), we turn our attention back to (20) and
multiply both sides by z

T from the left. This yields

�z
T
Lz + z

T
L
T
z = �,

since ||z|| = 1. Noting that zTLz = z
T
L
T
z and defining � = z

T
Lz, we obtain

� =
�

1� �
. (23)

Since ⇢(L+L
T
) = 1� µ, then for any ||y|| = 1, we have yT (L+L

T
)y  1� µ. Picking y = z in

this inequality yields 2�  1� µ, which together with (23) imply the upper bound in (13).

E Proof of Corollary 4.16

By Theorem 4.12, we have the following worst-case asymptotical rate bounds for the CCD algorithm

� log(1� µ) + log(1 + µ)  Rate(CCD)  �2 log(1� µ).

Dividing both sides of the above inequality by � log(1� µ), we obtain

1�
log(1 + µ)

log(1� µ)


Rate(CCD)

� log(1� µ)
 2.
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Taking limit of both sides as µ ! 0
+ yields

lim
µ!0+

Rate(CCD)

� log(1� µ)
= 2. (24)

By Lemma 4.3, we have the following worst-case asymptotical rate for the RCD algorithm

Rate(RCD) = �n log

⇣
1�

µ

n

⌘
.

Dividing both sides of the above inequality by � log(1�µ) and taking limit of both sides as µ ! 0
+,

we get

lim
µ!0+

Rate(RCD)

� log(1� µ)
= 1. (25)

Combining (24) and (25) concludes the proof.

F Example Achieving Lower and Upper Bounds

Consider solving the linear system Ax = 0 where A is defined as follows

A =


1 ��

�� 1

�

for some � 2 (0, 1). The CCD algorithm applied to this problem has the following iteration matrix

C =


0 �

0 �
2

�
,

whereas the expected RCD iteration matrix is

R =

✓
I �

A

2

◆2

=


1/2 �/2

�/2 1/2

�2
=

1

4


1 + �

2
2�

2� 1 + �
2

�
.

The eigendecomposition of this matrix can be found as follows

R =

"
1p
2

�
1p
2

1p
2

1p
2

# 
1+�
2 0

0
1��
2

� " 1p
2

�
1p
2

1p
2

1p
2

#�1

.

Therefore, after ` epochs the distance of the iterates generated by RCD starting from the initial point
x
0
= [a, b]

T becomes

E
����x`

� x
⇤���� = E

����x`
���� �

����Ex`
���� =

����R`
x
0
���� =

�����

�����

"�
1+�
2

�`
a�

1��
2

�`
b

#�����

�����

=

s✓
1 + �

2

◆2`

a2 +

✓
1� �

2

◆2`

b2.

�

✓
1 + �

2

◆`

|a|

� �
`
|a|.

Therefore, in order to achieve a solution in the ✏-neighborhood of the optimal solution x
⇤
= 0, i.e., to

attain
����x`

� x
⇤
���� = ✏, the RCD method requires

NR(✏) �
log ✏

log �
�

log |a|

log �

epochs, for any a 6= 0.

On the other hand, for the CCD algorithm, we have

C
`
=


0 �

2`�1

0 �
2`

�
,
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and consequently the suboptimality of the iterates generated by the CCD algorithm is

����C`
x0

���� = �
2`

r
b2 +

1

�2
b2.

Therefore, in order to achieve a solution in the ✏-neighborhood of the optimal solution x
⇤
= 0, i.e., to

attain
����x`

� x
⇤
���� = ✏, the CCD method requires

NC(✏) =
log ✏

2 log �
�

log
�
b
2
+

1
�2 b

2
�

4 log �

epochs.

Note that for small ✏ the first terms in the expression of NJ(✏) and NC(✏) are dominant. In particular
we have,

lim
✏!0+

NR(✏)

NC(✏)
=�

2 log �

log �
= 2, (26)

for any a 6= 0.
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