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Abstract

Few-shot learning refers to understanding new concepts from only a few examples.
We propose an information retrieval-inspired approach for this problem that is
motivated by the increased importance of maximally leveraging all the available
information in this low-data regime. We define a training objective that aims to
extract as much information as possible from each training batch by effectively
optimizing over all relative orderings of the batch points simultaneously. In partic-
ular, we view each batch point as a ‘query’ that ranks the remaining ones based
on its predicted relevance to them and we define a model within the framework
of structured prediction to optimize mean Average Precision over these rankings.
Our method achieves impressive results on the standard few-shot classification
benchmarks while is also capable of few-shot retrieval.

1 Introduction

Recently, the problem of learning new concepts from only a few labelled examples, referred to
as few-shot learning, has received considerable attention [1, 2]. More concretely, K-shot N-way
classification is the task of classifying a data point into one of N classes, when only K examples
of each class are available to inform this decision. This is a challenging setting that necessitates
different approaches from the ones commonly employed when the labelled data of each new concept
is abundant. Indeed, many recent success stories of machine learning methods rely on large datasets
and suffer from overfitting in the face of insufficient data. It is however not realistic nor preferred to
always expect many examples for learning a new class or concept, rendering few-shot learning an
important problem to address.

We propose a model for this problem that aims to extract as much information as possible from each
training batch, a capability that is of increased importance when the available data for learning each
class is scarce. Towards this goal, we formulate few-shot learning in information retrieval terms: each
point acts as a ‘query’ that ranks the remaining ones based on its predicted relevance to them. We are
then faced with the choice of a ranking loss function and a computational framework for optimization.
We choose to work within the framework of structured prediction and we optimize mean Average
Precision (mAP) using a standard Structural SVM (SSVM) [3], as well as a Direct Loss Minimization
(DLM) [4] approach. We argue that the objective of mAP is especially suited for the low-data regime
of interest since it allows us to fully exploit each batch by simultaneously optimizing over all relative
orderings of the batch points. Figure 1 provides an illustration of this training objective.

Our contribution is therefore to adopt an information retrieval perspective on the problem of few-shot
learning; we posit that a model is prepared for the sparse-labels setting by being trained in a manner
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Figure 1: Best viewed in color. Illustration of our training objective. Assume a batch of 6 points: G1,
G2 and G3 of class "green", Y1 and Y2 of "yellow", and another point. We show in columns 1-5
the predicted rankings for queries G1, G2, G3, Y1 and Y2, respectively. Our learning objective is to
move the 6 points in positions that simultaneously maximize the Average Precision (AP) of the 5
rankings. For example, the AP of G1’s ranking would be optimal if G2 and G3 had received the two
highest ranks, and so on.

that fully exploits the information in each batch. We also introduce a new form of a few-shot learning
task, ‘few-shot retrieval’, where given a ‘query’ image and a pool of candidates all coming from
previously-unseen classes, the task is to ‘retrieve’ all relevant (identically labelled) candidates for the
query. We achieve competitive with the state-of-the-art results on the standard few-shot classification
benchmarks and show superiority over a strong baseline in the proposed few-shot retrieval problem.

2 Related Work

Our approach to few-shot learning heavily relies on learning an informative similarity metric, a goal
that has been extensively studied in the area of metric learning. This can be thought of as learning
a mapping of objects into a space where their relative positions are indicative of their similarity
relationships. We refer the reader to a survey of metric learning [5] and merely touch upon a few
representative methods here.

Neighborhood Component Analysis (NCA) [6] learns a metric aiming at high performance in nearest
neirhbour classification. Large Margin Nearest Neighbor (LMNN) [7] refers to another approach for
nearest neighbor classification which constructs triplets and employs a contrastive loss to move the
‘anchor’ of each triplet closer to the similarly-labelled point and farther from the dissimilar one by at
least a predefined margin.

More recently, various methods have emerged that harness the power of neural networks for metric
learning. These methods vary in terms of loss functions but have in common a mechanism for the
parallel and identically-parameterized embedding of the points that will inform the loss function.
Siamese and triplet networks are commonly-used variants of this family that operate on pairs and
triplets, respectively. Example applications include signature verification [8] and face verification
[9, 10]. NCA and LMNN have also been extended to their deep variants [11] and [12], respectively.
These methods often employ hard-negative mining strategies for selecting informative constraints
for training [10, 13]. A drawback of siamese and triplet networks is that they are local, in the sense
that their loss function concerns pairs or triplets of training examples, guiding the learning process
to optimize the desired relative positions of only two or three examples at a time. The myopia of
these local methods introduces drawbacks that are reflected in their embedding spaces. [14] propose
a method to address this by using higher-order information.

