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Abstract

Kernel methods provide a principled way to perform non linear, nonparametric
learning. They rely on solid functional analytic foundations and enjoy optimal
statistical properties. However, at least in their basic form, they have limited
applicability in large scale scenarios because of stringent computational require-
ments in terms of time and especially memory. In this paper, we take a substantial
step in scaling up kernel methods, proposing FALKON, a novel algorithm that
allows to efficiently process millions of points. FALKON is derived combining
several algorithmic principles, namely stochastic subsampling, iterative solvers and
preconditioning. Our theoretical analysis shows that optimal statistical accuracy
is achieved requiring essentially O(n) memory and O(n

√
n) time. An extensive

experimental analysis on large scale datasets shows that, even with a single ma-
chine, FALKON outperforms previous state of the art solutions, which exploit
parallel/distributed architectures.

1 Introduction

The goal in supervised learning is to learn from examples a function that predicts well new data.
Nonparametric methods are often crucial since the functions to be learned can be non-linear and
complex Kernel methods are probably the most popular among nonparametric learning methods, but
despite excellent theoretical properties, they have limited applications in large scale learning because
of time and memory requirements, typically at least quadratic in the number of data points.
Overcoming these limitations has motivated a variety of practical approaches including gradient
methods, as well accelerated, stochastic and preconditioned extensions, to improve time complexity
[1, 2, 3, 4, 5, 6]. Random projections provide an approach to reduce memory requirements, popular
methods including Nyström [7, 8], random features [9], and their numerous extensions. From a
theoretical perspective a key question has become to characterize statistical and computational trade-
offs, that is if, or under which conditions, computational gains come at the expense of statistical
accuracy. In particular, recent results considering least squares, show that there are large class of
problems for which, by combining Nyström or random features approaches [10, 11, 12, 13, 14, 15]
with ridge regression, it is possible to substantially reduce computations, while preserving the
same optimal statistical accuracy of exact kernel ridge regression (KRR). While statistical lower
bounds exist for this setting, there are no corresponding computational lower bounds. The state of
the art approximation of KRR, for which optimal statistical bounds are known, typically requires
complexities that are roughly O(n2) in time and memory (or possibly O(n) in memory, if kernel
computations are made on the fly).

In this paper, we propose and study FALKON, a new algorithm that, to the best of our knowledge,
has the best known theoretical guarantees. At the same time FALKON provides an efficient approach
to apply kernel methods on millions of points, and tested on a variety of large scale problems
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outperform previously proposed methods while utilizing only a fraction of computational resources.
More precisely, we take a substantial step in provably reducing the computational requirements,
showing that, up to logarithmic factors, a time/memory complexity of O(n

√
n) and O(n) is sufficient

for optimal statistical accuracy. Our new algorithm, exploits the idea of using Nyström methods
to approximate the KRR problem, but also to efficiently compute a preconditioning to be used in
conjugate gradient. To the best of our knowledge this is the first time all these ideas are combined
and put to fruition. Our theoretical analysis derives optimal statistical rates both in a basic setting and
under benign conditions for which fast rates are possible. The potential benefits of different sampling
strategies are also analyzed. Most importantly, the empirical performances are thoroughly tested
on available large scale data-sets. Our results show that, even on a single machine, FALKON can
outperforms state of the art methods on most problems both in terms of time efficiency and prediction
accuracy. In particular, our results suggest that FALKON could be a viable kernel alternative to deep
fully connected neural networks for large scale problems.

The rest of the paper is organized as follows. In Sect. 2 we give some background on kernel methods.
In Sect. 3 we introduce FALKON, while in Sect. 4 we present and discuss the main technical results.
Finally in Sect. 5 we present experimental results.

2 Statistical and Computational Trade-offs in Kernel Methods

We consider the supervised learning problem of estimating a function from random noisy samples. In
statistical learning theory, this can be formalized as the problem of solving

inf
f∈H
E(f), E(f) =

∫
(f(x)− y)2dρ(x, y), (1)

given samples (xi, yi)ni=1 from ρ, which is fixed but unknown and where,H is a space of candidate
solutions. Ideally, a good empirical solution f̂ should have small excess risk

R(f̂ ) = E(f̂ ) − inf
f∈H
E(f), (2)

since this implies it will generalize/predict well new data. In this paper, we are interested in
both computational and statistical aspects of the above problem. In particular, we investigate the
computational resources needed to achieve optimal statistical accuracy, i.e. minimal excess risk. Our
focus is on the most popular class of nonparametric methods, namely kernel methods.

Kernel methods and ridge regression. Kernel methods consider a spaceH of functions

f(x) =

n∑
i=1

αjK(x, xi), (3)

where K is a positive definite kernel 2. The coefficients α1, . . . , αn are typically derived from a
convex optimization problem, that for the square loss is

f̂n,λ = argmin
f∈H

1

n

n∑
i=1

(f(xi)− yi)2 + λ‖f‖2H, (4)

and defines the so called kernel ridge regression (KRR) estimator [16]. An advantage of least squares
approaches is that they reduce computations to a linear system

(Knn + λnI) α = ŷ, (5)

where Knn is an n × n matrix defined by (Knn)ij = K(xi, xj) and ŷ = (y1, . . . yn). We next
comment on computational and statistical properties of KRR.

Computations. Solving Eq. (5) for large datasets is challenging. A direct approach requires O(n2) in
space, to allocate Knn, O(n2) kernel evaluations, and O(n2cK + n3) in time, to compute and invert
Knn (cK is the kernel evaluation cost assumed constant and omitted throughout).

Statistics. Under basic assumptions, KRR achieves an errorR(f̂λn) = O(n−1/2), for λn = n−1/2,
which is optimal in a minimax sense and can be improved only under more stringent assumptions
[17, 18].

2K is positive definite, if the matrix with entriesK(xi, xj) is positive semidefinite ∀x1, . . . , xN , N ∈ N [16]
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The question is then if it is possible to achieve the statistical properties of KRR, with less computations.

Gradient methods and early stopping. A natural idea is to consider iterative solvers and in
particular gradient methods, because of their simplicity and low iteration cost. A basic example is
computing the coefficients in (3) by

αt = αt−1 + τ [(Knnαt−1 − ŷ) + λnαt−1] , (6)
for a suitable step-size choice τ .

Computations. In this case, if t is the number of iterations, gradient methods require O(n2t) in
time, O(n2) in memory and O(n2) in kernel evaluations, if the kernel matrix is stored. Note that, the
kernel matrix can also be computed on the fly with only O(n) memory, but O(n2t) kernel evaluations
are required. We note that, beyond the above simple iteration, several variants have been considered
including accelerated [1, 19] and stochastic extensions [20].

Statistics. The statistical properties of iterative approaches are well studied and also in the case where
λ is set to zero, and regularization is performed by choosing a suitable stopping time [21]. In this
latter case, the number of iterations can roughly be thought of 1/λ and O(

√
n) iterations are needed

for basic gradient descent, O(n1/4) for accelerated methods and possible O(1) iterations/epochs
for stochastic methods. Importantly, we note that unlike most optimization studies, here we are
considering the number of iterations needed to solve (1), rather than (4).

While the time complexity of these methods dramatically improves over KRR, and computations can
be done in blocks, memory requirements (or number of kernel evaluations) still makes the application
to large scale setting cumbersome. Randomization provides an approach to tackle this challenge.

Random projections. The rough idea is to use random projections to compute Knn only approx-
imately. The most popular examples in this class of approaches are Nyström [7, 8] and random
features [9] methods. In the following we focus in particular on a basic Nyström approach based on
considering functions of the form

f̃λ,M (x) =

M∑
i=1

α̃iK(x, x̃i), with {x̃1, . . . , x̃M} ⊆ {x1, . . . , xn}, (7)

defined considering only a subset of M training points sampled uniformly. In this case, there are only
M coefficients that, following the approach in (4), can be derived considering the linear system

Hα̃ = z, where H = K>nMKnM + λnKMM , z = K>nM ŷ. (8)
Here KnM is the n×M matrix with (KnM )ij = K(xi, x̃j) and KMM is the M ×M matrix with
(KMM )ij = K(x̃i, x̃j). This method consists in subsampling the columns of Knn and can be seen
as a particular form of random projections.

Computations. Direct methods for solving (8) require O(nM2) in time to form K>nMKnM and
O(M3) for solving the linear system, and only O(nM) kernel evaluations. The naive memory
requirement is O(nM) to store KnM , however if K>nMKnM is computed in blocks of dimension at
most M ×M only O(M2) memory is needed. Iterative approaches as in (6) can also be combined
with random projections [22, 23, 24] to slightly reduce time requirements (see Table. 1, or Sect. F in
the appendix, for more details).

Statistics. The key point though, is that random projections allow to dramatically reduce memory
requirements as soon as M � n and the question arises of whether this comes at expenses of
statistical accuracy. Interestingly, recent results considering this question show that there are large
classes of problems for which M = Õ(

√
n) suffices for the same optimal statistical accuracy of the

exact KRR [11, 12, 13].

In summary, in this case the computations needed for optimal statistical accuracy are reduced from
O(n2) to O(n

√
n) kernel evaluations, but the best time complexity is basically O(n2). In the rest of

the paper we discuss how this requirement can indeed be dramatically reduced.

3 FALKON

Our approach is based on a novel combination of randomized projections with iterative solvers plus
preconditioning. The main novelty is that we use random projections to approximate both the problem
and the preconditioning.
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Preliminaries: preconditioning and KRR. We begin recalling the basic idea behind precondition-
ing. The key quantity is the condition number, that for a linear system is the ratio between the largest
and smallest singular values of the matrix defining the problem [25]. For example, for problem (5)
the condition number is given by

cond(Knn + λnI) = (σmax + λn)/(σmin + λn),

with σmax, σmin largest and smallest eigenvalues ofKnn, respectively. The importance of the condition
number is that it captures the time complexity of iteratively solving the corresponding linear system.
For example, if a simple gradient descent (6) is used, the number of iterations needed for an ε accurate
solution of problem (5) is

t = O(cond(Knn + λnI) log(1/ε)).

It is shown in [23] that in this case t =
√
n log n are needed to achieve a solution with good statistical

properties. Indeed, it can be shown that roughly t ≈ 1/λ log( 1ε ) are needed where λ = 1/
√
n and

ε = 1/n. The idea behind preconditioning is to use a suitable matrix B to define an equivalent linear
system with better condition number. For (5), an ideal choice is B such that

BB> = (Knn + λnI)−1 (9)

and B>(Knn + λnI)B β = B>ŷ. Clearly, if β∗ solves the latter problem, α∗ = Bβ∗ is a solution
of problem (5). Using a preconditioner B as in (9) one iteration is sufficient, but computing the B is
typically as hard as the original problem. The problem is to derive preconditioning such that (9) might
hold only approximately, but that can be computed efficiently. Derivation of efficient preconditioners
for the exact KRR problem (5) has been the subject of recent studies, [3, 4, 26, 5, 6]. In particular,
[4, 26, 5, 6] consider random projections to approximately compute a preconditioner. Clearly,
while preconditioning (5) leads to computational speed ups in terms of the number of iterations,
requirements in terms of memory/kernel evaluation are the same as standard kernel ridge regression.

The key idea to tackle this problem is to consider an efficient preconditioning approach for problem (8)
rather than (5).

Basic FALKON algorithm. We begin illustrating a basic version of our approach. The key
ingredient is the following preconditioner for Eq. (8),

BB> =
( n
M
K2
MM + λnKMM

)−1
, (10)

which is itself based on a Nyström approximation3. The above preconditioning is a natural approxi-
mation of the ideal preconditioning of problem (8) that is BB> = (K>nMKnM + λnKMM )−1 and
reduces to it if M = n. Our theoretical analysis, shows that M � n suffices for deriving optimal
statistical rates. In its basic form FALKON is derived combining the above preconditioning and
gradient descent,

f̂λ,M,t(x) =

M∑
i=1

αt,iK(x, x̃i), with αt = Bβt and (11)

βk = βk−1 −
τ

n
B>

[
K>nM (KnM (Bβk−1)− ŷ) + λnKMM (Bβk−1)

]
, (12)

for t ∈ N, β0 = 0 and 1 ≤ k ≤ t and a suitable chosen τ . In practice, a refined version of FALKON
is preferable where a faster gradient iteration is used and additional care is taken in organizing
computations.

FALKON. The actual version of FALKON we propose is Alg. 1 (see Sect. A, Alg. 2 for the complete
algorithm). It consists in solving the system B>HBβ = B>z via conjugate gradient [25], since it is
a fast gradient method and does not require to specify the step-size. Moreover, to compute B quickly,
with reduced numerical errors, we consider the following strategy

B =
1√
n
T−1A−1, T = chol(KMM ), A = chol

(
1

M
T T> + λI

)
, (13)

where chol() is the Cholesky decomposition (in Sect. A the strategy for non invertible KMM ).

3 For the sake of simplicity, here we assume KMM to be invertible and the Nyström centers selected with
uniform sampling from the training set, see Sect. A and Alg. 2 in the appendix for the general algorithm.
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Algorithm 1 MATLAB code for FALKON. It requires O(nMt+M3) in time and O(M2) in memory.
See Sect. A and Alg. 2 in the appendixes for the complete algorithm.

Input: Dataset X = (xi)
n
i=1 ∈ Rn×D, ŷ = (yi)

n
i=1 ∈ Rn, centers C = (x̃j)

M
j=1 ∈ RM×D , KernelMatrix

computing the kernel matrix given two sets of points, regularization parameter λ, number of iterations t.
Output: Nyström coefficients α.

function alpha = FALKON(X, C, Y, KernelMatrix, lambda, t)
n = size(X,1); M = size(C,1); KMM = KernelMatrix(C,C);
T = chol(KMM + eps*M*eye(M));
A = chol(T*T’/M + lambda*eye(M));

function w = KnM_times_vector(u, v)
w = zeros(M,1); ms = ceil(linspace(0, n, ceil(n/M)+1));
for i=1:ceil(n/M)

Kr = KernelMatrix( X(ms(i)+1:ms(i+1),:), C );
w = w + Kr’*(Kr*u + v(ms(i)+1:ms(i+1),:));

end
end

BHB = @(u) A’\(T’\(KnM_times_vector(T\(A\u), zeros(n,1))/n) + lambda*(A\u));
r = A’\(T’\KnM_times_vector(zeros(M,1), Y/n));
alpha = T\(A\conjgrad(BHB, r, t));

end

Computations. in Alg. 1, B is never built explicitly and A, T are two upper-triangular matrices, so
A−>u,A−1u for a vector u costs M2, and the same for T . The cost of computing the preconditioner
is only 4

3M
3 floating point operations (consisting in two Cholesky decompositions and one product

of two triangular matrices). Then FALKON requires O(nMt+M3) in time and the same O(M2)
memory requirement of the basic Nyström method, if matrix/vector multiplications at each iteration
are performed in blocks. This implies O(nMt) kernel evaluations are needed.

