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Abstract

Estimation in generalized linear models (GLM) is complicated by the presence of
constraints. One can handle constraints by maximizing a penalized log-likelihood.
Penalties such as the lasso are effective in high dimensions, but often lead to
unwanted shrinkage. This paper explores instead penalizing the squared distance
to constraint sets. Distance penalties are more flexible than algebraic and regu-
larization penalties, and avoid the drawback of shrinkage. To optimize distance
penalized objectives, we make use of the majorization-minimization principle. Re-
sulting algorithms constructed within this framework are amenable to acceleration
and come with global convergence guarantees. Applications to shape constraints,
sparse regression, and rank-restricted matrix regression on synthetic and real data
showcase strong empirical performance, even under non-convex constraints.

1 Introduction and Background

In classical linear regression, the response variable y follows a Gaussian distribution whose mean
xtβ depends linearly on a parameter vector β through a vector of predictors x. Generalized linear
models (GLMs) extend classical linear regression by allowing y to follow any exponential family
distribution, and the conditional mean of y to be a nonlinear function h(xtβ) of xtβ [24]. This
encompasses a broad class of important models in statistics and machine learning. For instance, count
data and binary classification come within the purview of generalized linear regression.

In many settings, it is desirable to impose constraints on the regression coefficients. Sparse regression
is a prominent example. In high-dimensional problems where the number of predictors n exceeds the
number of cases m, inference is possible provided the regression function lies in a low-dimensional
manifold [11]. In this case, the coefficient vector β is sparse, and just a few predictors explain the
response y. The goals of sparse regression are to correctly identify the relevant predictors and to
estimate their effect sizes. One approach, best subset regression, is known to be NP hard. Penalizing
the likelihood by including an `0 penalty ‖β‖0 (the number of nonzero coefficients) is a possibility,
but the resulting objective function is nonconvex and discontinuous. The convex relaxation of `0
regression replaces ‖β‖0 by the `1 norm ‖β‖1. This LASSO proxy for ‖β‖0 restores convexity
and continuity [31]. While LASSO regression has been a great success, it has the downside of
simultaneously inducing both sparsity and parameter shrinkage. Unfortunately, shrinkage often has
the undesirable side effect of including spurious predictors (false positives) with the true predictors.

Motivated by sparse regression, we now consider the alternative of penalizing the log-likelihood by
the squared distance from the parameter vector β to the constraint set. If there are several constraints,
then we add a distance penalty for each constraint set. Our approach is closely related to the proximal
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distance algorithm [19, 20] and proximity function approaches to convex feasibility problems [5].
Neither of these prior algorithm classes explicitly considers generalized linear models. Beyond
sparse regression, distance penalization applies to a wide class of statistically relevant constraint
sets, including isotonic constraints and matrix rank constraints. To maximize distance penalized log-
likelihoods, we advocate the majorization-minimization (MM) principle [2, 18, 19]. MM algorithms
are increasingly popular in solving the large-scale optimization problems arising in statistics and
machine learning [22]. Although distance penalization preserves convexity when it already exists,
neither the objective function nor the constraints sets need be convex to carry out estimation. The
capacity to project onto each constraint set is necessary. Fortunately, many projection operators are
known. Even in the absence of convexity, we are able to prove that our algorithm converges to a
stationary point. In the presence of convexity, the stationary points are global minima.

In subsequent sections, we begin by briefly reviewing GLM regression and shrinkage penalties. We
then present our distance penalty method and a sample of statistically relevant problems that it can
address. Next we lay out in detail our distance penalized GLM algorithm, discuss how it can be
accelerated, summarize our convergence results, and compare its performance to that of competing
methods on real and simulated data. We close with a summary and a discussion of future directions.