We also learn a similarity metric in this work, but our approach is specifically tailored for few-shot
learning. Other metric learning approaches for few-shot learning include [15, 1, 16, 17]. [15] employs
a deep convolutional neural network that is trained to correctly predict pairwise similarities. Attentive
Recurrent Comparators [16] also perform pairwise comparisons but form the representation of the
pair through a sequence of glimpses at the two points that comprise it via a recurrent neural network.
We note that these pairwise approaches do not offer a natural mechanism to solve K-shot N-way tasks
for K > 1 and focus on one-shot learning, whereas our method tackles the more general few-shot
learning problem. Matching Networks [1] aim to ‘match’ the training setup to the evaluation trials of
K-shot N-way classification: they divide each sampled training ‘episode’ into disjoint support and
query sets and backpropagate the classification error of each query point conditioned on the support
set. Prototypical Networks [17] also perform episodic training, and use the simple yet effective
mechanism of representing each class by the mean of its examples in the support set, constructing a
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‘prototype’ in this way that each query example will be compared with. Our approach can be thought
of as constructing all such query/support sets within each batch in order to fully exploit it.

Another family of methods for few-shot learning is based on meta-learning. Some representative
work in this category includes [2, 18]. These approaches present models that learn how to use the
support set in order to update the parameters of a learner model in such a way that it can generalize to
the query set. Meta-Learner LSTM [2] learns an initialization for learners that can solve new tasks,
whereas Model-Agnostic Meta-Learner (MAML) [18] learns an update step that a learner can take to
be successfully adapted to a new task. Finally, [19] presents a method that uses an external memory
module that can be integrated into models for remembering rarely occurring events in a life-long
learning setting. They also demonstrate competitive results on few-shot classification.

3 Background

3.1 Mean Average Precision (mAP)

Consider a batch B of points: X = {x1, x2, . . . , xN} and denote by cj the class label of the point
xj . Let Relx1 = {xj ∈ B : c1 == cj} be the set of points that are relevant to x1, determined in a
binary fashion according to class membership. Let Ox1 denote the ranking based on the predicted
similarity between x1 and the remaining points in B so that Ox1 [j] stores x1’s jth most similar point.
Precision at j in the ranking Ox1 , denoted by Prec@jx1 is the proportion of points that are relevant
to x1 within the j highest-ranked ones. The Average Precision (AP) of this ranking is then computed
by averaging the precisions at j over all positions j in Ox1 that store relevant points.

AP x1 =
∑

j∈{1,...,|B−1|:
Ox1 [j]∈Relx1}

Prec@jx1

|Relx1 |
where Prec@jx1 =

|{k ≤ j : Ox1 [k] ∈ Relx1}|
j

Finally, mean Average Precision (mAP) calculates the mean AP across batch points.

mAP =
1

|B|
∑

i∈{1,...B}

AP xi

3.2 Structural Support Vector Machine (SSVM)

Structured prediction refers to a family of tasks with inter-dependent structured output variables
such as trees, graphs, and sequences, to name just a few [3]. Our proposed learning objective
that involves producing a ranking over a set of candidates also falls into this category so we adopt
structured prediction as our computational framework. SSVM [3] is an efficient method for these
tasks with the advantage of being tunable to custom task loss functions. More concretely, let X
and Y denote the spaces of inputs and structured outputs, respectively. Assume a scoring function
F (x, y;w) depending on some weights w, and a task loss L(yGT, ŷ) incurred when predicting ŷ
when the groundtruth is yGT. The margin-rescaled SSVM optimizes an upper bound of the task loss
formulated as:

min
w

E[max
ŷ∈Y
{L(yGT, ŷ)− F (x,yGT;w) + F (x, ŷ;w)}]

The loss gradient can then be computed as:
∇wL(y) = ∇wF (X , yhinge, w)−∇wF (X ,yGT, w)

with yhinge = argmax
ŷ∈Y

{F (X , ŷ, w) + L(yGT, ŷ)} (1)

3.3 Direct Loss Minimization (DLM)

[4] proposed a method that directly optimizes the task loss of interest instead of an upper bound of it.
In particular, they provide a perceptron-like weight update rule that they prove corresponds to the
gradient of the task loss. [20] present a theorem that equips us with the corresponding weight update
rule for the task loss in the case of nonlinear models, where the scoring function is parameterized by
a neural network. Since we make use of their theorem, we include it below for completeness.