The question remains to characterize M and the number of iterations needed for good statistical
accuracy. Indeed, in the next section we show that roughly O(n

√
n) computations and O(n) memory

are sufficient for optimal accuracy. This implies that FALKON is currently the most efficient kernel
method with the same optimal statistical accuracy of KRR, see Table 1.

4 Theoretical Analysis

In this section, we characterize the generalization properties of FALKON showing it achieves the
optimal generalization error of KRR, with dramatically reduced computations. This result is given in
Thm. 3 and derived in two steps. First, we study the difference between the excess risk of FALKON
and that of the basic Nyström (8), showing it depends on the condition number induced by the
preconditioning, hence onM (see Thm.1). Deriving these results requires some care, since differently
to standard optimization results, our goal is to solve (1) i.e. achieve small excess risk, not to minimize
the empirical error. Second, we show that choosing M = Õ(1/λ) allows to make this difference as
small as e−t/2 (see Thm.2). Finally, recalling that the basic Nyström for λ = 1/

√
n has essentially

the same statistical properties of KRR [13], we answer the question posed at the end of the last
section and show that roughly log n iterations are sufficient for optimal statistical accuracy. Following
the discussion in the previous section this means that the computational requirements for optimal
accuracy are Õ(n

√
n) in time/kernel evaluations and Õ(n) in space. Later in this section faster rates

under further regularity assumptions are also derived and the effect of different selection methods for
the Nyström centers considered. The proofs for this section are provided in Sect. E of the appendixes.

4.1 Main Result

The first result is interesting in its own right since it corresponds to translating optimization guarantees
into statistical results. In particular, we derive a relation the excess risk of the FALKON algorithm
f̂λ,M,t from Alg. 1 and the Nyström estimator f̃λ,M from Eq. (8) with uniform sampling.
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Algorithm train time kernel evaluations memory test time

SVM / KRR + direct method n3 n2 n2 n
KRR + iterative [1, 2] n2 4

√
n n2 n2 n

Doubly stochastic [22] n2
√
n n2

√
n n n

Pegasos / KRR + sgd [27] n2 n2 n n
KRR + iter + precond [3, 28, 4, 5, 6] n2 n2 n n
Divide & Conquer [29] n2 n

√
n n n

Nyström, random features [7, 8, 9] n2 n
√
n n

√
n

Nyström + iterative [23, 24] n2 n
√
n n

√
n

Nyström + sgd [20] n2 n
√
n n

√
n

FALKON (see Thm. 3) n
√
n n

√
n n

√
n

Table 1: Computational complexity required by different algorithms, for optimal generalization.
Logarithmic terms are not showed.

Theorem 1. Let n,M ≥ 3, t ∈ N, 0 < λ ≤ λ1 and δ ∈ (0, 1]. Assume there exists κ ≥ 1 such that
K(x, x) ≤ κ2 for any x ∈ X . Then, the following inequality holds with probability 1− δ

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M )1/2 + 4v̂ e−νt

√
1 +

9κ2

λn
log

n

δ
,

where v̂2 = 1
n

∑n
i=1 y

2
i and ν = log(1 + 2/(cond (B>HB)

1/2 − 1)), with cond (B>HB) the
condition number of B>HB. Note that λ1 > 0 is a constant not depending on λ, n,M, δ, t.

The additive term in the bound above decreases exponentially in the number of iterations. If the
condition number of B>HB is smaller than a small universal constant (e.g. 17), then ν > 1/2 and
the additive term decreases as e−

t
2 . Next, theorems derive a condition on M that allows to control

cond (B>HB), and derive such an exponential decay.
Theorem 2. Under the same conditions of Thm. 1, if

M ≥ 5

[
1 +

14κ2

λ

]
log

8κ2

λδ
.

then the exponent ν in Thm. 1 satisfies ν ≥ 1/2.

The above result gives the desired exponential bound showing that after log n iterations the excess
risk of FALKON is controlled by that of the basic Nyström, more precisely

R(f̂λ,M,t) ≤ 2R(f̃λ,M ) when t ≥ logR(f̃λ,M ) + log

(
1 +

9κ2

λn
log

n

δ

)
+ log

(
16v̂2

)
.

Finally, we derive an excess risk bound for FALKON. By the no-free-lunch theorem, this requires
some conditions on the learning problem. We first consider a standard basic setting where we only
assume it exists fH ∈ H such that E(fH) = inff∈H E(f).
Theorem 3. Let δ ∈ (0, 1]. Assume there exists κ ≥ 1 such that K(x, x) ≤ κ2 for any x ∈ X , and
y ∈ [−a2 ,

a
2 ], almost surely, a > 0. There exist n0 ∈ N such that for any n ≥ n0, if

λ =
1√
n
, M ≥ 75

√
n log

48κ2n

δ
, t ≥ 1

2
log(n) + 5 + 2 log(a+ 3κ),

then with probability 1− δ,

R(f̂λ,M,t ) ≤
c0 log

2 24
δ√

n
.

In particular n0, c0 do not depend on λ,M, n, t and c0 do not depend on δ.

The above result provides the desired bound, and all the constants are given in the appendix. The
obtained learning rate is the same as the full KRR estimator and is known to be optimal in a minmax
sense [17], hence not improvable. As mentioned before, the same bound is also achieved by the

6



basic Nyström method but with much worse time complexity. Indeed, as discussed before, using
a simple iterative solver typically requires O(

√
n log n) iterations, while we need only O(log n).

Considering the choice for M this leads to a computational time of O(nMt) = O(n
√
n) for optimal

generalization (omitting logarithmic terms). To the best of our knowledge FALKON currently
provides the best time/space complexity to achieve the statistical accuracy of KRR. Beyond the
basic setting considered above, in the next section we show that FALKON can achieve much faster
rates under refined regularity assumptions and also consider the potential benefits of leverage score
sampling.

4.2 Fast learning rates and Nyström with approximate leverage scores

Considering fast rates and Nyström with more general sampling is considerably more technical and
a heavier notation is needed. Our analysis apply to any approximation scheme (e.g. [30, 12, 31])
satisfying the definition of q-approximate leverage scores [13], satisfying q−1li(λ) ≤ l̂i(λ) ≤
qli(λ), ∀ i ∈ {1, . . . , n}. Here λ > 0, li(λ) = (Knn(Knn + λnI)−1)ii are the leverage scores
and q ≥ 1 controls the quality of the approximation. In particular, given λ, the Nyström points are
sampled independently from the dataset with probability pi ∝ l̂i(λ). We need a few more definitions.
Let Kx = K(x, ·) for any x ∈ X andH the reproducing kernel Hilbert space [32] of functions with
inner product defined byH = span{Kx | x ∈ X} and closed with respect to the inner product 〈·, ·〉H
defined by 〈Kx,Kx′〉H = K(x, x′), for all x, x′ ∈ X . Define C : H → H to be the linear operator
〈f, Cg〉H =

∫
X
f(x)g(x)dρX(x), for all f, g ∈ H. Finally define the following quantities,

N∞(λ) = sup
x∈X
‖(C + λI)−1/2Kx‖H, N (λ) = Tr(C(C + λI)−1).

The latter quantity is known as degrees of freedom or effective dimension, can be seen as a measure
of the size ofH. The quantity N∞(λ) can be seen to provide a uniform bound on the leverage scores.
In particular note that N (λ) ≤ N∞(λ) ≤ κ2

λ [13]. We can now provide a refined version of Thm. 2.
Theorem 4. Under the same conditions of Thm. 1, the exponent ν in Thm. 1 satisfies ν ≥ 1/2, when

1. either Nyström uniform sampling is used with M ≥ 70 [1 +N∞(λ)] log 8κ2

λδ .

2. or Nyström q-approx. lev. scores [13] is used, with λ ≥ 19κ2

n log n
2δ , n ≥ 405κ2 log 12κ2

δ ,

M ≥ 215
[
2 + q2N (λ)

]
log

8κ2

λδ
.

We then recall the standard, albeit technical, assumptions leading to fast rates [17, 18]. The capacity
condition requires the existence of γ ∈ (0, 1] and Q ≥ 0, such that N (λ) ≤ Q2λ−γ . Note that this
condition is always satisfied with Q = κ and γ = 1. The source condition requires the existence
of r ∈ [1/2, 1] and g ∈ H, such that fH = Cr−1/2g. Intuitively, the capacity condition measures
the size ofH, if γ is small thenH is small and rates are faster. The source condition measures the
regularity of fH, if r is big fH is regular and rates are faster. The case r = 1/2 and γ = D/(2s) (for
a kernel with smoothness s and input space RD) recovers the classic Sobolev condition. For further
discussions on the interpretation of the conditions above see [17, 18, 11, 13]. We can then state our
main result on fast rates
Theorem 5. Let δ ∈ (0, 1]. Assume there exists κ ≥ 1 such that K(x, x) ≤ κ2 for any x ∈ X ,
and y ∈ [−a2 ,

a
2 ], almost surely, with a > 0. There exist an n0 ∈ N such that for any n ≥ n0 the

following holds. When

λ = n−
1

2r+γ , t ≥ log(n) + 5 + 2 log(a+ 3κ2),

1. and either Nyström uniform sampling is used with M ≥ 70 [1 +N∞(λ)] log 8κ2

λδ ,

2. or Nyström q-approx. lev. scores [13] is used with M ≥ 220
[
2 + q2N (λ)

]
log 8κ2

λδ ,

then with probability 1− δ,

R(f̂λ,M,t) ≤ c0 log
2 24

δ
n−

2r
2r+γ .

where f̂λ,M,t is the FALKON estimator (Sect. 3, Alg. 1 and Sect. A, Alg. 2 in the appendix for the
complete version). In particular n0, c0 do not depend on λ,M, n, t and c0 do not depend on δ.
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Figure 1: Falkon is compared to stochastic gradient, gradient descent and conjugate gradient applied
to Problem (8), while NYTRO refer to the variants described in [23]. The graph shows the test error
on the HIGGS dataset (1.1 × 107 examples) with respect to the number of iterations (epochs for
stochastic algorithms).

The above result shows that FALKON achieves the same fast rates as KRR, under the same conditions
[17]. For r = 1/2, γ = 1, the rate in Thm. 3 is recovered. If γ < 1, r > 1/2, FALKON achieves a
rate close to O(1/n). By selecting the Nyström points with uniform sampling, a bigger M could be
needed for fast rates (albeit always less than n). However, when approximate leverage scores are used
M , smaller than nγ/2 �

√
n is always enough for optimal generalization. This shows that FALKON

with approximate leverage scores is the first algorithm to achieve fast rates with a computational
complexity that is O(nN (λ)) = O(n1+

γ
2r+γ ) ≤ O(n1+

γ
2 ) in time.

5 Experiments

We present FALKON’s performance on a range of large scale datasets. As shown in Table 2, 3,
FALKON achieves state of the art accuracy and typically outperforms previous approaches in all the
considered large scale datasets including IMAGENET. This is remarkable considering FALKON
required only a fraction of the competitor’s computational resources. Indeed we used a single machine
equipped with two Intel Xeon E5-2630 v3, one NVIDIA Tesla K40c and 128 GB of RAM and a
basic MATLAB FALKON implementation, while typically the results for competing algorithm have
been performed on clusters of GPU workstations (accuracies, times and used architectures are cited
from the corresponding papers).
A minimal MATLAB implementation of FALKON is presented in Appendix G. The code necessary
to reproduce the following experiments, plus a FALKON version that is able to use the GPU, is
available on GitHub at https://github.com/LCSL/FALKON_paper . The error is measured with
MSE, RMSE or relative error for regression problems, and with classification error (c-err) or AUC
for the classification problems, to be consistent with the literature. For datasets which do not have a
fixed test set, we set apart 20% of the data for testing. For all datasets, but YELP and IMAGENET,
we normalize the features by their z-score. From now on we denote with n the cardinality of the
dataset, d the dimensionality. A comparison of FALKON with respect to other methods to compute
the Nyström estimator, in terms of the MSE test error on the HIGGS dataset, is given in Figure 1.

MillionSongs [36] (Table 2, n = 4.6× 105, d = 90, regression). We used a Gaussian kernel with
σ = 6, λ = 10−6 and 104 Nyström centers. Moreover with 5 × 104 center, FALKON achieves a
79.20 MSE, and 4.49× 10−3 rel. error in 630 sec.

TIMIT (Table 2, n = 1.2 × 106, d = 440, multiclass classification). We used the same
preprocessed dataset of [6] and Gaussian Kernel with σ = 15, λ = 10−9 and 105 Nyström centers.

YELP (Table 2, n = 1.5 × 106, d = 6.52 × 107, regression). We used the same dataset
of [24]. We extracted the 3-grams from the plain text with the same pipeline as [24], then we mapped
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them in a sparse binary vector which records if the 3-gram is present or not in the example. We used a
linear kernel with 5×104 Nyström centers. With 105 centers, we get a RMSE of 0.828 in 50 minutes.

Table 2: Architectures: ‡ cluster 128 EC2 r3.2xlarge machines, † cluster 8 EC2 r3.8xlarge machines, o
single machine with two Intel Xeon E5-2620, one Nvidia GTX Titan X GPU, 128GB RAM, ? cluster
with IBM POWER8 12-core processor, 512 GB RAM, ∗ unknown platform.

