A Supplementary Lemmas

In the following lemma, we highlight a property of nonsingular M-matrices, which we will use in the
proof of Theorem[d.12]

Lemma A.1. [19 Theorem 2] A is a nonsingular M-matrix if and only if A~1 exists and A~' > 0.

We next introduce the following lemma, which is presented in variuos papers (e.g., [25, Lemma 4.12],
[L6, Corollary 1.2], [9, Theorem 1]) to analyze the spectral radii of nonnegative matrices.

Lemma A.2. Let B, = e“L + ¢ LT, where L > Qis a strictly lower triangular matrix and
a € R. Then, either p(B,,) is strictly log-convex in a with p(By,) > p(By) for all a # 0 or p(By)
is constant for all o € R (i.e., B, is a consistently ordered matrix).

Proof. Suppose the largest eigenvalue of B, has a multiplicity of 1. Then,
% ty11/t
p(Ba) = lim [tr ((Ba)")]"". (19)

In order to find the diagonal entries of (B,,)?, we consider the graph generated by the matrix B, and
define the weight of a walk as the product of the weights of the corresponding edges in the walk. We
then observe that the ith diagonal of the matrix (B,,)! can be written as the summation of weights of
all closed walks of length ¢ (from the ¢th node to itself). In particular, consider a valid closed walk w
that contains edges (is, is+1)i;é such that iy = i; = i and [B,];_;,,, > 0 for all s. Then, we can
define a symmetric walk w’ with edges (is41, is)i;é and the ith diagonal entry of (B, )! contains
the weights of both w and w’ as summands. Furthermore, the weight of the walk w can be written as
o (w) = e“*Pg(w), for some integer c,,, where

t—1

¢o(w) = [[[Boli. is-

s=0
The weight of the symmetric walk w’ is then found by ¢, (w’) = e~ *¢@q(w) since By is symmetric.
Therefore, the ith diagonal entry of (B, )¢ can be found as follows

(B)Nii= > M bo(w).

all valid walks w

It is easy to observe that cosh(c, ) = M is a strictly log-convex function of « for any

cw # 0. Thus, if there exists a walk w for which ¢,, # 0, then tr ((B,)?) is a strictly log-convex
function of « since ¢o(w) > 0 for all valid walks. On the other hand, tr ((B,)") is constant in « if
and only if ¢,, = 0 for all valid walks, which implies that the graph is bipartite since starting from an
arbitrary node 7 it is not possible to return back to node 7 in odd number of steps. This together with
(19) imply the statement of the lemma.

For the case the largest eigenvalue of B, has a multiplicity of at least 2, we consider the matrix
B, (€) = B, + €, whose largest eigenvalue has a multiplicity of 1 for any € > 0. Using the same

arguments as above, we can conclude that the statement of the lemma holds for any B, (e) withe > 0
and taking the limit as ¢ — 0 concludes the proof of the lemma. |

B Proof of Lemma 4.3

By Assumption4.1} ¢ > 0 and tr (A) = n, which implies all eigenvalues of the matrix A/n are in
the interval (0, 1). Therefore, we have

A(R) = A ((I - iA) ) _ <1 _ i)\min(A)>n = (1-4)".

C Proof of Theorem

The eigenvalues of C' are the roots of the polynomial
oc(A) =det(M —C) =0.
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As I — L is nonsingular and det(I — L) = 1, we have
¢c(N) =det(I — L) det(A — C)
=det(\ — AL — L)

— VX det (ﬁ[ - (ﬁL + \%LT>) :

Therefore, if v/ is an eigenvalue of the matrix VAL + %LT, then A is an eigenvalue of C.
Furthermore, since the eigenvalues of the matrix VAL + %LT are independent of A, then Vv is an

eigenvalue of L + L7 as well. Consequently, we have p(C') = p?(L+ L) = p?(I — A) = (1 —p)%

D Proof of Theorem 4.12

Since A is an M-matrix, I — L is an M-matrix as well. Then by Lemma (I — L)~ >0, which
implies C = (I — L)~*LT > 0. By the Perron-Frobenius Theorem, there exists a real eigenvalue of
C denoted by A, and the corresponding unit-norm eigenvector z > 0 satisfying A = p(C) > 0 and