GLMs and Exponential Families: In linear regression, the vector of responses y is normally
distributed with mean vector E(y) = Xβ and covariance matrix V(y) = σ2I . A GLM preserves
the independence of the responses yi but assumes that they are generated from a shared exponential
family distribution. The response yi is postulated to have mean µi(β) = E[yi|β] = h(xtiβ), where
xi is the ith row of a design matrix X , and the inverse link function h(s) is smooth and strictly
increasing [24]. The functional inverse h−1(s) of h(s) is called the link function. The likelihood of
any exponential family can be written in the canonical form

p(yi|θi, τ) = c1(yi, τ) exp

{
yθi − ψ(θi)

c2(τ)

}
. (1)

Here τ is a fixed scale parameter, and the positive functions c1 and c2 are constant with respect to the
natural parameter θi. The function ψ is smooth and convex; a brief calculation shows that µi = ψ′(θi).
The canonical link function h−1(s) is defined by the condition h−1(µi) = xtiβ = θi. In this case,
h(θi) = ψ′(θi), and the log-likelihood ln p(y|β,xj , τ) is concave in β. Because c1 and c2 are not
functions of θ, we may drop these terms and work with the log-likelihood up to proportionality. We
denote this by L(β | y,X) ∝ ln p(y|β,xj , τ). The gradient and second differential of L(β | y,X)
amount to

∇L =

m∑
i=1

[yi − ψ′(xtiβ)]xi and d2L = −
m∑
i=1

ψ′′(xtiβ)xix
t
i. (2)

As an example, when ψ(θ) = θ2/2 and c2(τ) = τ2, the density (1) is the Gaussian likelihood,
and GLM regression under the identity link coincides with standard linear regression. Choosing
ψ(θ) = ln[1 + exp(θ)] and c2(τ) = 1 corresponds to logistic regression under the canonical link
h−1(s) = ln s

1−s with inverse link h(s) = es

1+es . GLMs unify a range of regression settings,
including Poisson, logistic, gamma, and multinomial regression.

Shrinkage penalties: The least absolute shrinkage and selection operator (LASSO) [12, 31] solves

β̂ = argminβ

[
λ‖β‖1 −

1

m

m∑
j=1

L(β | yj ,xj)
]
, (3)

where λ > 0 is a tuning constant that controls the strength of the `1 penalty. The `1 relaxation is
a popular approach to promote a sparse solution, but there is no obvious map between λ and the
sparsity level k. In practice, a suitable value of λ is found by cross-validation. Relying on global
shrinkage towards zero, LASSO notoriously leads to biased estimates. This bias can be ameliorated
by re-estimating under the model containing only the selected variables, known as the relaxed LASSO
[25], but success of this two-stage procedure relies on correct support recovery in the first step.
In many cases, LASSO shrinkage is known to introduce false positives [30], resulting in spurious
covariates that cannot be corrected. To combat these shortcomings, one may replace the LASSO
penalty by a non-convex penalty with milder effects on large coefficients. The smoothly clipped
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absolute deviation (SCAD) penalty [10] and minimax concave penalty (MCP) [34] are even functions
defined through their derivatives

q′γ(βi, λ) = λ

[
1{|βi|≤λ} +

(γλ− |βi|)+
(γ − 1)λ

1{|βi|>λ}

]
and q′γ(βi, λ) = λ

(
1− |βi|

λγ

)
+

for βi > 0. Both penalties reduce bias, interpolate between hard thresholding and LASSO shrinkage,
and significantly outperform the LASSO in some settings, especially in problems with extreme
sparsity. SCAD, MCP, as well as the relaxed lasso come with the disadvantage of requiring an extra
tuning parameter γ > 0 to be selected.

2 Regression with distance-to-constraint set penalties

As an alternative to shrinkage, we consider penalizing the distance between the parameter vector β
and constraints defined by sets Ci. Penalized estimation seeks the solution

β̂ = argminβ

1
2

∑
i

vidist(β, Ci)2 −
1

m

m∑
j=1

L(β | yj ,xj)

 := argminβ f(β), (4)

where the vi are weights on the distance penalty to constraint set Ci . The Euclidean distance can
also be written as

dist(β, Ci) = ‖β − PCi
(β)‖2,

where PCi
(β) denotes the projection of β onto Ci. The projection operator is uniquely defined

when Ci is closed and convex. If Ci is merely closed, then PCi(β) may be multi-valued for a few
unusual external points β. Notice the distance penalty dist(β, Ci)2 is 0 precisely when β ∈ Ci.
The solution (4) represents a tradeoff between maximizing the log-likelihood and satisfying the
constraints. When each Ci is convex, the objective function is convex as a whole. Sending all of the
penalty constants vi to∞ produces in the limit the constrained maximum likelihood estimate. This
is the philosophy behind the proximal distance algorithm [19, 20]. In practice, it often suffices to
find the solution (4) under fixed vi large. The reader may wonder why we employ squared distances
rather than distances. The advantage is that squaring renders the penalties differentiable. Indeed,
∇ 1