MillionSongs YELP TIMIT

MSE Relative error Time(s) RMSE Time(m) c-err Time(h)

FALKON 80.10 4.51× 10−3 55 0.833 20 32.3% 1.5
Prec. KRR [4] - 4.58× 10−3 289† - - - -
Hierarchical [33] - 4.56× 10−3 293? - - - -
D&C [29] 80.35 - 737∗ - - - -
Rand. Feat. [29] 80.93 - 772∗ - - - -
Nyström [29] 80.38 - 876∗ - - - -
ADMM R. F.[4] - 5.01× 10−3 958† - - - -
BCD R. F. [24] - - - 0.949 42‡ 34.0% 1.7‡

BCD Nyström [24] - - - 0.861 60‡ 33.7% 1.7‡

EigenPro [6] - - - - - 32.6% 3.9o

KRR [33] [24] - 4.55× 10−3 - 0.854 500‡ 33.5% 8.3‡

Deep NN [34] - - - - - 32.4% -
Sparse Kernels [34] - - - - - 30.9% -
Ensemble [35] - - - - - 33.5% -

Table 3: Architectures: † cluster with IBM POWER8 12-core cpu, 512 GB RAM, o single machine
with two Intel Xeon E5-2620, one Nvidia GTX Titan X GPU, 128GB RAM, ‡ single machine [37]

SUSY HIGGS IMAGENET

c-err AUC Time(m) AUC Time(h) c-err Time(h)

FALKON 19.6% 0.877 4 0.833 3 20.7% 4
EigenPro [6] 19.8% - 6o - - - -
Hierarchical [33] 20.1% - 40† - - - -
Boosted Decision Tree [38] - 0.863 - 0.810 - - -
Neural Network [38] - 0.875 - 0.816 - - -
Deep Neural Network [38] - 0.879 4680‡ 0.885 78‡ - -
Inception-V4 [39] - - - - - 20.0% -

SUSY (Table 3, n = 5 × 106, d = 18, binary classification). We used a Gaussian kernel
with σ = 4, λ = 10−6 and 104 Nyström centers.

HIGGS (Table 3, n = 1.1 × 107, d = 28, binary classification). Each feature has been
normalized subtracting its mean and dividing for its variance. We used a Gaussian kernel with
diagonal matrix width learned with cross validation on a small validation set, λ = 10−8 and 105

Nyström centers. If we use a single σ = 5 we reach an AUC of 0.825.

IMAGENET (Table 3, n = 1.3 × 106, d = 1536, multiclass classification). We report the
top 1 c-err over the validation set of ILSVRC 2012 with a single crop. The features are obtained from
the convolutional layers of pre-trained Inception-V4 [39]. We used Gaussian kernel with σ = 19,
λ = 10−9 and 5× 104 Nyström centers. Note that with linear kernel we achieve c-err = 22.2%.

Acknowledgments.
The authors would like to thank Mikhail Belkin, Benjamin Recht and Siyuan Ma, Eric Fosler-Lussier, Shivaram
Venkataraman, Stephen L. Tu, for providing their features of the TIMIT and YELP datasets, and NVIDIA
Corporation for the donation of the Tesla K40c GPU used for this research. This work is funded by the Air Force
project FA9550-17-1-0390 (European Office of Aerospace Research and Development) and by the FIRB project
RBFR12M3AC (Italian Ministry of Education, University and Research).

9



References
[1] A. Caponnetto and Yuan Yao. Adaptive rates for regularization operators in learning theory. Analysis and

Applications, 08, 2010.

[2] L. Lo Gerfo, Lorenzo Rosasco, Francesca Odone, Ernesto De Vito, and Alessandro Verri. Spectral
Algorithms for Supervised Learning. Neural Computation, 20(7):1873–1897, 2008.

[3] Gregory E Fasshauer and Michael J McCourt. Stable evaluation of gaussian radial basis function inter-
polants. SIAM Journal on Scientific Computing, 34(2):A737–A762, 2012.

[4] Haim Avron, Kenneth L Clarkson, and David P Woodruff. Faster kernel ridge regression using sketching
and preconditioning. arXiv preprint arXiv:1611.03220, 2016.

[5] Alon Gonen, Francesco Orabona, and Shai Shalev-Shwartz. Solving ridge regression using sketched
preconditioned svrg. arXiv preprint arXiv:1602.02350, 2016.

[6] Siyuan Ma and Mikhail Belkin. Diving into the shallows: a computational perspective on large-scale
shallow learning. arXiv preprint arXiv:1703.10622, 2017.

[7] Christopher Williams and Matthias Seeger. Using the Nyström Method to Speed Up Kernel Machines. In
NIPS, pages 682–688. MIT Press, 2000.

[8] Alex J. Smola and Bernhard Schölkopf. Sparse Greedy Matrix Approximation for Machine Learning. In
ICML, pages 911–918. Morgan Kaufmann, 2000.

[9] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In NIPS, pages
1177–1184. Curran Associates, Inc., 2007.

[10] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization with
randomization in learning. In Advances in neural information processing systems, pages 1313–1320, 2009.

[11] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In COLT, volume 30 of JMLR
Proceedings, pages 185–209. JMLR.org, 2013.

[12] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical guarantees.
In Advances in Neural Information Processing Systems 28, pages 775–783. 2015.

[13] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational
regularization. In Advances in Neural Information Processing Systems, pages 1648–1656, 2015.

[14] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features. arXiv
preprint arXiv:1602.04474, 2016.

[15] Francis Bach. On the equivalence between kernel quadrature rules and random feature expansions. Journal
of Machine Learning Research, 18(21):1–38, 2017.

[16] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond (Adaptive Computation and Machine Learning). MIT Press,
2002.

[17] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7(3):331–368, 2007.

[18] Ingo Steinwart, Don R Hush, Clint Scovel, et al. Optimal rates for regularized least squares regression. In
COLT, 2009.

[19] F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning theory. Journal of
complexity, 23(1):52–72, 2007.

[20] Aymeric Dieuleveut and Francis Bach. Non-parametric stochastic approximation with large step sizes.
arXiv preprint arXiv:1408.0361, 2014.

[21] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

[22] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and Le Song. Scalable kernel
methods via doubly stochastic gradients. In Advances in Neural Information Processing Systems, pages
3041–3049, 2014.

10



[23] Raffaello Camoriano, Tomás Angles, Alessandro Rudi, and Lorenzo Rosasco. Nytro: When subsampling
meets early stopping. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, pages 1403–1411, 2016.

[24] Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, and Benjamin Recht. Large scale kernel learning
using block coordinate descent. arXiv preprint arXiv:1602.05310, 2016.

[25] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[26] Kurt Cutajar, Michael Osborne, John Cunningham, and Maurizio Filippone. Preconditioning kernel
matrices. In International Conference on Machine Learning, pages 2529–2538, 2016.

[27] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated
sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

[28] Yun Yang, Mert Pilanci, and Martin J Wainwright. Randomized sketches for kernels: Fast and optimal
non-parametric regression. arXiv preprint arXiv:1501.06195, 2015.

[29] Yuchen Zhang, John C. Duchi, and Martin J. Wainwright. Divide and Conquer Kernel Ridge Regression.
In COLT, volume 30 of JMLR Proceedings, pages 592–617. JMLR.org, 2013.

[30] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast approximation
of matrix coherence and statistical leverage. JMLR, 13:3475–3506, 2012.

[31] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron Sidford.
Uniform Sampling for Matrix Approximation. In ITCS, pages 181–190. ACM, 2015.

[32] I. Steinwart and A. Christmann. Support Vector Machines. Information Science and Statistics. Springer
New York, 2008.

[33] Jie Chen, Haim Avron, and Vikas Sindhwani. Hierarchically compositional kernels for scalable nonpara-
metric learning. CoRR, abs/1608.00860, 2016.

[34] Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu, Aurelien Bellet, Linxi Fan,
Michael Collins, Daniel J. Hsu, Brian Kingsbury, Michael Picheny, and Fei Sha. Kernel approximation
methods for speech recognition. CoRR, abs/1701.03577, 2017.

[35] Po-Sen Huang, Haim Avron, Tara N. Sainath, Vikas Sindhwani, and Bhuvana Ramabhadran. Kernel
methods match deep neural networks on timit. 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 205–209, 2014.

[36] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. The million song dataset.
In ISMIR, 2011.

[37] Alexandre Alves. Stacking machine learning classifiers to identify higgs bosons at the lhc. CoRR,
abs/1612.07725, 2016.

[38] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature communications, 5, 2014.

[39] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. pages 4278–4284, 2017.

[40] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics: Vol.: 1.: Functional Analysis.
Academic press, 1980.

[41] Ernesto D Vito, Lorenzo Rosasco, Andrea Caponnetto, Umberto D Giovannini, and Francesca Odone.
Learning from examples as an inverse problem. In Journal of Machine Learning Research, pages 883–904,
2005.

[42] Alessandro Rudi, Guillermo D Canas, and Lorenzo Rosasco. On the Sample Complexity of Subspace
Learning. In NIPS, pages 2067–2075, 2013.
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FALKON: An Optimal Large Scale Kernel Method
Supplementary Materials

A. FALKON: General Algorithm
where a generalized version of FALKON able to deal with both invertible and non-invertible
KMM is provided.

B. Definitions and Notation
where the notation, required by the proofs, is given and the basic operators are defined.

C. Analytic Decompositions
where the condition number of the FALKON system is controlled and the excess risk of
FALKON is decomposed in terms of functional analytic quantities.

D. Probabilistic Estimates
where the quantities of the previous section are bounded in probability.

E. Proof of the Main Results
where the results of the previous sections are collected and the proofs of the main theorems
of the paper are provided

F. Longer Comparison with the Literature
where some more details on previous works on the topic are given.

G. MATLAB Code for FALKON
where a minimal working implementation of FALKON is provided.

A FALKON: General Algorithm

In this section we define a generalized version of FALKON. In particular we provide a preconditioner able to deal
with non invertible KMM and with Nyström centers selected by using approximate leverage scores. In Def. 3
we state the properties that such preconditioner must satisfy. In Example 1 we show that the preconditioner in
Sect. 3 satisfies Def. 3 when KMM .

First we recall some ways to sample Nyström centers, from the training set.

Nyström with uniform sampling. Let n,M ∈ N with 1 ≤ M ≤ n. Let x1, . . . , xn be the training set. The
Nyström centers x̃1, . . . , x̃M are a random subset of cardinality M uniformly sampled from the training set.

Nyström with approximate leverage scores. We recall the definition of approximate leverage scores, from
[13] and then the sampling method based on them. Let n ∈ N, λ > 0. Let x1, . . . , xn be the training points and
define Knn ∈ Rn×n as (Knn)ij = K(xi, xj) for 1 ≤ i, j ≤ n. The exact leverage scores are defined by

lλ(i) =
(
Knn(Knn + λnI)−1)

ii
,

for any i ∈ 1, . . . , n. Any bi-lipschitz approximation of the exact leverage scores, satisfying the following
definition is denoted as approximate leverage scores.
Definition 1 (Nyström with (q, λ0, δ)-approximate leverage scores [13]). Let δ ∈ (0, 1] and λ0 > 0 and
q ∈ [1,∞). A (random) sequence (l̂λ(i))ni=1 is denoted as (q, λ0, δ)-approximate leverage scores when the
following holds with probability at least 1− δ

1

q
lλ(i) ≤ l̂λ(i) ≤ q lλ(i), ∀λ ≥ λ0, t ∈ {1, . . . , n}.

In particular, given n ∈ N training points x1, . . . , xn, and a sequence of approximate leverage scores (l̂λ(i))ni=1,
the Nyström centers are selected in the following way. Let pi = l̂λ(i)∑n

j=1 l̂λ(j)
, with 1 ≤ i ≤ n. Let i1, . . . , iM be

independently sampled from {1, . . . , n} with probability (pi)
n
i=1. Then x̃1 := xi1 , . . . , x̃M := xiM .

Now we define a diagonal matrix depending on the used sampling scheme that will be needed for the general
preconditioner.
Definition 2. Let D ∈ RM×M be a diagonal matrix. If the Nyström centers are selected via uniform sampling,
then Djj = 1, for 1 ≤ j ≤M .
Otherwhise, let i1, . . . , iM ∈ {1, . . . , n} be the indexes of the training points sampled via approximate leverage
scores. Then for 1 ≤ j ≤M ,

Djj =

√
1

npij
.
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We note here that by definition D is a diagonal matrix with strictly positive and finite diagonal. Indeed it is true
in the uniform case. In the leverage scores case, let 1 ≤ j ≤M . Note that since the index ij has been sampled,
it implies that the probability pij is strictly larger than zero. Then, since 0 < pij ≤ 1 then 0 < Djj <∞ a.s. .

A.1 Generalized FALKON Algorithm

We now introduce some matrices needed for the definition of a generalized version of FALKON, able to deal
with non invertible KMM and with different sampling schemes, for the Nyström centers. Finally in Def. 4, we
define a general form of the algorithm, that will be used in the rest of the appendix.

Definition 3 (The generalized preconditioner). Let M ∈ N. Let x̃1, . . . , x̃M ∈ X and KMM ∈ RM×M with
(KMM )ij = K(x̃i, x̃j), for 1 ≤ i, j ≤ M . Let D ∈ RM×M be a diagonal matrix with strictly positive
diagonal, defined according to Def 2.

Let λ > 0, q ≤M be the rank of KMM , Q ∈ RM×q a partial isometry such that Q>Q = I and T ∈ Rq×q a
triangular matrix. Moreover Q,T satisfy the following equation

DKMMD = QT>TQ>.

Finally let A ∈ Rq×q be a triangular matrix such that

A>A =
1

M
TT> + λI.

Then the generalized preconditioner is defined as

B =
1√
n
DQT−1A−1.

Note that B is right invertible, indeed D is invertible, since is a diagonal matrix, with strictly positive diagonal,
T,A are invertible since they are square and full rank and Q is a partial isometry, so B−1 =

√
nATQ>D−1

and BB−1 = I . Now we provide two ways to compute Q,T,A. We recall that the Cholesky algorithm,
denoted by chol, given a square positive definite matrix, B ∈ RM×M , produces an upper triangular matrix
R ∈ RM×M such that B = R>R. While the pivoted (or rank revealing) QR decomposition, denoted by qr,
given a square matrix B, with rank q, produces a partial isometry Q ∈ RM×q with the same range of M and an
upper trapezoidal matrix R ∈ Rq×M such that B = QR.

Example 1 (precoditioner satisfying Def. 3). Let λ > 0, and KMM , D as in Def. 3.

1. When KMM is full rank (q = M ), then the following Q,T,A satisfy Def. 3

Q = I, T = chol(DKMMD), A = chol

(
1

M
TT> + λI

)
.

2. When KMM is of any rank (q ≤M ), then the following Q,T,A satisfy Def. 3

(Q,R) = qr(DKMMD), T = chol(Q>DKMMDQ), A = chol

(
1

M
TT> + λI

)
.