Let D = {(x, y)} be a dataset composed of input x ∈ X and output y ∈ Y pairs. Let F (X , y, w) be
a scoring function which depends on the input, the output and some parameters w ∈ RA.
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Theorem 1 (General Loss Gradient Theorem from [20]). When given a finite set Y , a scoring function
F (X , y, w), a data distribution, as well as a task-loss L(y, ŷ), then, under some mild regularity
conditions, the direct loss gradient has the following form:

∇wL(y, yw) = ± lim
ε→0

1

ε
(∇wF (X , ydirect, w)−∇wF (X , yw, w)) (2)

with:
yw = argmax

ŷ∈Y
F (X , ŷ, w) and ydirect = argmax

ŷ∈Y
{F (X , ŷ, w)± εL(y, ŷ)}

This theorem presents us with two options for the gradient update, henceforth the positive and negative
update, obtained by choosing the + or − of the ± respectively. [4] and [20] provide an intuitive view
for each one. In the case of the positive update, ydirect can be thought of as the ‘worst’ solution since
it corresponds to the output value that achieves high score while producing high task loss. In this
case, the positive update encourages the model to move away from the bad solution ydirect. On the
other hand, when performing the negative update, ydirect represents the ‘best’ solution: one that does
well both in terms of the scoring function and the task loss. The model is hence encouraged in this
case to adjust its weights towards the direction of the gradient of this best solution’s score.

In a nutshell, this theorem provides us with the weight update rule for the optimization of a custom
task loss, provided that we define a scoring function and procedures for performing standard and
loss-augmented inference.

3.4 Relationship between DLM and SSVM

As also noted in [4], the positive update of direct loss minimization strongly resembles that of the
margin-rescaled structural SVM [3] which also yields a loss-informed weight update rule. This
gradient computation differs from that of the direct loss minimization approach only in that, while
SSVM considers the score of the ground-truth F (X ,yGT, w), direct loss minimization considers the
score of the current prediction F (X , yw, w). The computation of yhinge strongly resembles that of
ydirect in the positive update. Indeed SSVM’s training procedure also encourages the model to move
away from weights that produce the ‘worst’ solution yhinge.

3.5 Optimizing for Average Precision (AP)

In the following section we adapt and extend a method for optimizing AP [20].

Given a query point, the task is to rank N points x = (x1, . . . , xN ) with respect to their relevance
to the query, where a point is relevant if it belongs to the same class as the query and irrelevant
otherwise. Let P and N be the sets of ‘positive’ (i.e. relevant) and ‘negative’ (i.e. irrelevant) points
respectively. The output ranking is represented as yij pairs where ∀i, j, yij = 1 if i is ranked higher
than j and yij = −1 otherwise, and ∀i, yii = 0. Define y = (. . . , yij , . . . ) to be the collection of all
such pairwise rankings.

The scoring function that [20] used is borrowed from [21] and [22]:

F (x, y, w) =
1

|P||N |
∑

i∈P,j∈N
yij(ϕ(xi, w)− ϕ(xj , w))

where ϕ(xi, w) can be interpreted as the learned similarity between xi and the query.

[20] devise a dynamic programming algorithm to perform loss-augmented inference in this setting
which we make use of but we omit for brevity.

4 Few-Shot Learning by Optimizing mAP

In this section, we present our approach for few-shot learning that optimizes mAP. We extend the
work of [20] that optimizes for AP in order to account for all possible choices of query among the
batch points. This is not a straightforward extension as it requires ensuring that optimizing the AP of
one query’s ranking does not harm the AP of another query’s ranking.

In what follows we define a mathematical framework for this problem and we show that we can treat
each query independently without sacrificing correctness, therefore allowing to efficiently in parallel
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learn to optimize all relative orderings within each batch. We then demonstrate how we can use the
frameworks of SSVM and DLM for optimization of mAP, producing two variants of our method
henceforth referred to as mAP-SSVM and mAP-DLM, respectively.