2dist(x, Ci)2 = x − PCi
(x) whenever PCi

(x) is single valued. This is almost always the case.
In contrast, dist(x, Ci) is typically nondifferentiable at boundary points of Ci even when Ci is
convex. The following examples motivate distance penalization by considering constraint sets and
their projections for several important models.

Sparse regression: Sparsity can be imposed directly through the constraint set Ck =
{z ∈ Rn : ‖z‖0 ≤ k} . Projecting a point β onto C is trivially accomplished by setting all but
the k largest entries in magnitude of β equal to 0, the same operation behind iterative hard thresh-
olding algorithms. Instead of solving the `1-relaxation (3), our algorithm approximately solves the
original `0-constrained problem by repeatedly projecting onto the sparsity set Ck. Unlike LASSO
regression, this strategy enables one to directly incorporate prior knowledge of the sparsity level k in
an interpretable manner. When no such information is available, k can be selected by cross validation
just as the LASSO tuning constant λ is selected. Distance penalization escapes the NP hard dilemma
of best subset regression at the cost of possible convergence to a local minimum.

Shape and order constraints: As an example of shape and order restrictions, consider isotonic
regression [1]. For data y ∈ Rn, isotonic regression seeks to minimize 1

2‖y − β‖
2
2 subject to

the condition that the βi are non-decreasing. In this case, the relevant constraint set is the isotone
convex cone C = {β : β1 ≤ β2 ≤ . . . ≤ βn}. Projection onto C is straightforward and efficiently
accomplished using the pooled adjacent violators algorithm [1, 8]. More complicated order constraints
can be imposed analogously: for instance, βi ≤ βj might be required of all edges i→ j in a directed
graph model. Notably, isotonic linear regression applies to changepoint problems [32]; our approach
allows isotonic constraints in GLM estimation. One noteworthy application is Poisson regression
where the intensity parameter is assumed to be nondecreasing with time.

Rank restriction: Consider GLM regression where the predictorsXi and regression coefficients
B are matrix-valued. To impose structure in high-dimensional settings, rank restriction serves as an

3



appropriate matrix counterpart to sparsity for vector parameters. Prior work suggests that imposing
matrix sparsity is much less effective than restricting the rank ofB in achieving model parsimony
[37]. The matrix analog of the LASSO penalty is the nuclear norm penalty. The nuclear norm of a
matrixB is defined as the sum of its singular values ‖B‖∗ =

∑
j σj(B) = trace(

√
B∗B). Notice

‖B‖∗ is a convex relaxation of rank(B). Including a nuclear norm penalty entails shrinkage and
induces low-rankness by proxy.

Distance penalization of rank involves projecting onto the set Cr = {Z ∈ Rn×n : rank(Z) ≤ r}
for a given rank r. Despite sacrificing convexity, distance penalization of rank is, in our view, both
more natural and more effective than nuclear norm penalization. Avoiding shrinkage works to the
advantage of distance penalization, which we will see empirically in Section 4. According to the
Eckart-Young theorem, the projection of a matrixB onto Cr is achieved by extracting the singular
value decomposition ofB and truncating all but the top r singular values. Truncating the singular
value decomposition is a standard numerical task best computed by Krylov subspace methods [14].

Simple box constraints, hyperplanes, and balls: Many relevant set constraints reduce to closed
convex sets with trivial projections. For instance, enforcing non-negative parameter values is ac-
complished by projecting onto the non-negative orthant. This is an example of a box constraint.
Specifying linear equality and inequality constraints entails projecting onto a hyperplane or half-space,
respectively. A Tikhonov or ridge penalty constraint ‖β‖2 ≤ r requires spherical projection.