Proof. In the first case, Q,T,A satisfy Def. 3 by construction. In the second case, since QQ> is the projection
matrix on the range of DKMMD, then QQ>DKMMD = DKMMD and, since DKMMD is symmetric,
DKMMDQQ

> = DKMMD, so

QT>TQ> = QQ>DKMMDQQ
> = DKMMD.

Moreover note that, since the rank of KMM is q, then the range of DKMMD is q, and so Q>Q = I , since it is
a partial isometry with dimension RM×q . Finally A satisfies Def. 3 by construction.

Instead of rank-revealing QR decomposition, eigen-decomposition can be used.

Example 2 (preconditioner for the deficient rank case, using eig instead of qr). Let λ > 0, and KMM , D
as in Def. 3. Let (λi, ui)1≤i≤M be respectively the eigenvalues and the associated eigenvectors from the
eigendecomposition of DKMMD, with λ1 ≥ · · · ≥ λM ≥ 0. So the following Q,T,A satisfy Def. 3,

Q = (u1, . . . , uq) and T = diag(
√
λ1, . . . ,

√
λq), while A = diag

(√
λ+ 1

M
λ1, . . . ,

√
λ+ 1

M
λq
)

.

We recall that this approach to compute Q,T,A is conceptually simpler than the one with QR decomposition,
but slower, since the hidden constants in the eigendecomposition are larger than the one of QR.

The following is the general form of the algorithm.
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Definition 4 (Generalized FALKON algorithm). Let λ > 0, t ∈ N and q,Q, T,A as in Def. 3. The generalized
FALKON estimator is defined as follows

f̂λ,M,t(x) =

M∑
i=1

αiK(x, x̃i), with α = Bβt,

and βt ∈ Rq denotes the vector resulting from t iterations of the conjugate gradient algorithm applied to the
following linear system

Wβ = b, where W = B>(K>nMKnM + λnKMM )B, b = B>K>nM ŷ. (14)

B Definitions and Notation

Here we recall some basic facts on linear operators and give some notation that will be used in the rest of the
appendix, then we define the necessary operators to deal with the excess risk of FALKON via functional analytic
tools.

Notation LetH be an Hilbert space, we denote with ‖·‖H, the associated norm and with 〈·, ·〉H the associated
inner product. We denote with ‖·‖ the operator norm for a bounded linear operator A, defined as ‖A‖ =
sup‖f‖H=1‖Af‖. Moreover we will denote with ⊗ the tensor product, in particular

(u⊗ v)z = u 〈v, z〉H , ∀u, v, z ∈ H.

In the rest of the appendix A+ λI is often denoted by Aλ where A is linear operator and λ ∈ R, moreover we
denote with A∗ the adjoint of the linear operator A, we will use A> if A is a matrix. When H is separable,
we denote with Tr the trace, that is Tr(A) =

∑D
j=1 〈ui, Aui〉H for any linear operator A : H → H, where

(ui)
D
j=1 is an orthogonal basis forH and D ∈ N ∪ {∞} is the dimensionality ofH. Moreover we denote with

‖·‖HS the Hilbert-Schmidt norm, that is ‖A‖2HS = Tr(A∗A), for a linear operator A.

In the next proposition we recall the spectral theorem for compact self-adjoint operators on a Hilbert space.

Proposition 1 (Spectral Theorem for compact self-adjoint operators). Let A be a compact self-adjoint operator
on a separable Hilbert spaceH. Then there exists a sequence (λj)

D
j=1 with λj ∈ R, and an orthogonal basis of

H (uj)
D
j=1 where D ∈ N ∪ {∞} is the dimensionality ofH, such that

A =

D∑
j=1

λjuj ⊗ uj . (15)

Proof. Thm. VI.16, pag. 203 of [40].

LetH be a separable Hilbert space (for the sake of simplicity assume D =∞), and A be a bounded self-adjoint
operator onH that admits a spectral decomposition as in Eq. 15. Then the largest and the smallest eigenvalues
of A are denoted by

λmax(A) = sup
j≥1

λj , λmin(A) = inf
j≥1

λj .

In the next proposition we recall a basic fact about bounded symmetric linear operators on a separable Hilbert
spaceH.

Proposition 2. Let A be a bounded self-adjoint operator on H, that admits a spectral decomposition as in
Eq. 15. Then

−‖A‖ ≤ λmin(A) ≤ λmax(A) ≤ ‖A‖.

Proof. By definition of operator norm, we have that ‖Ax‖2H ≤ ‖A‖2‖x‖2H ∀x ∈ H. Let (λj , uj)
D
j=1 be an

eigendecomposition of A, with D the dimensionality ofH, according to Prop. 1, then, for any j ≥ 1, we have

λ2
j = 〈Auj , Auj〉 = ‖Auj‖2H ≤ ‖A‖2,

where we used the fact that Auj = λjuj and that ‖uj‖H = 1.
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B.1 Definitions

Let X be a measurable and separable space and Y = R. Let ρ be a probability measure on X × R. We denote
with ρX the marginal probability of ρ on X and with ρ(y|x) the conditional probability measure on Y given X .
Let L2(X, ρX) be the Lebesgue space of ρX square integrable functions, endowed with the inner product

〈φ, ψ〉ρ =

∫
φ(x)ψ(x)dρX(x), ∀φ, ψ ∈ L2(X, ρX),

and norm ‖ψ‖ρ =
√
〈ψ,ψ〉

ρ
for any ψ ∈ L2(X, ρX). We now introduce the kernel and its associated space of

functions. Let K : X ×X → R be a positive definite kernel, measurable and uniformly bounded, i.e. there
exists κ ∈ (0,∞), for which K(x, x) ≤ κ2 almost surely. We denote with Kx the function K(x, ·) and with
(H, 〈·, ·〉H), the Hilbert space of functions with the associated inner product induced by K, defined by

H = span{Kx | x ∈ X}, 〈Kx,Kx′〉H = K(x, x′), ∀ x, x′ ∈ X.

Now we define the linear operators used in the rest of the appendix

Definition 5. Under the assumptions above, for any f ∈ H, φ ∈ L2(X, ρX)

• S : H → L2(X, ρX), such that Sf =
〈
f,K(·)

〉
H ∈ L

2(X, ρX), with adjoint

• S∗ : L2(X, ρX)→ H, such that S∗φ =
∫
φ(x)KxdρX(x) ∈ H.

• L : L2(X, ρX)→ L2(X, ρX), such that L = SS∗ and

• C : H → H, such that C = S∗S.

Let xi ∈ X with 1 ≤ i ≤ n and n ∈ N, and x̃j ∈ X for 1 ≤ j ≤ M and M ∈ N. We define the following
linear operators

Definition 6. Under the assumptions above, for any f ∈ H, v ∈ Rn, w ∈ RM ,

• Ŝn : H → Rn, such that Ŝnf = 1√
n

(〈f,Kxi〉)ni=1 ∈ Rn, with adjoint

• Ŝ∗n : Rn → H, such that Ŝ∗nv = 1√
n

∑n
i=1 viKxi ∈ H.

• Ĉn : H → H, such that Ĉn = Ŝ∗nŜn.

• ŜM : H → RM , such that ŜMf = 1√
M

(〈f,Kx̃i〉)Mi=1 ∈ RM , with adjoint

• Ŝ∗M : RM → H, such that Ŝ∗Mw = 1√
M

∑M
i=1 viKx̃i ∈ H.

• ĈM : H → H, such that ĈM = Ŝ∗M ŜM .

• ĜM : H → H, such that ĜM = Ŝ∗MD
2ŜM , with D defined in Def. 3 (see also Def. 2).

We now recall some basic facts about L,C, S,Knn, Ĉn, Ŝn, KnM and KMM .

Proposition 3. With the notation introduced above,

1. KnM =
√
nMŜnŜ

∗
M , KMM = M ŜM Ŝ

∗
M , Knn = n ŜnŜ

∗
n

2. C =

∫
X

Kx ⊗KxdρX(x), Tr(C) = Tr(L) = ‖S‖2HS =

∫
X

‖Kx‖2HdρX(x) ≤ κ2,

3. Ĉn =
1

n

n∑
i=1

Kxi ⊗Kxi , Tr(Ĉn) = Tr(Knn/n) = ‖Ŝn‖2HS =
1

n

n∑
i=1

‖Kxi‖
2
H ≤ κ2,

4. ĈM =
1

M

M∑
i=1

Kx̃i ⊗Kx̃i , Tr(ĈM ) = Tr(KMM/M) = ‖ŜM‖2HS =
1

M

m∑
i=1

‖Kx̃i‖
2
H ≤ κ2,

5. ĜM =
1

M

M∑
i=1

D2
iiKx̃i ⊗Kx̃i .

where ⊗ denotes the tensor product.

15



Proof. Note that (KnM )ij = K(xi, x̃j) =
〈
Kxi ,Kx̃j

〉
H = (

√
nMŜnŜ

∗
M )ij , for any 1 ≤ i ≤ n, 1 ≤ j ≤

M , thus KnM =
√
nMŜnŜ

∗
M . The same reasoning holds for KMM and Knn. For the second equation, by

definition of C = S∗S we have that, for each h, h′ ∈ H,〈
h,Ch′

〉
H =

〈
Sh, Sh′

〉
ρ

=

∫
X

〈h,Kx〉H
〈
Kx, h

′〉
H dρX(x) =

∫
X

〈
h,
(
Kx

〈
Kx, h

′〉
H

)〉
H
dρX(x)

=

∫
X

〈
h,
(
Kx ⊗Kx

)
h′
〉
H
dρX(x) =

〈
h,
(∫

X

Kx ⊗KxdρX(x)
)
h′
〉
H
.

Note that, since K is bounded almost surely, then ‖Kx‖H ≤ κ for any x ∈ X , thus

Tr(C) =

∫
X

Tr(Kx ⊗Kx)dρX(x) =

∫
X

‖Kx‖2HdρX(x) ≤ κ2

by linearity of the trace. Thus Tr(C) <∞ and so

Tr(C) = Tr(S∗S) = ‖S‖2HS = Tr(SS∗) = Tr(L).

The proof for the rest of equations is analogous to the one for the second.

Now we recall a standard characterization of the excess risk

Proposition 4. When
∫
Y y

2dρ <∞, then there exist fρ ∈ L2(X, ρX) defined by

fρ(x) =

∫
ydρ(y|x),

almost everywhere. Moreover, for any f̂ ∈ H we have,

E(f̂ )− inf
f∈H
E(f) = ‖Sf̂ − Pfρ‖2ρX ,

where P : L2(X, ρX)→ L2(X, ρX) is the projection operator whose range is the closure in L2(X, ρX) of the
range of S.

Proof. Page 890 of [41].

C Analytic results

The section of analytic results is divided in two subsections, where we bound the condition number of the
FALKON preconditioned linear system (14) and we decompose the excess risk of FALKON, with respect to
analytical quantities that will be controlled in probability in the following sections.

C.1 Analytic results (I): Controlling condition number of W

First we characterize the matrix W defining the FALKON preconditioned linear system (14), with respect to
the operators defined in Def. 6 (see next lemma) and in particular we characterize its condition number with
respect to the norm of an auxiliary operator defined in Lemma 2. Finally we bound the norm of such operator
with respect to analytical quantities more amenable to be bounded in probability (Lemma 3).

Lemma 1 (Characterization of W ). Let λ ∈ R. The matrix W in Def. 4 is characterized by

W = A−>V ∗(Ĉn + λI)V A−1, with V =
√
nMŜ∗MBA.

Moreover V is a partial isometry such that V ∗V = Iq×q and V V ∗ with the same range of Ŝ∗M .

Proof. By the characterization of KnM ,KMM and Ĉn in Prop. 3, we have

K>nMKnM + λKMM = nM (ŜM Ŝ
∗
nŜnŜ

∗
M + λŜM Ŝ

∗
M )

= nM ŜM (Ŝ∗nŜn + λI)Ŝ∗M = nM ŜM (Ĉn + λI)Ŝ∗M .

Now note that, by definition of B in Def. 3 and of V , we have
√
nMŜ∗MB =

√
nMŜ∗MBAA

−1 = V A−1,

so

W = B>(K>nMKnM + λKMM )B = nM B>ŜM (Ĉn + λI)Ŝ∗MB = A−>V ∗(Ĉn + λI)V A−1.
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The last step is to prove that V is a partial isometry. First we need a characterization of V that is obtained by
expanding the definition of B,

V =
√
nMŜ∗MBA =

√
nMŜ∗M

1√
n
DQT−1A−1A =

√
MŜ∗MDQT

−1. (16)

By the characterization of V , the characterization of KMM in Prop. 3 and the definition of Q,T in terms of
DKMMD in Def. 3 , we have

V ∗V = MT−>Q>D ŜM Ŝ
∗
M DQT−1 = T−>Q> DKMMD QT−1 = T−>Q>QT>TQ>QT−1 = I.

Moreover, by the characterization of V , of DKMMD with respect to ŜM , and of Q,T (Prop. 3 and Def. 3),

V V ∗Ŝ∗MD = M Ŝ∗MDQT
−1T−>Q>DŜM Ŝ

∗
M = Ŝ∗MDQT

−1T−>Q>DKMMD

= Ŝ∗MDQT
−1T−>Q>QT>TQ> = Ŝ∗MDQQ

> = Ŝ∗MD,

where the last step is due to the fact that the range of QQ> is the one of DKMMD by definition (see Def. 3),
and since DKMMD = MDŜM Ŝ

∗
MD by Prop. 3, it is the same of DŜM . Note finally that the range of Ŝ∗MD

is the same of Ŝ∗M since D is a diagonal matrix with strictly positive elements on the diagonal (see Def. 3).

Lemma 2. Let λ > 0 andW be as in Eq. 14. Let E = A−>V ∗(Ĉn− ĜM )V A−1, with V defined in Lemma 1.
Then W is characterized by

W = I + E.

In particular, when ‖E‖ < 1,

cond (W ) ≤ 1 + ‖E‖
1− ‖E‖ .

Proof. Let Q,T,A,D as in Def. 3, and V as in Lemma 1. According to Lemma 1 we have

W = A−>V ∗(Ĉn + λI)V A−1 = A−>(V ∗ĈnV + λI)A−1.