(AL + LT)z = )z (20)

Therefore, ) is an eigenvalue of the matrix AL 4 L. We then observe that AL 4 L is an irreducible
matrix as A is irreducible. Since the only nonnegative eigenvector of an irreducible nonnegative
matrix is associated with the largest real eigenvalue of that matrix (by Perron-Frobenius Theorem),
we conclude that

A=p(AL+LY)=VXp (\fAL + \})\LT> . 1)

In order to obtain a lower bound on the right-hand side of , we use Lemma@ which charac-
terizes the behavior of the spectral radius of the matrix in the right-hand side as \ varies (note that
A < 1 since CCD converges linearly for ;¢ > 0, see. e.g. [18]). In particular, by LemmalA.2] we
conclude that

A>Vp(L+LT),
with equality if and only if A is a consistently ordered matrix. This yields
p(C)>p* (L+LT)=p* (I - A) = (1—p)? (22)

with equality if and only if A is a consistently ordered matrix, which concludes the proof of the lower
bound in (13). In order to obtain an upper bound on p(C'), we turn our attention back to and
multiply both sides by 27" from the left. This yields

MNeTLz+ 27072 = )\,
since ||z|| = 1. Noting that 27 Lz = 27 LTz and defining 8 = 27 Lz, we obtain

. (23)

=13

Since p(L + LT) = 1 — p, then for any ||y|| = 1, we have y* (L + LT)y < 1 — p. Picking y = z in
this inequality yields 23 < 1 — u, which together with imply the upper bound in (13).

E Proof of Corollary

By Theorem|4.12, we have the following worst-case asymptotical rate bounds for the CCD algorithm
—log(1 — ) +log(1 + i) < Rate(CCD) < —2log(1 — p).
Dividing both sides of the above inequality by — log(1 — ), we obtain

~ log(1 + p) < Rate(CCD)

<2
log(1—p) = —log(1 — p)

11



Taking limit of both sides as p — 07 yields
Rate(CCD)
im ———~
p—0+ —log(1 — p)
By Lemma4.3] we have the following worst-case asymptotical rate for the RCD algorithm

Rate(RCD) = —n log (1 - %) .

=2. 24)

Dividing both sides of the above inequality by — log(1 — 1) and taking limit of both sides as y — 07,
we get
Rate(RCD)
lim ———=
n—0t —log(l — p)
Combining and concludes the proof.

= 1. 25)

F Example Achieving Lower and Upper Bounds

Consider solving the linear system Az = 0 where A is defined as follows

1 =9
A= ]
for some § € (0,1). The CCD algorithm applied to this problem has the following iteration matrix
0 ¢
= 4]

whereas the expected RCD iteration matrix is

R= ([ 3)2 = [3;?3 %]2 :i P ;552 1—2352] '

The eigendecomposition of this matrix can be found as follows

1 1 1 1
v 1@“13‘5 OHﬂ BE

—1

V)

R= % 0 1=¢ 1

V2 V2 21 ]lvz 2
Therefore, after ¢ epochs the distance of the iterates generated by RCD starting from the initial point

20 = [a, b]T becomes

Eer—x*

B ]| > |[Eat]| = [} = H

e

1+6\* | (1-8\",
() e ()
Y4
Z(M> |a|
2

> 6al.

Therefore, in order to achieve a solution in the e-neighborhood of the optimal solution z* = 0, i.e., to
attain H:z:e —x* H = ¢, the RCD method requires

loge log|al
N > —
rle) 2 logéd  logé
epochs, for any a # 0.
On the other hand, for the CCD algorithm, we have
0 626—1
Ce = |:O 52¢ :| )
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and consequently the suboptimality of the iterates generated by the CCD algorithm is

O ]| = 6212 + 55t

Therefore, in order to achieve a solution in the e-neighborhood of the optimal solution z* = 0, i.e., to
attain er — x*|| = ¢, the CCD method requires

No(e) = loge 710g(b2+§%52)
cle) = 2log o 4logé

epochs.

Note that for small e the first terms in the expression of N;(e) and N¢ (€) are dominant. In particular

we have,
. Ng(e) 2logd

| = =2 26

0+ Ne(e) — logé ’ (26)

for any a # 0.
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