Finally, we stress that it is straightforward to consider combinations of the aforementioned constraints.
Multiple norm penalties are already in common use. To encourage selection of correlated variables
[38], the elastic net includes both `1 and `2 regularization terms. Further examples include matrix
fitting subject to both sparse and low-rank matrix constraints [29] and LASSO regression subject
to linear equality and inequality constraints [13]. In our setting the relative importance of different
constraints can be controlled via the weights vi.

3 Majorization-minimization

Figure 1: Illustrative example of two MM iterates with surrogates g(x|xk) majorizing f(x) = cos(x).

To solve the minimization problem (4), we exploit the principle of majorization-minimization. An
MM algorithm successively minimizes a sequence of surrogate functions g(β | βk) majorizing the
objective function f(β) around the current iterate βk. See Figure 1. Forcing g(β | βk) downhill
automatically drives f(β) downhill as well [19, 22]. Every expectation-maximization (EM) algorithm
[9] for maximum likelihood estimation is an MM algorithm. Majorization requires two conditions:
tangency at the current iterate g(βk | βk) = f(βk), and domination g(β | βk) ≥ f(β) for all
β ∈ Rm. The iterates of the MM algorithm are defined by

βk+1 := argmin
β

g(β | βk)

although all that is absolutely necessary is that g(βk+1 | βk) < g(βk | βk). Whenever this holds,
the descent property

f(βk+1) ≤ g(βk+1 | βk) ≤ g(βk | βk) = f(βk)
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follows. This simple principle is widely applicable and converts many hard optimization problems
(non-convex or non-smooth) into a sequence of simpler problems.

To majorize the objective (4), it suffices to majorize each distance penalty dist (β, Ci)
2. The ma-

jorization dist (β, Ci)
2 ≤ ‖β − PCi(βk)‖22 is an immediate consequence of the definitions of the set

distance dist (β, Ci)
2 and the projection operator PCi

(β) [8]. The surrogate function

g(β | βk) =
1

2

∑
i

vi‖β − PCi
(βk)‖22 −

1

m

m∑
j=1

L(β | yj ,xj).

has gradient

∇g(β | βk) =
∑
i

vi[β − PCi
(βk)]−

1

m

m∑
j=1

∇L(β | yj ,xj)

and second differential

d2g(β | βk) =
(∑

i

vi

)
In −

1

m

m∑
j=1

d2L(β | yj ,xj) :=Hk. (5)

The score ∇L(β | yj ,xj) and information −d2L(β | yj ,xj) appear in equation (2). Note that for
GLMs under canonical link, the observed and expected information matrices coincide, and their
common value is thus positive semidefinite. Adding a multiple of the identity In to the information
matrix is analogous to the Levenberg-Marquardt maneuver against ill-conditioning in ordinary
regression [26]. Our algorithm therefore naturally benefits from this safeguard.

Since solving the stationarity equation ∇g(β | βk) = 0 is not analytically feasible in general, we
employ one step of Newton’s method in the form

βk+1 = βk − ηkd2g(βk | βk)−1∇f(βk),
where ηk ∈ (0, 1] is a stepsize multiplier chosen via backtracking. Note here our application of
the gradient identity ∇f(βk) = ∇g(βk | βk), valid for all smooth surrogate functions. Because
the Newton increment is a descent direction, some value of ηk is bound to produce a decrease in
the surrogate and therefore in the objective. The following theorem, proved in the Supplement,
establishes global convergence of our algorithm under simple Armijo backtracking for choosing ηk:

Theorem 3.1 Consider the algorithm map

M(β) = β − ηβH(β)−1∇f(β),
where the step size ηβ has been selected by Armijo backtracking. Assume that f(β) is coercive in the
sense lim‖β‖→∞ f(β) = +∞. Then the limit points of the sequence βk+1 =M(βk) are stationary
points of f(β). Moreover, the set of limit points is compact and connected.

We remark that stationary points are necessarily global minimizers when f(β) is convex. Furthermore,
coercivity of f(β) is a very mild assumption, and is satisfied whenever either the distance penalty or
the negative log-likelihood is coercive. For instance, the negative log-likelihoods of the Poisson and
Gaussian distributions are coercive functions. While this is not the case for the Bernoulli distribution,
adding a small `2 penalty ω‖β‖22 restores coerciveness. Including such a penalty in logistic regression
is a common remedy to the well-known problem of numerical instability in parameter estimates
caused by a poorly conditioned design matrixX [27]. Since L(β) is concave in β, the compactness
of one or more of the constraint sets Ci is another sufficient condition for coerciveness.