Now we bound the largest and the smallest eigenvalue of W . First of all note that

A−>(V ∗ĈnV + λI)A−1 = A−>(V ∗ĜMV + λI)A−1 +A−>V ∗(Ĉn − ĜM )V A−1, (17)

where ĜM is defined in Def. 6. To study the first term, we need a preliminary result, which simplifies ŜMV . By
using the definition of V , the characterization of KMM in terms of ŜM (Prop. 3), the definition of B (Def. 3),
and finally the characterization of DKMMD in terms of Q,T (Def. 3), we have

DŜMV =
√
nMDŜM Ŝ

∗
MBA =

√
n

M
DKMMBA =

1√
M
DKMMD QT−1

=
1√
M
QT>TQ>QT−1 =

1√
M
QT>.

Now we can simplify the first term. We express ĜM with respect to ŜM , then we apply the identity above on
DŜMV and on its transpose, finally we recall the identity A>A = 1

M
TT> + λI from Def. 3, obtaining

A−>(V ∗ĜMV + λI)A−1 = A−>(V ∗Ŝ∗MD
2ŜMV + λI)A−1 = A−>(

1

M
TQ>QT> + λI)A−1 (18)

= A−>(
1

M
TT> + λI)A−1 = A−>A>AA−1 = I. (19)

So, by defining E := A−>V ∗(Ĉn − ĜM )V A−1, we have

W = I + E.

Note that E is compact and self-adjoint, by definition. Then, by Prop. 1, 2 we have that W admits a spectral
decomposition as in Eq. 15. Let λmax(W ) and λmin(W ) be respectively the largest and the smallest eigenvalues
of W , by Prop. 2, and considering that −‖E‖ ≤ λj(E) ≤ ‖E‖ (see Prop. 1) we have

λmax(W ) = sup
j∈N

1 + λj(E) = 1 + sup
j∈N

λj(E) = 1 + λmax(E) ≤ 1 + ‖E‖,

λmin(W ) = inf
j∈N

1 + λj(E) = 1 + inf
j∈N

λj(E) = 1 + λmin(E) ≥ 1− ‖E‖.

Since W is self-adjoint and positive, when ‖E‖ < 1, by definition of condition number, we have

cond (W ) =
λmax(W )

λmin(W )
≤ 1 + ‖E‖

1− ‖E‖ .
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Lemma 3. Let E be defined as in Lemma 2 and let ĜM as in Def. 6, then

‖E‖ ≤ ‖Ĝ−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ ‖. (20)

Proof. By multiplying and dividing by ĜMλ = ĜM + λI we have

‖E‖ = ‖A−>V ∗Ĝ1/2
Mλ Ĝ

−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ Ĝ

1/2
MλV A

−1‖

≤ ‖A−>V ∗Ĝ1/2
Mλ‖

2‖Ĝ−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ ‖.

Now, considering that V ∗V = I and the identity in Eq. (18), we have

‖A−>V ∗Ĝ1/2
Mλ‖

2 = ‖A−>V ∗(ĜM + λI)V A−1‖ = ‖A−>(V ∗ĜMV + λI)A−1‖ = 1. (21)

C.2 Analytic results (II): The computational oracle inequality

In this subsection (Lemma 8) we bound the excess risk of FALKON with respect to the one of the exact Nyström
estimator. First we prove that FALKON is equal to the exact Nyström estimator as the iterations go to infinity
(Lemma 4, 5). Then in Lemma 8 (via Lemma 6, 7) we use functional analytic tools, together with results
from operator theory to relate the weak convergence result of the conjugate gradient method on the chosen
preconditioned problem, with the excess risk.

Lemma 4 (Representation of the FALKON estimator as vector inH). Let λ > 0, M, t ∈ N and B as in Def. 3.
The FALKON estimator as in Def. 4 is characterized by the vector f̂ ∈ H as follows,

f̂λ,M,t =
√
M Ŝ∗MBβt, (22)

where βt ∈ Rq denotes the vector resulting from t iterations of the conjugate gradient algorithm applied to the
linear system in Def. 4.

Proof. According to the definition of f̂λ,M,t(·) in Def.4 and the definition of the operator ŜM in Def. 6, denoting
with α ∈ RM the vector Bβt, we have that

f̂λ,M,t(x) =

M∑
i=1

αiK(x, x̃i) =

〈
Kx,

M∑
i=1

αiKx̃i

〉
H

=
〈
Kx,

√
M Ŝ∗Mα

〉
H
,

for any x ∈ X . Then the vector inH representing the function f̂λ,M,t(·) is

f̂λ,M,t =
√
M Ŝ∗Mα =

√
M Ŝ∗MBβt.

Lemma 5 (Representation of the Nyström estimator as a vector inH). Let λ > 0,M ∈ N, and B as in Def. 3.
The exact Nyström estimator, in Eq.(7) and Eq. (8) is characterized by the vector f̃ ∈ H as follows

f̃λ,M =
√
M Ŝ∗MBβ∞, (23)

where β∞ = W−1B>K>nM ŷ is the vector resulting from infinite iterations of the conjugate gradient algorithm
applied to the linear system in Eq. (14).

Proof. For the same reasoning in the proof of Lemma 4, we have that the FALKON estimator with infinite
iterations is characterized by the following vector inH

f̃λ,M =
√
M Ŝ∗MBβ∞.

To complete the proof, we need to prove 1) that β∞ = W−1B>KnM ŷ and 2) that f̃λ,M above, corresponds to
the exact Nyström estimator, as in Eq. (8).

Now we characterize β∞. First, by the characterization of W in Lemma 1 and the fact that V ∗V = I , we have

W = A−>V ∗(Ĉn + λI)V A−1 = A−>(V ∗ĈnV + λI)A−1. (24)

Since Ĉn is a positive operator (see Def. 6) A is invertible and λ > 0, then W is a symmetric and positive
definite matrix. The positive definiteness of W implies that it is invertible and that is has a finite condition
number, making the conjugate gradient algorithm to converge to the solution of the system in Eq. (14) (Thm. 6.6
of [25] and Eq. 6.107). So we can explicitly characterize β∞, by the solution of the system in Eq. (14), that is

β∞ = W−1B>K>nM ŷ. (25)
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So we proved that f̃λ,M ∈ H, with the above characterization of β∞, corresponds to FALKON with infinite
iterations. Now we show that f̃λ,M is equal to the Nyström estimator given in [13]. First we need to study
Ŝ∗MBW

−1B>ŜM . By the characterization of W in Eq. (24), the identity (ABC)−1 = C−1B−1A−1, valid
for any A,B,C bounded invertible operators, and the definition of V (Lemma 1),

Ŝ∗MBW
−1B>ŜM = Ŝ∗MB

(
A−>(V ∗ĈnV + λI)A−1

)−1

B>ŜM (26)

= Ŝ∗MBA(V ∗ĈnV + λI)−1A>B>ŜM (27)

=
1

Mn
V (V ∗ĈnV + λI)−1V ∗. (28)

By expanding β∞, KnM (see Lemma 3) in f̃λ,M ,

f̃λ,M =
√
M Ŝ∗MBβ∞ =

√
M Ŝ∗MBW

−1B>K>nM ŷ =
√
nM Ŝ∗MBW

−1B>ŜM Ŝ
∗
nŷ (29)

=
1√
n
V (V ∗ĈnV + λI)−1V ∗Ŝ∗nŷ. (30)

Now by Lemma 2 of [13] with Zm = ŜM , we know that the exact Nyström solution is characterized by the
vector f̄ ∈ H defined as follows

f̄ =
1√
n
V̄ (V̄ ∗ĈnV̄ + λI)−1V̄ ∗Ŝ∗nŷ,

with V̄ a partial isometry, such that V̄ ∗V̄ = I and V̄ V̄ ∗ with the same range of Ŝ∗M . Note that, by definition of
V in Lemma 1, we have that it is a partial isometry such that V ∗V = I and V V ∗ with the same range of Ŝ∗M .
This implies that V̄ = V G, for an orthogonal matrix G ∈ Rq×q . Finally, exploiting the fact that G−1 = G>,
that GG> = G>G = I and that for three invertible matrices A,B,C we have (ABC)−1 = C−1B−1A−1,

f̄ =
1√
n
V̄ (V̄ ∗ĈnV̄ + λI)−1V̄ ∗Ŝ∗nŷ =

1√
n
V G

(
G>(V ∗ĈnV + λI)G

)−1

G>V ∗Ŝ∗nŷ

=
1√
n
V GG>

(
V ∗ĈnV + λI

)−1

GG>V ∗Ŝ∗nŷ =
1√
n
V
(
V ∗ĈnV + λI

)−1

V ∗Ŝ∗nŷ = f̃λ,M .

The next lemma is necessary to prove Lemma 8.
Lemma 6. When λ > 0 and B is as in Def. 3. then

√
M‖SŜ∗MBW−1/2‖ ≤ n−1/2‖SĈ−1/2

nλ ‖.

Proof. By the fact that identity ‖Z‖2 = ‖ZZ∗‖ valid for any bounded operator Z and the identity in Eq. 26,
we have

M‖SŜ∗MBW−1/2‖2 = M‖SŜ∗MBW−1B>ŜMS
∗‖ =

1

n
‖SV (V ∗ĈnV + λI)−1V ∗S∗‖

=
1

n
‖SV (V ∗ĈnV + λI)−1/2‖2.

Denote with Ĉnλ the operator Ĉn + λI , by dividing and multiplying for Ĉ−1/2
nλ , we have

SV (V ∗ĈnV + λI)−1/2 = SĈ
−1/2
nλ Ĉ

1/2
nλ V (V ∗ĈnV + λI)−1/2.

The second term is equal to 1, indeed, since V ∗ĈnλV = V ∗ĈnV + λI , and ‖Z‖2 = ‖Z∗Z‖, for any bounded
operator Z, we have

‖Ĉ1/2
nλ V (V ∗ĈnV + λI)−1/2‖2 = ‖(V ∗ĈnV + λI)−1/2V ∗ĈnλV (V ∗ĈnV + λI)−1/2‖ (31)

= ‖(V ∗ĈnV + λI)−1/2(V ∗ĈnV + λI)(V ∗ĈnV + λI)−1/2‖ (32)
= 1. (33)

Finally
√
M‖SŜ∗MBW−1/2‖ =

1√
n
‖SV (V ∗ĈnV + λI)−1/2‖

≤ 1√
n
‖SĈ−1/2

nλ ‖‖Ĉ1/2
nλ V (V ∗ĈnV + λI)−1/2‖

≤ n−1/2‖SĈ−1/2
nλ ‖.
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The next lemma is necessary to prove Lemma 8.

Lemma 7. For any λ > 0, let β∞ be the vector resulting from infinite iterations of the conjugate gradient
algorithm applied to the linear system in Eq. (14). Then

‖W 1/2β∞‖Rq ≤ ‖ŷ‖Rn .

Proof. First we recall the characterization of β∞ from Lemma 5,

β∞ = W−1B>K>nM ŷ.

So, by the characterization of KnM in terms of Ŝn, ŜM (Prop. 3),

W 1/2β∞ = W 1/2W−1B>K>nM ŷ =
√
nM W−1/2B>ŜM Ŝ

∗
nŷ.

Then, by applying the characterization of Ŝ∗MBW
−1B>ŜM in terms of V , in Eq. 26

‖W 1/2β∞‖2Rq = nM ‖W−1/2B>ŜM Ŝ
∗
nŷ‖2Rq = nM ŷ>ŜnŜ

∗
MBW

−1B>ŜM Ŝ
∗
nŷ

= ŷ>ŜnV (V ∗ĈnV + λI)−1V ∗Ŝ∗nŷ = ‖(V ∗ĈnV + λI)−1/2V ∗Ŝ∗nŷ‖2Rq .

Finally
‖(V ∗ĈnV + λI)−1/2Ŝ∗nŷ‖Rq ≤ ‖(V ∗ĈnV + λI)−1/2Ŝ∗n‖‖ŷ‖Rn .

Note that
‖(V ∗ĈnV + λI)−1/2Ŝ∗n‖ ≤ 1,

indeed
‖(V ∗ĈnV + λI)−1/2Ŝ∗n‖ ≤ ‖(V ∗ĈnV + λI)−1/2Ĉ

1/2
nλ ‖‖Ĉ

−1/2
nλ Ŝ∗n‖,

and the first term is equal to 1 by Eq. (31), moreover by definition of Ĉn (Def. 6),

‖Ĉ−1/2
nλ Ŝ∗n‖2 = ‖Ĉ−1/2

nλ ĈnĈ
−1/2
nλ ‖ = ‖Ĉ−1/2

nλ Ĉ1/2
n ‖2 = sup

σ∈σ(Ĉn)

σ

σ + λ
≤ 1,

where σ(Ĉn) ⊂ [0, ‖Ĉn‖] is the set of eigenvalues of Ĉn.

Lemma 8. Let M ∈ N, λ > 0 and B satisfying Def. 4. Let f̂λ,M,t be the FALKON estimator after t ∈ N
iterations and f̃λ,M the exact Nyström estimator as in Eq. 7, 8. Let c0 ≥ 0 such that

‖SĈ−1/2
nλ ‖ ≤ c0,

then

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M )1/2 + 2c0 v̂

(
1− 2√

cond(W) + 1

)t
,

where v̂2 = 1
n

∑n
i=1 y

2
i .

Proof of Lemma 8. By Prop. 4 we have that for any f ∈ H

(E(f)− inf
f∈H
E(f))1/2 = ‖Sf − Pfρ‖ρX ,

with P : L2(X, ρX)→ L2(X, ρX) the orthogonal projection operator whose range is the closure of the range
of S in L2(X, ρX). Let f̂λ,M,t ∈ H and f̃λ,M ∈ H be respectively the Hilbert vector representation of the
FALKON estimator and of the exact Nyström estimator (Lemma 4 and Lemma 5). By adding and subtracting
f̃λ,M we have

|E(f̂ )− inf
f∈H
E(f)|1/2 = ‖Sf̂λ,M,t − Pfρ‖ρX = ‖S(f̂λ,M,t − f̃λ,M ) + (Sf̃λ,M − Pfρ)‖ρX

≤ ‖S(f̂λ,M,t − f̃λ,M )‖ρX + ‖Sf̃λ,M − Pfρ‖ρX
= ‖S(f̂λ,M,t − f̃λ,M )‖ρX + |E(f̃λ,M )− inf

f∈H
E(f)|1/2.