Generalization to Bregman divergences: Although we have focused on penalizing GLM likeli-
hoods with Euclidean distance penalties, this approach holds more generally for objectives containing
non-Euclidean measures of distance. As reviewed in the Supplement, the Bregman divergence
Dφ(v,u) = φ(v)− φ(u)− dφ(u)(v − u) generated by a convex function φ(v) provides a general
notion of directed distance [4]. The Bregman divergence associated with the choice φ(v) = 1

2‖v‖
2
2,

for instance, is the squared Euclidean distance. One can rewrite the GLM penalized likelihood as a
sum of multiple Bregman divergences

f(β) =
∑
i

viDφ

[
PφCi

(β),β
]
+

m∑
j=1

wjDζ

[
yj , h̃j(β)

]
. (6)
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Algorithm 1 MM algorithm to solve distance-penalized objective (4)
1: Initialize k = 0, starting point β0, initial step size α ∈ (0, 1), and halving parameter σ ∈ (0, 1):
2: repeat
3: ∇fk ←

∑
i vi[β − PCi

(βk)]− 1
m

∑m
j=1∇L(β | yj ,βj)

4: Hk ←
(∑

i vi

)
In − 1

m

∑m
j=1 d

2L(β | yj ,βj)
5: v ← −H−1k ∇fk
6: η ← 1
7: while f(βk + ηv) > f(βk) + αη∇f tkβk do
8: η ← ση
9: end while

10: βk+1 ← βk + ηv
11: k ← k + 1
12: until convergence

The first sum in equation (6) represents the distance penalty to the constraint sets Ci. The projection
PφCi

(β) denotes the closest point to β in Ci measured under Dφ. The second sum generalizes the
GLM log-likelihood term where h̃j(β) = h−1(xtjβ). Every exponential family likelihood uniquely
corresponds to a Bregman divergence Dζ generated by the conjugate of its cumulant function ζ = ψ∗

[28]. Hence, −L(β | y,X) is proportional to 1
m

∑m
j=1Dζ

[
yj , h

−1(xtjβ)
]
. The functional form (6)

immediately broadens the class of objectives to include quasi-likelihoods and distances to constraint
sets measured under a broad range of divergences. Objective functions of this form are closely related
to proximity function minimization in the convex feasibility literature [5, 6, 7, 33]. The MM principle
makes possible the extension of the projection algorithms of [7] to minimize this general objective.

Our MM algorithm for distance penalized GLM regression is summarized in Algorithm 1. Although
for the sake of clarity the algorithm is written for vector-valued arguments, it holds more generally for
matrix-variate regression. In this setting the regression coefficientsB and predictorsXi are matrix
valued, and response yj has mean h[trace(Xt

iB)] = h[vec(Xi)
t vec(B)]. Here the vec operator

stacks the columns of its matrix argument. Thus, the algorithm immediately applies if we replaceB
by vec(B) andX1, . . . ,Xm byX = [vec(X1), . . . , vec(Xm)]t. Projections requiring the matrix
structure are performed by reshaping vec(B) into matrix form. In contrast to shrinkage approaches,
these maneuvers obviate the need for new algorithms in matrix regression [37].

Acceleration: Here we mention two modifications to the MM algorithm that translate to large
practical differences in computational cost. Inverting the n-by-n matrix d2g(βk | βk) naively
requires O(n3) flops. When the number of cases m� n, invoking the Woodbury formula requires
solving a substantially smaller m×m linear system at each iteration. This computational savings is
crucial in the analysis of the EEG data of Section 4. The Woodbury formula says

(vIn +UV )−1 = v−1In − v−2U
(
Im + v−1V U

)−1
V

whenU and V are n×m andm×nmatrices, respectively. Inspection of equations (2) and (5) shows
that d2g(βk | βk) takes the required form. Under Woodbury’s formula the dominant computation
is the matrix-matrix product V U , which requires only O(nm2) flops. The second modification to
the MM algorithm is quasi-Newton acceleration. This technique exploits secant approximations
derived from iterates of the algorithm map to approximate the differential of the map. As few as two
secant approximations can lead to orders of magnitude reduction in the number of iterations until
convergence. We refer the reader to [36] for a detailed description of quasi-Newton acceleration and
a summary of its performance on various high-dimensional problems.

4 Results and performance

We first compare the performance of our distance penalization method to leading shrinkage methods
in sparse regression. Our simulations involve a sparse length n = 2000 coefficient vector β with 10
nonzero entries. Nonzero coefficients have uniformly random effect sizes. The entries of the design
matrixX are N(0, 0.1) Gaussian random deviates. We then recover β from undersampled responses
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Figure 2: The left figure displays relative errors among nonzero predictors in underdetermined
Poisson and logistic regression with m = 1000 cases. It is clear that LASSO suffers the most
shrinkage and bias, while MM appears to outperform MCP and SCAD. The right figure displays
MSE as a function of m, favoring MM most notably for logistic regression.

yj following Poisson and Bernoulli distributions with canonical links. Figure 2 compares solutions
obtained using our distance penalties (MM) to those obtained under MCP, SCAD, and LASSO
penalties. Relative errors (left) with m = 1000 cases clearly show that LASSO suffers the most
shrinkage and bias; MM seems to outperform MCP and SCAD. For a more detailed comparison, the
right side of the figure plots mean squared error (MSE) as a function of the number of cases averaged
over 50 trials. All methods significantly outperform LASSO, which is omitted for scale, with MM
achieving lower MSE than competitors, most noticeably in logistic regression. As suggested by an
anonymous reviewer, similar results from additional experiments for Gaussian (linear) regression
with comparison to relaxed lasso are included in the Supplement.

(a) Sparsity constraint (b) Regularize ‖B‖∗ (c) Restrict rk(B) = 2 (d) Vary rk(B) = 1, . . . , 8

Figure 3: TrueB0 in the top left of each set of 9 images has rank 2. The other 8 images in (a)—(c)
display solutions as ε varies over the set {0, 0.1, . . . , 0.7}. Figure (a) applies our MM algorithm
with sparsity rather than rank constraints to illustrate how failing to account for matrix structure
misses the true signal; Zhou and Li [37] report similar findings comparing spectral regularization to
`1 regularization. Figure (b) performs spectral shrinkage [37] and displays solutions under optimal λ
values via BIC, while (c) uses our MM algorithm restricting rank(B) = 2. Figure (d) fixes ε = 0.1
and uses MM with rank(B) ∈ {1, . . . , 8} to illustrate robustness to rank over-specification.

For underdetermined matrix regression, we compare to the spectral regularization method developed
by Zhou and Li [37]. We generate their cross-shaped 32× 32 true signalB0 and in all trials sample
m = 300 responses yi ∼ N [tr(Xt

i,B), ε]. Here the design tensor X is generated with standard
normal entries. Figure 3 demonstrates that imposing sparsity alone fails to recover Y0 and that
rank-set projections visibly outperform spectral norm shrinkage as ε varies. The rightmost panel also
shows that our method is robust to over-specification of the rank of the true signal to an extent.

We consider two real datasets. We apply our method to count data of global temperature anomalies
relative to the 1961-1990 average, collected by the Climate Research Unit [17]. We assume a non-
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Figure 4: The leftmost plot shows our isotonic fit to temperature anomaly data [17]. The right figures
display the estimated coefficient matrix B on EEG alcoholism data using distance penalization,
nuclear norm shrinkage [37], and LASSO shrinkage, respectively.

decreasing solution, illustrating an instance of isotonic regression. The fitted solution displayed
in Figure 4 has mean squared error 0.009, clearly obeys the isotonic constraint, and is consistent
with that obtained on a previous version of the data [32]. We next focus on rank constrained matrix
regression for electroencephalography (EEG) data, collected by [35] to study the association between
alcoholism and voltage patterns over times and channels. The study consists of 77 individuals with
alcoholism and 45 controls, providing 122 binary responses yi indicating whether subject i has
alcoholism. The EEG measurements are contained in 256× 64 predictor matricesXi; the dimension
m is thus greater than 16, 000. Further details about the data appear in the Supplement.