In particular, by expanding the definition of f̂λ,M,t, f̃λ,M from Lemma 4 and Lemma 5, we have

‖S(f̂λ,M,t − f̃λ,M )‖ρX =
√
M‖SŜ∗MB(βt − β∞)‖ρX ,

where βt ∈ Rq and β∞ ∈ Rq denote respectively the vector resulting from t iterations and infinite iterations of
the conjugate gradient algorithm applied to the linear system in Eq. (14). Since W is symmetric positive definite
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when λ > 0 (see proof of Lemma 5), we can apply the standard convergence results for the conjugate gradient
algorithm (Thm. 6.6 of [25], in particular Eq. 6.107), that is the following

‖W 1/2(βt − β∞)‖Rq ≤ q(W, t)‖W 1/2β∞‖Rq , with q(W, t) = 2

(
1− 2√

cond(W) + 1

)t
.

So by dividing and multiplying by W 1/2 we have

‖S(f̂λ,M,t − f̃λ,M )‖ρX =
√
M‖SŜ∗MB(βt − β∞)‖ρX =

√
M‖SŜ∗MBW−1/2W 1/2(βt − β∞)‖ρX

≤
√
M‖SŜ∗MBW−1/2‖‖W 1/2(βt − β∞)‖Rq

≤ q(W, t)
√
M‖SŜ∗MBW−1/2‖‖W 1/2β∞‖Rq .

Finally, the term
√
M‖SŜ∗MBW−1/2‖ is bounded in Lemma 6 as

√
M‖SŜ∗MBW−1/2‖ ≤ 1√

n
‖SĈ−1/2

nλ ‖ ≤ c0√
n
,

while, for the term ‖W 1/2β∞‖Rq , by Lemma 7, we have

‖W 1/2β∞‖Rq ≤ ‖ŷ‖Rn = (
∑
i=1

y2i )1/2 =
√
n

√∑n
i=1 y

2
i

n
=
√
nv̂.

D Probabilistic Estimates

In Lemma 9, 10 we provide probabilistic estimates of ‖E‖, the quantity needed to bound the condition number
of the preconditioned linear system of FALKON (see Lemma 1, 3). In particular Lemma 9, analyzes the case
when the Nyström centers are selected with uniform sampling, while Lemma 10, considers the case when the
Nyström centers are selected via approximate leverage scores sampling.

Now we are ready to provide probabilistic estimates for uniform sampling.

Lemma 9. Let η ∈ [0, 1) and δ ∈ (0, 1]. When x̃1, . . . , x̃M are selected via Nyström uniform sampling (see
Sect. A), 0 < λ ≤ ‖C‖, M ≤ n and

M ≥ 4

[
1

2
+

1

η
+

(
3 + 7η

3 + 3η

)(
1 +

2

η

)2

N∞(λ)

]
log

8κ2

λδ
, (34)

then the following hold with probability at least 1− δ,

‖C−1/2
λ (C − Ĉn)C

−1/2
λ ‖ < η, ‖Ĝ−1/2

Mλ (Ĉn − ĜM )Ĝ
−1/2
Mλ ‖ < η.

Proof. First of all, note that since the Nyström centers are selected by uniform sampling. Then x̃1, . . . , x̃M are
independently and identically distributed according to ρX and moreover D is the identity matrix. So

ĜM = Ŝ∗MD
2ŜM = Ŝ∗M ŜM = ĈM .

Note that, by multiplying and dividing by Cλ,

‖Ĝ−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ ‖ = ‖Ĉ−1/2

Mλ (Ĉn − ĈM )Ĉ
−1/2
Mλ ‖

= ‖Ĉ−1/2
Mλ C

1/2
λ C

−1/2
λ (Ĉn − ĈM )C

−1/2
λ C

1/2
λ Ĉ

−1/2
Mλ ‖

≤ ‖Ĉ−1/2
Mλ C

1/2
λ ‖

2‖C−1/2
λ (Ĉn − ĈM )C

−1/2
λ ‖

≤ (1− λmax(C
−1/2
λ (C − ĈM )C

−1/2
λ ))−1‖C−1/2

λ (Ĉn − ĈM )C
−1/2
λ ‖

where the last step is due to Prop. 9 of [14]. Moreover note that

λmax(C
−1/2
λ (C − ĈM )C

−1/2
λ ) ≤ ‖C−1/2

λ (C − ĈM )C
−1/2
λ ‖.

Let µ = δ
2

. Note that ĈM = 1
M

∑M
i=1 vi ⊗ vi with vi the random variable vi = Kx̃i (see Prop. 3) and, since

x̃1, . . . , x̃M are i.i.d. w.r.t. ρX , by the characterization of C in Prop. 3, we have for any 1 ≤ i ≤M ,

Evi ⊗ vi =

∫
X

Kx ⊗KxdρX(x) = C.
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Then, by considering that ‖v‖ = ‖Kx‖ ≤ κ2 a. e., we can apply Prop. 7 of [14], obtaining

‖C−1/2
λ (C − ĈM )C

−1/2
λ ‖ ≤ 2d(1 +N∞(λ))

3M
+

√
2dN∞(λ)

3M
, d = log

4κ2

λµ
,

with probability at least 1 − µ. Note that, when M satisfies Eq (34), we have ‖C−1/2
λ (C − ĈM )C

−1/2
λ ‖ <

η/(2 + η). By repeating the same reasoning for Cn, we have

‖C−1/2
λ (C − Ĉn)C

−1/2
λ ‖ ≤ 2d(1 +N∞(λ))

3n
+

√
2dN∞(λ)

3n
, d = log

4κ2

λµ
,

with probability 1 − µ. Since n ≥ M and M satisfying Eq. (34), we have automatically that
‖C−1/2

λ (C − Ĉn)C
−1/2
λ ‖ < η/(2 + η).

Finally note that, by adding and subtracting C,

‖C−1/2
λ (Ĉn − ĈM )C

−1/2
λ ‖ = ‖C−1/2

λ ((Ĉn − C) + (C − ĈM ))C
−1/2
λ ‖

≤ ‖C−1/2
λ (C − Ĉn)C

−1/2
λ ‖+ ‖C−1/2

λ (C − ĈM )C
−1/2
λ ‖.

So by performing the intersection bound of the two previous events, we have

‖Ĉ−1/2
Mλ (Ĉn − ĈM )Ĉ

−1/2
Mλ ‖ ≤ (1− ‖C−1/2

λ (C − Ĉn)C
−1/2
λ ‖)−1×

×
(
‖C−1/2

λ (C − Ĉn)C−1
λ ‖+ ‖C−1/2

λ (C − ĈM )C
−1/2
λ ‖

)
< η,

with probability at least 1− 2µ. The last step consists in substituting µ with δ/2.

The next lemma gives probabilistic estimates for ‖E‖, that is the quantity needed to bound the condition number
of the preconditioned linear system of FALKON (see Lemma 1, 3), when the Nyström centers are selected via
approximate leverage scores sampling.

Lemma 10. Let η > 0, δ ∈ (0, 1], n,M ∈ N, q ≥ 1 and λ0 > 0. Let x1, . . . , xn be independently and
identically distributed according to ρX . Let x̃1, . . . , x̃M be randomly selected from x1 . . . , xn, by using the
(q, λ0, δ)-approximate leverage scores (see Def. 1 and discussion below), with λ0 ∨ 19κ2

n
log n

2δ
≤ λ ≤ ‖C‖.

When n ≥ 405κ2 ∨ 67κ2 log 12κ2

δ
and

M ≥
[
2 +

2

η
+

18(η2 + 5η + 4)q2

η2
N (λ)

]
log

8κ2

λδ
, (35)

then the following hold with probability at least 1− δ,

‖Ĝ−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ ‖ < η, ‖C−1/2

λ (C − Ĉn)C
−1/2
λ ‖ < η.

Proof. By multiplying and dividing by Ĉnλ = Ĉn + λI , we have

‖Ĝ−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ ‖ = ‖Ĝ−1/2

Mλ Ĉ
1/2
nλ Ĉ

−1/2
nλ (Ĉn − ĜM )Ĉ

−1/2
nλ Ĉ

1/2
nλ Ĝ

−1/2
Mλ ‖

≤ ‖Ĝ−1/2
Mλ Ĉ

1/2
nλ ‖

2‖Ĉ−1/2
nλ (Ĉn − ĜM )Ĉ

−1/2
nλ ‖

≤ (1− λmax(Ĉ
−1/2
nλ (Ĉn − ĜM )Ĉ

−1/2
nλ ))−1‖Ĉ−1/2

nλ (Ĉn − ĜM )Ĉ
−1/2
nλ ‖

where the last step is due to Prop. 9 of [14]. Note that

λmax(Ĉ
−1/2
nλ (Ĉn − ĜM )Ĉ

−1/2
nλ ) ≤ ‖Ĉ−1/2

nλ (Ĉn − ĜM )Ĉ
−1/2
nλ ‖,

thus
‖Ĝ−1/2

Mλ (Ĉn − ĜM )Ĝ
−1/2
Mλ ‖ ≤

t

1− t ,

with t = ‖Ĉ−1/2
nλ (Ĉn − ĜM )Ĉ

−1/2
nλ ‖. Now we bound t. We denote with lλ(j), l̂λ(j), respectively the leverage

scores and the (q, λ0, δ)-approximate leverage score associated to the point xj , as in Def. 1 and discussion
above. First we need some considerations on the leverage scores. By the spectral theorem and the fact that
Knn = n ŜnŜ

∗
n (see Prop. 3), we have

lλ(j) = (Knn(Knn + λnI)−1)jj = e>j ŜnŜ
∗
n(ŜnŜ

∗
n + λI)−1ej = e>j Ŝn(Ŝ∗nŜn + λI)−1Ŝ∗nej

=
1

n

〈
Kxj , Ĉ

−1
nλKxj

〉
=

1

n
‖Ĉ−1/2

nλ Kxj‖
2.
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for any 1 ≤ j ≤ n. Moreover, by the characterization of Ĉn in Prop. 3, we have

1

n

n∑
j=1

lλ(j) =
1

n

n∑
j=1

〈
Kxj , (Ĉn + λ)−1Kxj

〉
H

=
1

n

n∑
j=1

Tr((Ĉn + λ)−1(Kxj ⊗Kxj ))

= Tr((Ĉn + λ)−1 1

n

n∑
j=1

(Kxj ⊗Kxj )) = Tr(Ĉ−1
nλ Ĉn).

Since the Nyström points are selected by using the (q, λ0, δ)-approximate leverage scores, then x̃t = xit for
1 ≤ t ≤ M , where i1, . . . , iM ∈ {1, . . . , n} is the sequence of indexes obtained by approximate leverage
scores sampling (see Sect. A). Note that i1, . . . , iM are independent random indexes, distributed as follows: for
1 ≤ t ≤M ,

it = j, with probability pj =
l̂λ(j)∑n
h=1 l̂λ(h)

, ∀ 1 ≤ j ≤ n.

Then, by recalling the definition of ĜM with respect to the matrix D defined as in Def. 2 and by Prop. 3 we have,

ĜM = Ŝ∗MD
2ŜM =

1

M

M∑
t=1

1

npit
Kxit

⊗Kxit
.

Consequently ĜM = 1
M

∑M
i=1 vi ⊗ vi, where (vi)

M
i=1 are independent random variables distributed in the

following way

vi =
1
√
pjn

Kxj , with probability pj , ∀ 1 ≤ j ≤ n.

Now we study the moments of ĜM as a sum of independent random matrices, to apply non-commutative
Bernstein inequality (e.g. Prop. 7 of [14]). We have that, for any 1 ≤ i ≤M

Evi ⊗ vi =

n∑
j=1

pj

(
1

pjn
Kxj ⊗Kxj

)
= Ĉn,

〈
vi, Ĉ

−1
nλ vi

〉
H
≤ sup

1≤j≤n

‖Ĉ−1/2
nλ Kxj‖2

pjn
= sup

1≤j≤n

lλ(j)

pjn
= sup

1≤j≤n

lλ(j)

l̂λ(j)

1

n

n∑
h=1

l̂λ(h)

≤ q 1

n

n∑
h=1

l̂λ(h) ≤ q2 1

n

n∑
h=1

lλ(h) = q2 Tr(Ĉ−1
nλ Ĉn),

for all 1 ≤ j ≤ n. Denote with N̂ (λ), the quantity Tr(Ĉ−1
nλ Ĉn), by applying Prop. 7 of [14], we have

‖Ĉ−1/2
nλ (Ĉn − ĜM )Ĉ

−1/2
nλ ‖ ≤ 2d(1 + q2N̂ (λ))

3M
+

√
2dq2N̂ (λ)

M
, d = log

κ2

λµ
.

with probability at least 1− µ. The final step consist in bounding the empirical intrinsic dimension N̂ (λ) with
respect to intrinsic dimensionN (λ), for which we use Prop. 1 of [13], obtaining

N̂ (λ) ≤ 2.65N (λ),

with probability at least 1− µ, when n ≥ 405κ2 ∨ 67κ2 log 6κ2

µ
and 19κ2

n
log n

4µ
≤ λ ≤ ‖C‖. By intersecting

the events, we have

‖Ĉ−1/2
nλ (Ĉn − ĜM )Ĉ

−1/2
nλ ‖ ≤ 5.3d(1 + q2N (λ))

3M
+

√
5.3dq2N (λ)

M
, d = log

κ2

λµ
.

with probability at least 1− 2µ. The last step consist in substituting µ with µ = δ/2. Thus, by selecting M as
in Eq. 35, we have

t = ‖Ĉ−1/2
nλ (Ĉn − ĜM )Ĉ

−1/2
nλ ‖ < η

1 + η
.

That implies,

‖Ĝ−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ ‖ <

t

1− t < η.
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E Proof of Main Results

In this section we prove the main results of the paper. This section is divided in three subsections. In the first,
we specify the computational oracle inequality for Nyström with uniform sampling, in the second we specify
the computational oracle inequality for Nyström with approximate leverage scores sampling (see Sect. D for a
definition), while the third subsection contains the proof of the main theorem presented in the paper.

Now we give a short sketch of the structure of the proofs. The definition of the general version of the FALKON
algorithm (taking into account leverage scores and non invertible KMM ) is given in Sect. A. In Sect. B the
notation and basic definition required for the rest of the analisys are provided.

Our starting point is the analysis of the basic Nyström estimator given in [13]. The key novelty is the quantifica-
tion of the approximations induced by the preconditioned iterative solver by relating its excess risk to the one of
the basic Nyström estimator.

A computational oracle inequality. First we prove that FALKON is equal to the exact Nyström estimator as the
iterations go to infinity (Lemma 5, Sect. C). Then, in Lemma 8 (see also Lemma 6, 7, Sect. C) we show how
optimization guarantees can be used to derive statistical results. More precisely, while optimization results in
machine learning typically derives guarantees on empirical minimization problems, we show, using analytic and
probabilistic tools, how these results can be turned into guarantees on the expected risks. Finally, in the proof
of Thm. 1 we concentrate the terms of the inequality. The other key point is the study of the behavior of the
condition number of B>HB with B given in (10).

Controlling the condition number ofB>HB. Let Cn, CM be the empirical correlation operators inH associated
respectively to the training set and the Nyström pointsCn = 1

n

∑n
i=1Kxi⊗Kxi ,CM = 1

M

∑M
j=1Kx̃j⊗Kx̃j .

In Lemma 1, Sect. C, we prove that B>HB is equivalent to A−>V ∗(Cn + λI)V A−1 for a suitable partial
isometry V . Then in Lemma 2, Sect. C, we split it in two components

B>HB = A−>V ∗(CM + λI)V A−1 + A−>V ∗(Cn − CM )V A−1, (36)
and prove that the first component is just the identity matrix. By denoting the second component with E,
Eq. (36), Sect. C, implies that the condition number of B>HB is bounded by (1 + ‖E‖)/(1− ‖E‖), when
‖E‖ < 1. In Lemma 3 we prove that ‖E‖ is analytically bounded by a suitable distance between Cn − CM
and in Lemma 9, 10, Sect. D, we bound in probability such distance, when the Nyström centers are selected
uniformly at random and with approximate leverage scores. Finally in Lemma 11, 12, Sect. D, we give a
condition on M for the two kind of sampling, such that the condition number is controlled and the error term in
the oracle inequality decays as e−t/2, leading to Thm. 2, 4.

Now we provide the preliminary result necessary to prove a computational oracle inequality for FALKON.

Theorem 1 Let 0 ≤ λ ≤ ‖C‖, B as in Def. 3 and n,M, t ∈ N. Let f̂λ,M,t be the FALKON estimator, with
preconditionerB, after t iterations Def. 4 and let f̃λ,M be the exact Nyström estimator as in Eq. 8. Let δ ∈ (0, 1]
and n ≥ 3, then following holds with probability 1− δ

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M )1/2 + 4v̂ e−νt

√
1 +

9κ2

λn
log

n

δ
,

where v̂2 = 1
n

∑n
i=1 y

2
i and ν = log

√
cond (W )+1√
cond (W )−1

. In particular ν ≥ 1/2, when cond (W ) ≤ ( e
1/2+1

e1/2−1
)2.

Proof. By applying Lemma 8, we have

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M )1/2 + 2c0‖SĈ−1/2

nλ ‖ v̂ e−νt.

To complete the theorem we need to study the quantity ‖SĈ−1/2
nλ ‖. In particular, define λ0 = 9κ2

n
log n

δ
. By

dividing and multiplying for C1/2
nλ0

, we have

‖SĈ−1/2
nλ ‖ = ‖SC−1/2

nλ0
C

1/2
nλ0

C
−1/2
nλ ‖ ≤ ‖SC−1/2

nλ0
‖‖C1/2

nλ0
C
−1/2
nλ ‖.

Now, for the first term, since ‖Z‖2 = ‖Z∗Z‖, and the fact that C = S∗S (see Prop. 3), we have

‖SC−1/2
nλ0
‖2 = ‖C−1/2

nλ0
CC
−1/2
nλ0
‖ = ‖C1/2C

−1/2
nλ0
‖,

moreover by Lemma 5 of [13] (or Lemma 7.6 of [42]), we have

‖C1/2C
−1/2
nλ0
‖ ≤ 2,

with probability 1− δ. Finally, by denoting with σ(C) the set of eigenvalues of the positive operator C, recalling
that σ(C) ⊂ [0, κ2] (see Prop. 3), we have

‖C1/2
nλ0

C
−1/2
nλ ‖ = sup

σ∈σ(C)

√
σ + λ0

σ + λ
≤ sup
σ∈[0,κ2]

√
σ + λ0

σ + λ
≤
√

1 +
λ0

λ
.
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E.1 Main Result (I): computational oracle inequality for FALKON with uniform sampling

Lemma 11. Let δ ∈ (0, 1], 0 < λ ≤ ‖C‖, n,M ∈ N, the matrix W as in Eq. 14 with B satisfying Def. 3 and
the Nyström centers selected via uniform sampling. When

M ≥ 5 [1 + 14N∞(λ)] log
8κ2

λδ
, (37)

then the following holds with probability 1− δ

cond (W ) ≤
(
e1/2 + 1

e1/2 − 1

)2

.

Proof. By Lemma 1 we have that

cond (W ) ≤ 1 + ‖E‖
1− ‖E‖ ,

with the operator E defined in the same lemma. By Lemma 3, we have

‖E‖ ≤ ‖Ĝ−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ ‖.

Lemma 9 proves that when the Nyström centers are selected with uniform sampling and M satisfies Eq. (34) for
a given parameter η ∈ (0, 1], then ‖Ĝ−1/2

Mλ (Ĉn − ĜM )Ĝ
−1/2
Mλ ‖ ≤ η, with probability 1− δ. In particular we

select η = 2e1/2

e+1
. The condition on M in Eq. (37) is derived by Eq. (34) by substituting η with 2e1/2

e+1
.

Theorem 6. Let δ ∈ (0, 1], 0 < λ ≤ ‖C‖, n,M ∈ N and the Nyström centers be selected via uniform
sampling. Let f̂λ,M,t be the FALKON estimator, after t iterations (Def. 4) and let f̃λ,M be the exact Nyström
estimator in Eq. (8). When

M ≥ 5 [1 + 14N∞(λ)] log
8κ2

λδ
,

then, with probability 1− 2δ,

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M )1/2 + 4v̂ e−

t
2

√
1 +

9κ2

λn
log

n

δ
,

Proof. By applying Lemma 11 we have that

cond (W ) ≤ (e1/2 + 1)2/(e1/2 − 1)2,

with probability 1− δ under the condition on M . Then apply the computational oracle inequality in Thm. 1 and
take the union bound of the two events.

Theorem 2. Under the same conditions of Thm. 1, the exponent ν in Thm. 1 satisfies ν ≥ 1/2, with probability
1− 2δ, when the Nyström centers are selected via uniform sampling (see Sect. A), and

M ≥ 5

[
1 +

14κ2

λ

]
log

8κ2

λδ
.

Proof. It is a direct application of Thm. 6. Indeed note thatN∞(λ) ≤ κ2

λ
by definition.

E.2 Main Result (II): computational oracle inequality for FALKON with leverage scores

Lemma 12. Let δ ∈ (0, 1] and the matrix W be as in Eq. 14 with B satisfying Def. 3 and the Nyström
centers selected via (q, λ0, δ)-approximated leverage scores sampling (see Def. 1 and discussion below), with
λ0 = 19κ2

n
log n

2δ
. When λ0 ≤ λ ≤ ‖C‖, n ≥ 405κ2 ∨ 67κ2 log 12κ2

δ
and

M ≥ 5
[
1 + 43q2N (λ)

]
log

8κ2

λδ
, (38)

then the following holds with probability 1− δ

cond (W ) ≤
(
e1/2 + 1

e1/2 − 1

)2

.
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Proof. By Lemma 1 we have that

cond (W ) ≤ 1 + ‖E‖
1− ‖E‖ ,

with the operator E defined in the same lemma. By Lemma 3 we have

‖E‖ ≤ ‖Ĝ−1/2
Mλ (Ĉn − ĜM )Ĝ

−1/2
Mλ ‖.

Lemma 10 proves that when the Nyström centers are selected via q-approximate leverage scores and M satisfies
Eq. (35) for a given parameter η ∈ (0, 1], then ‖Ĝ−1/2

Mλ (Ĉn − ĜM )Ĝ
−1/2
Mλ ‖ ≤ η, with probability 1 − δ. In

particular we select η = 2e1/2

e+1
. The condition on M in Eq. (38) is derived by Eq. (35) by substituting η with

2e1/2

e+1
.

Theorem 7. Let δ ∈ (0, 1],M, n ∈ N and the Nyström centers be selected via (q, λ0, δ)-approximated leverage
scores sampling (see Def. 1 and discussion below), with λ0 = 19κ2

n
log n

2δ
. Let t ∈ N. Let f̂λ,M,t be the

FALKON estimator, after t iterations (Def. 4) and let f̃λ,M be the exact Nyström estimator in Eq. (8). When
λ0 ≤ λ ≤ ‖C‖, n ≥ 405κ2 ∨ 67κ2 log 12κ2

δ
and

M ≥ 5
[
1 + 43q2N (λ)

]
log

8κ2

λδ
,

then, with probability 1− 2δ,

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M )1/2 + 4v̂ e−

t
2

√
1 +

9κ2

λn
log

n

δ
,

Proof. By applying Lemma 12 we have that

cond (W ) ≤ (e1/2 + 1)2/(e1/2 − 1)2,

with probability 1 − δ under the conditions on λ, n,M . Then apply the computational oracle inequality in
Thm. 1 and take the union bound of the two events.

Theorem 4. Under the same conditions of Thm. 1, the exponent ν in Thm. 1 satisfies ν ≥ 1/2, with probability
1− 2δ, when

1. either Nyström uniform sampling (see Sect. A) is used with M ≥ 70 [1 +N∞(λ)] log 8κ2

λδ
.

2. or Nyström (q, λ0, δ)-appr. lev. scores (see Sect. A) is used, with λ ≥ 19κ2

n
log n

2δ
, n ≥

405κ2 log 12κ2

δ
, and

M ≥ 215
[
2 + q2N (λ)

]
log

8κ2

λδ
.

Proof. It is a merge of Thm. 6 and Thm. 7.

E.3 Main Results (III): Optimal Generalization Bounds

First we recall the standard assumptions to study generalization rates for the non-parametric supervised learning
setting, with square loss function. Then we provide Thm. 8, from which we obtain Thm. 3 and Thm. 5.

There exists κ ≥ 1 such that K(x, x) ≤ κ2 for any x ∈ X . There exists fH ∈ H, such that E(fH) =
inff∈H E(f). Moreover, we assume that ρ(y|x) has sub-exponential tails, i.e. in terms of moments of y: there
exist σ, b satisfying 0 ≤ σ ≤ b, such that, for any x ∈ X , the following holds

E [|y − fH(x)|p | x] ≤ 1

2
p!σ2bp−2, ∀p ≥ 2. (39)

Note that the assumption above is satisfied, when y is supported in an interval or when it has sub-gaussian or
sub-exponential tails. The last assumption is known as source condition [17]. There exist r ∈ [1/2, 1] and
g ∈ H, such that

fH = Cr−1/2g, (40)

where C is the correlation operator defined in Def. 5. Finally define R ≥ 1 such that R ≥ ‖g‖H. Note
that assuming the existence of fH, the source condition is always satisfied with r = 1/2, g = fH and
R = max(1, ‖fH‖H), however if it is satisfied with larger r it leads to faster learning rates.
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Theorem 8. Let δ ∈ (0, 1]. Let n, λ,M satisfy n ≥ 1655κ2 + 223κ2 log 24κ2

δ
, M ≥ 334 log 192n

δ
and

19κ2

n
log 24n

δ
≤ λ ≤ ‖C‖. Let f̂λ,M,t be the FALKON estimator in Def. 4, after t ∈ N iterations. Under the

assumptions in Eq. (39), (40), the following holds with probability at least 1− δ,

R(f̂λ,M,t)
1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

24

δ
+ 7Rλr, (41)

1. either, when the Nyström points are selected uniformly sampled (see Sect. A) and

M ≥ 70
[
1 + N∞(λ)

]
log

48κ2

λδ
, t ≥ 2 log

8(b+ κ‖fH‖H)

Rλr
, (42)

2. or, when the Nyström points are selected by means of (q, λ0, δ)-approximate leverage scores (see
Sect. A), with q ≥ 1, λ0 = 19κ2

n
log 48n

δ
and

M ≥ 215
[
1 + q2N (λ)

]
log

192κ2n

λδ
, t ≥ 2 log

8(b+ κ‖fH‖H)

Rλr
. (43)

Proof. Let µ = δ/4. By Proposition 2 of [13], under the assumptions in Eq. 39 and Eq. 40, when n ≥
1655κ2 + 223κ2 log 6κ2

µ
, M ≥ 334 log 48n

µ
, and 19κ2

n
log 6n

µ
≤ λ ≤ ‖C‖, we have with probability 1− µ

R(f̃λ,M )1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

6

µ
+ 3RC(M)r + 3Rλr,

where

C(M) = min

{
t > 0

∣∣∣∣ (67 + 5N∞(t)) log
12κ2

tµ
≤M

}
,

when the Nyström centers are selected with uniform sampling, otherwise

C(M) = min

{
λ0 ≤ t ≤ ‖C‖

∣∣∣∣ 78q2N (t) log
48n

µ
≤M

}
,

when the Nyström centers are selected via approximate sampling, with λ0 = 19κ2

n
log 12n

µ
. In particular, note

that C(M) ≤ λ, in both cases, when M satisfies Eq. (42) for uniform sampling, or Eq. (43) for approximate
leverage scores. Now, by applying the computational oracle inequality in Thm. 6, for uniform sampling, or
Thm. 7, for approximate leverage scores, the following holds with probability 1− 2µ

R(f̂λ,M,t)
1/2 ≤ R(f̃λ,M )1/2 + 4v̂ e−

t
2

√
1 +

9κ2

λn
log

n

µ
,

with v̂2 := 1
n

∑n
i=1 y

2
i . In particular, note that, since we require λ ≥ 19κ2

n
log 12n

µ
, we have

4

√
1 +

9κ2

λn
log

n

µ
≤ 5.