Previous studies apply dimension reduction [21] and propose algorithms to seek the optimal rank 1
solution [16]. These methods could not handle the size of the original data directly, and the spectral
shrinkage approach proposed in [37] is the first to consider the full EEG data. Figure 4 shows that
our regression solution is qualitatively similar to that obtained under nuclear norm penalization [37],
revealing similar time-varying patterns among channels 20-30 and 50-60. In contrast, ignoring matrix
structure and penalizing the `1 norm ofB yields no useful information, consistent with findings in
[37]. However, our distance penalization approach achieves a lower misclassification error of 0.1475.
The lowest misclassification rate reported in previous analyses is 0.139 by [16]. As their approach is
strictly more restrictive than ours in seeking a rank 1 solution, we agree with [37] in concluding that
the lower misclassification error can be largely attributed to benefits from data preprocessing and
dimension reduction. While not visually distinguishable, we also note that shrinking the eigenvalues
via nuclear norm penalization [37] fails to produce a low-rank solution on this dataset.

We omit detailed timing comparisons throughout since the various methods were run across platforms
and depend heavily on implementation. We note that MCP regression relies on the MM principle,
and the LQA and LLA algorithms used to fit models with SCAD penalties are also instances of
MM algorithms [11]. Almost all MM algorithms share an overall linear rate of convergence. While
these require several seconds of compute time on a standard laptop machine, coordinate-descent
implementations of LASSO outstrip our algorithm in terms of computational speed. Our MM
algorithm required 31 seconds to converge on the EEG data, the largest example we considered.

5 Discussion

GLM regression is one of the most widely employed tools in statistics and machine learning. Imposing
constraints upon the solution is integral to parameter estimation in many settings. This paper considers
GLM regression under distance-to-set penalties when seeking a constrained solution. Such penalties
allow a flexible range of constraints, and are competitive with standard shrinkage methods for sparse
and low-rank regression in high dimensions. The MM principle yields a reliable solution method
with theoretical guarantees and strong empirical results over a number of practical examples. These
examples emphasize promising performance under non-convex constraints, and demonstrate how
distance penalization avoids the disadvantages of shrinkage approaches.

Several avenues for future work may be pursued. The primary computational bottleneck we face is
matrix inversion, which limits the algorithm when faced with extremely large and high-dimensional
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datasets. Further improvements may be possible using modifications of the algorithm tailored to
specific problems, such as coordinate or block descent variants. Since the linear systems encountered
in our parameter updates are well conditioned, a conjugate gradient algorithm may be preferable to
direct methods of solution in such cases. The updates within our algorithm can be recast as weighted
least squares minimization, and a re-examination of this classical problem may suggest even better
iterative solvers. As the methods apply to a generalized objective comprised of multiple Bregman
divergences, it will be fruitful to study penalties under alternate measures of distance, and settings
beyond GLM regression such as quasi-likelihood estimation.

While our experiments primarily compare against shrinkage approaches, an anonymous referee points
us to recent work revisiting best subset selection using modern advances in mixed integer optimization
[3]. These exciting developments make best subset regression possible for much larger problems than
previously thought possible. As [3] focus on the linear case, it is of interest to consider how ideas in
this paper may offer extensions to GLMs, and to compare the performance of such generalizations.
Best subsets constitutes a gold standard for sparse estimation in the noiseless setting; whether it
outperforms shrinkage methods seems to depend on the noise level and is a topic of much recent
discussion [15, 23]. Finally, these studies as well as our present paper focus on estimation, and it
will be fruitful to examine variable selection properties in future work. Recent work evidences an
inevitable trade-off between false and true positives under LASSO shrinkage in the linear sparsity
regime [30]. The authors demonstrate that this need not be the case with `0 methods, remarking
that computationally efficient methods which also enjoy good model performance would be highly
desirable as `0 and `1 approaches possess one property but not the other [30]. Our results suggest
that distance penalties, together with the MM principle, seem to enjoy benefits from both worlds on a
number of statistical tasks.
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