Now, we choose t such that 5v̂e−t/2 ≤ Rλr , that is t ≥ 2 log 5v̂
Rλr

. The last step consists in bounding v̂ in
probability. Since it depends on the random variables y1, . . . , yn we bound it in the following way. By recalling
that |fH(x)| = | 〈Kx, fH〉H | ≤ ‖Kx‖H‖fH‖H ≤ κ‖fH‖H for any x ∈ X , we have

v̂ =
1√
n
‖ŷ‖ ≤

√√√√ n∑
i=1

(yi − fH(xi))2

n
+

√√√√ n∑
i=1

fH(xi)2

n
≤

√√√√ n∑
i=1

(yi − fH(xi))2

n
+ κ‖fH‖H.

Since the training set examples (xi, yi)
n
i=1 are i.i.d. with probability ρ we can apply the Bernstein inequality

[43] to the random variables zi = (yi − fH(xi))
2 − s, with s = E(yi − fH(xi))

2 (since xi, yi are i.i.d. each
zi has the same distribution and so the same expected value s). In particular, we need to bound the moments of
zi’s. By the assumption in Eq. 39, zi are zero mean and

E|zi|2p ≤
1

2
(2p)!σ2b2p−2 ≤ 1

2
p!(4σb)2(4b2)p−2, p ≥ 2

and so, by applying the Bernstein inequality, the following holds with probability 1− µ∣∣∣∣∣
n∑
i=1

zi
n

∣∣∣∣∣ ≤ 8b2 log 2
µ

3n
+

√
8σ2b2 log 2

µ

n
≤ 1

4
b2,
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where the last step is due to the fact that we require n ≥ 223κ2 log 6
µ

, that b ≥ σ and that κ ≥ 1 by definition.
So, by noting that s ≤ σ2 ≤ b2 (see Eq. 39), we have

v̂ ≤ κ‖fH‖H +

√√√√s+

n∑
i=1

zi
n
≤ κ‖fH‖H +

√
s+

1

2
b ≤ 3

2
b+ κ‖fH‖H,

with probability at least 1 − µ. Now by taking the intersection of the three events, the following holds with
probability at least 1− 4µ

R(f̂λ,M,t)
1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

6

µ
+ 7Rλr.

Now we provide the generalization error bounds for the setting where we only assume the existence of fH.

Theorem. 3 Let δ ∈ (0, 1]. Let the outputs y be bounded in [−a
2
, a
2
], almost surely, with a > 0. For any

n ≥ max( 1
‖C‖ , 82κ2 log 373κ2

√
δ

)2 the following holds. When

λ =
1√
n
, M ≥ 5(67 + 20

√
n) log

48κ2n

δ
, t ≥ 1

2
log(n) + 5 + 2 log(a+ 3κ),

then with probability 1− δ,

R(f̂λ,M,t ) ≤
c0 log2 24

δ√
n

,

where f̂λ,M,t is the FALKON estimator in Def. 4 (see also Sect. 3 Alg. 1) with Nyström uniform sampling, and
the constant c0 = 49‖fH‖2H(1 + aκ+ 2κ2‖fH‖H)2.

Proof. Here we assume y ∈ [−a
2
, a
2
] a.s., so Eq. 39 is satisfied with σ = b = a+ 2κ‖fH‖H, indeed

E[|y− fH(x)|p | x] ≤ E[2p−1|y|p | x] + 2p−1|fH(x)|p ≤ 1

2
(ap + 2pκp‖fH‖pH) ≤ 1

2
p!(a+ 2κ‖fH‖H)p,

where we used the fact that |fH(x)| = | 〈Kx, fH〉H | ≤ ‖Kx‖‖fH‖ ≤ κ‖fH‖H. Moreover, Eq. (40) is
satisfied with r = 1/2 and g = fH, while R = max(1, ‖fH‖H).

To complete the proof we show that the assumptions on λ,M, n satisfy the condition required by Thm. 8,
then we apply it and derive the final bound. Set λ = n−1/2 and define n0 = max(‖C‖−1, 82κ2 log 373κ2

√
δ

)2.

The condition n ≥ n0, satisfies the condition on n required by Thm. 8. Moreover both λ = n−1/2 and
M ≥ 75

√
n log 48κ2n

δ
satisfy respectively the conditions on λ,M required by Thm. 8, when n ≥ n0. Finally

note that the condition on t implies the condition required by Thm. 8, indeed, since R = max(1, ‖f‖H), we
have a/R ≤ a and ‖fH‖H/R ≤ 1, so

2 log
8(a+ κ‖fH‖H)

Rλr
= log

[
64

(
a

R
+

3κ‖fH‖H
R

)2√
n

]

≤ log(64(a+ 3κ)2
√
n) ≤ log 64 +

1

2
logn+ 2 log(a+ 3κ).

So, by applying Thm. 8 with R, r defined as above and recalling thatN (λ) ≤ N∞(λ) ≤ κ2

λ
, we have

R(f̂λ,M,t)
1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

24

δ
+ 7Rλr ≤ 6R

(
bκ√
λn

+
σκ√
λn

)
log

24

δ
+ 7Rλ

1
2

= 6Rbκ(1 + n−1/2)n−1/4 log
24

δ
+ 7Rn−1/4 ≤

7R(bκ+ 1) log 24
δ

n1/4
.

with probability 1− δ. For the last step we used the fact that b = σ, that 6(1 + n−1/2) ≤ 7, since n ≥ n0, and
that log 24

δ
> 1.

To state the result for fast rates, we need to define explicitly the capacity condition on the intrinsic dimension.
There exists Q > 0, γ ∈ (0, 1] such that

N (λ) ≤ Q2λ−γ , ∀λ ≥ 0. (44)

Note that, by definition ofN (λ), the assumption above is always satisfied with Q = κ and γ = 1.
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Theorem 5 Let δ ∈ (0, 1]. Let the outputs y be bounded in [−a
2
, a
2
], almost surely, with a > 0. Under the

assumptions in Eq. 40, 44 and n ≥ ‖C‖−s ∨
(

102κ2s
s−1

log 912
δ

) s
s−1 , with s = 2r + γ, the following holds.

When
λ = n

− 1
2r+γ , t ≥ log(n) + 5 + 2 log(a+ 3κ2),

1. and either Nyström uniform sampling is used with

M ≥ 70 [1 + N∞(λ)] log
8κ2

λδ
, (45)

2. and or Nyström (q, λ0, δ)-approximate leverage scores (Def. 1), with q ≥ 1, λ0 = 19κ2

n
log 48n

δ
and

M ≥ 215
[
1 + q2N (λ)

]
log

8κ2

λδ
, (46)

then with probability 1− δ,

R(f̂λ,M,t) ≤ c0 log2 24

δ
n
− 2r

2r+γ ,

where f̂λ,M,t is the FALKON estimator in Sect. 3 (Alg. 1). In particular n0, c0 do not depend on λ,M, n and c0
do not depend on δ.

Proof. The proof is similar to the one for the slow learning rate (Thm. 3), here we take into account the additional
assumption in Eq. (40), 44 and the fact that r may be bigger than 1/2. Moreover we assume y ∈ [−a

2
, a
2
] a.s.,

so Eq. 39 is satisfied with σ = b = a+ 2κ‖fH‖H, indeed

E[|y− fH(x)|p | x] ≤ E[2p−1|y|p | x] + 2p−1|fH(x)|p ≤ 1

2
(ap + 2pκp‖fH‖pH) ≤ 1

2
p!(a+ 2κ‖fH‖H)p,

where we used the fact that |fH(x)| = | 〈Kx, fH〉H | ≤ ‖Kx‖‖fH‖ ≤ κ‖fH‖H.

To complete the proof we show that the assumptions on λ,M, n satisfy the required conditions to ap-
ply Thm. 8. Then we apply it and derive the final bound. Set λ = n−1/(2r+γ) and define n0 =

‖C‖−s ∨
(

102κ2s
s−1

log 912
δ

) s
s−1 , with s = 2r + γ. Since 1 < s ≤ 3, the condition n ≥ n0, satisfies

the condition on n required to apply Thm. 8. Moreover, for any n ≥ n0, both λ = n−1/(2r+γ) and M
satisfying Eq. (45) for Nyström uniform sampling, and Eq. 46 for Nyström leverage scores, satisfy respectively
the conditions on λ,M required to apply Thm. 8. Finally note that the condition on t implies the condition
required by Thm. 8, indeed, since 2r/(2r + γ) ≤ 1,

2 log
8(b+ κ‖fH‖H)

Rλr
= log

[
64

(
a

R
+

3κ‖fH‖H
R

)2

n
2r

2r+γ

]

≤ log 64 + 2 log
a+ 3κ‖fH‖H

R
+

2r

2r + γ
logn

≤ log 64 + 2 log
a+ 3κ‖fH‖H

R
+ logn,

≤ log 64 + 2 log(a+ 3κ2) + logn.

where the last step is due to the fact that a/R ≤ 1 and ‖fh‖H/R ≤ ‖Cr−1/2‖ ≤ ‖C‖1/2 ≤ κ, since
R := max(1, ‖g‖H), and ‖fH‖H ≤ ‖Cr−1/2‖‖g‖H, by definition. So, by applying Thm. 8 with R, r defined
as above and recalling thatN∞(λ) ≤ κ2

λ
by construction and thatN (λ) ≤ Q2λ−γ by the capacity condition in

Eq. (44), we have

R(f̂λ,M,t)
1/2 ≤ 6R

(
b
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

24

δ
+ 7Rλr ≤ 6R

(
bκ√
λn

+
Qσ√
λγn

)
log

24

δ
+ 7Rλr

= 6Rb

(
κn
− r+γ−1/2

2r+γ +Q

)
n
− r

2r+γ log
24

δ
+ 7Rn

− r
2r+γ

≤ 7R(b(κ+Q) + 1) log
24

δ
n
− r

2r+γ .

with probability 1− δ. For the last step we used the fact that b = σ, that r + γ − 1/2 ≥ 0, since r ≥ 1/2 by
definition, and that log 24

δ
> 1.
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F Longer comparison with previous works

In the literature of KRR there are some papers that propose to solve Eq. 5 with iterative preconditioned methods
[3, 4, 26, 5, 6]. In particular the one of [3] is based, essentially, on an incomplete singular value decomposition
of the kernel matrix. Similarly, the ones proposed by [5, 6] are based on singular value decomposition obtained
via randomized linear algebra approaches. The first covers the linear case, while the second deals with the kernel
case. [4, 26] use a preconditioner based on the solution of a randomized projection problem based respectively
on random features and Nyström.

While such preconditioners are suitable in the case of KRR, their computational cost becomes too expensive
when applied to the random projection case. Indeed, performing an incomplete svd of the matrix KnM even
via randomized linear algebra approaches would require O(nMk) where k is the number of singular values
to compute. To achieve a good preconditioning level (and so having t ≈ logn) we should choose k such
that σk(KnM ) ≈ λ. When the kernel function is bounded, without further assumptions on the eigenvalue
decay of the kernel matrix, we need k ≈ λ−1 [17, 13]. Since randomized projection requires λ = n−1/2,
M = O(

√
n) to achieve optimal generalization bounds, we have k ≈

√
n and so the total cost of the incomplete

svd preconditioner is O(n2). On the same lines, applying the preconditioner proposed by [4, 26] requires
O(nM2) to be computed and there is no natural way to find a similar sketched preconditioner as the one in
Eq. (10) in the case of [4], with reduced computational cost. In the case of [26], the preconditioner they use
is exactly the matrix H−1, whose computation amounts to solve the original problem in Eq. (8) with direct
methods and requires O(nM2).

A similar reasoning hold for methods that solve the Nyström linear system (8) with iterative approaches
[22, 23, 24]. Indeed on the positive side, they have a computational cost of O(nMt). However they are affected
by the poor conditioning of the linear system in Eq. 8. Indeed, even if H or KMM in Eq. 8 are invertible, their
condition number can be arbitrarily large (while in the KRR case it is bounded by λ−1), and so many iterations
are often needed to achieve optimal generalization (E.g. by using early stopping in [23] they need t ≈ λ−1).

G MATLAB Code for FALKON
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Algorithm 2 Complete MATLAB code for FALKON. It requires O(nMt+M3) in time and O(M2)
in memory. See Sect. 3 for more details, and Sect. 4 for theoretical properties.

Input: Dataset X = (xi)
n
i=1 ∈ Rn×D, ŷ = (yi)

n
i=1 ∈ Rn, M ∈ N numbers of Nyström centers to

select, lev scores ∈ Rn approximate leverage scores (set lev scores = [ ] for selecting Nyström
centers via uniform sampling), function KernelMatrix computing the Kernel matrix of two sets of
points, regularization parameter λ, number of iterations t.
Output: Nyström coefficients α.
function alpha = FALKON(X, Y, lev_scores, M, KernelMatrix, lambda, t)

n = size(X,1);
[C, D] = selectNystromCenters(X, lev_scores, M, n);

KMM = KernelMatrix(C,C);
T = chol(D*KMM*D + eps*M*eye(M));
A = chol(T*T’/M + lambda*eye(M));

function w = KnMtimesVector(u, v)
w = zeros(M,1); ms = ceil(linspace(0, n, ceil(n/M)+1));
for i=1:ceil(n/M)

Kr = KernelMatrix( X(ms(i)+1:ms(i+1),:), C );
w = w + Kr’*(Kr*u + v(ms(i)+1:ms(i+1),:));

end
end

function w = BHB(u)
w = A’\(T’\(KnMtimesVector(T\(A\u), zeros(n,1))/n) + lambda*(A\u));

end

r = A’\(T’\KnMtimesVector(zeros(M,1), Y/n));

beta = conjgrad(@BHB, r, t);
alpha = T\(A\beta);

end

function beta = conjgrad(funA, r, tmax)
p = r; rsold = r’*r; beta = zeros(size(r,1), 1);

for i = 1:tmax
Ap = funA(p);
a = rsold/(p’*Ap);
beta = beta + a*p;
r = r - a*Ap; rsnew = r’*r;
p = r + (rsnew/rsold)*p;
rsold = rsnew;

end
end

function [C, D] = selectNystromCenters(X, lev_scores, M, n)
if isempty(lev_scores) %Uniform Nystrom

D = eye(M);
C = X(randperm(n,M),:);

else % Appr. Lev. Scores Nystrom
prob = lev_scores(:)./sum(lev_scores(:));
[count, ind] = discrete_prob_sample(M, prob);
D = diag(1./sqrt(n*prob(ind).*count));
C = X(ind,:);

end
end

function [count, ind] = discrete_prob_sample(M, prob)
bins = histcounts(rand(M,1), [0; cumsum(prob(:))]);
ind = find(bins > 0);
count = bins(ind);

end
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