Setup: Let B be a batch of points: B = {x1, x2, . . . , xN} belonging to C different classes. Each
class c ∈ {1, 2, . . . , C} defines the positive set Pc containing the points that belong to c and the
negative set N c containing the rest of the points. We denote by ci the class label of the ith point.

We represent the output rankings as a collection of yikj variables where yikj = 1 if k is ranked
higher than j in i’s ranking, yikk = 0 and yikj = −1 if j is ranked higher than k in i’s ranking. For
convenience we combine these comparisons for each query i in yi = (. . . , yikj , . . . ).

Let f(x,w) be the embedding function, parameterized by a neural network and ϕ(x1, x2, w) the
cosine similarity of points x1 and x2 in the embedding space given by w:

ϕ(x1, x2, w) =
f(x1, w) · f(x2, w)
|f(x1, w)||f(x2, w)|

ϕ(xi, xj , w) is typically referred in the literature as the score of a siamese network.

We consider for each query i, the function F i(X , yi, w):

F i(X , yi, w) = 1

|Pci ||N ci |
∑

k∈Pci\i

∑
j∈N ci

yikj(ϕ(xi, xk, w)− ϕ(xi, xj , w))

We then compose the scoring function by summing over all queries: F (X , y, w) =
∑
i∈B

F i(X , yi, w)

Further, for each query i ∈ B, we let pi = rank(yi) ∈ {0, 1}|Pci |+|N ci | be a vector obtained by
sorting the yikj’s ∀k ∈ Pci \ i, j ∈ N ci , such that for a point g 6= i, pig = 1 if g is relevant for query i
and pig = −1 otherwise. Then the AP loss for the ranking induced by some query i is defined as:

LiAP (p
i, p̂i) = 1− 1

|Pci |
∑
j:p̂ij=1

Prec@j

where Prec@j is the percentage of relevant points among the top-ranked j and pi and p̂i denote the
ground-truth and predicted binary relevance vectors for query i, respectively. We define the mAP loss
to be the average AP loss over all query points.

Inference: We proof-sketch in the supplementary material that inference can be performed efficiently
in parallel as we can decompose the problem of optimizing the orderings induced by the different
queries to optimizing each ordering separately. Specifically, for a query i of class c the computation
of the yikj’s, ∀k ∈ Pc \ i, j ∈ N c can happen independently of the computation of the yi

′

k′j′’s for
some other query i′ 6= i. We are thus able to optimize the ordering induced by each query point
independently of those induced by the other queries. For query i, positive point k and negative point
j, the solution of standard inference is yiwkj

= argmaxyi F
i(X , yi, w) and can be computed as

follows

yiwkj
=

{
1, if ϕ(xi, xk, w)− ϕ(xi, xj , w) > 0

−1, otherwise
(3)

Loss-augmented inference for query i is defined as
yidirect = argmax

ŷi

{
F i(X , ŷi, w)± εLi(yi, ŷi)

}
(4)

and can be performed via a run of the dynamic programming algorithm of [20]. We can then combine
the results of all the independent inferences to compute the overall scoring function

F (X , yw, w) =
∑
i∈B

F i(X , yiw, w) and F (X , ydirect, w) =
∑
i∈B

F i(X , yidirect, w) (5)

Finally, we define the ground-truth output value yGT . For any query i and distinct points m,n 6= i
we set yiGTmn

= 1 if m ∈ Pci and n ∈ N ci , yiGTmn
= −1 if n ∈ Pci and m ∈ N ci and yiGTmn

= 0
otherwise.
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Algorithm 1 Few-Shot Learning by Optimizing mAP

Input: A batch of points X = {x1, . . . , xN} of C different classes and ∀c ∈ {1, . . . , C} the sets Pc andN c.

Initialize w
if using mAP-SSVM then

Set yiGT = ONES(|Pci |, |N ci |), ∀i = 1, . . . , N
end if
repeat

if using mAP-DLM then
Standard inference: Compute yiw, ∀i = 1, . . . , N as in Equation 3

end if
Loss-augmented inference: Compute yidirect, ∀i = 1, . . . , N via the DP algorithm of [20] as in Equation 4.
In the case of mAP-SSVM, always use the positive update option and set ε = 1

Compute F (X , ydirect, w) as in Equation 5
if using mAP-DLM then

Compute F (X , yw, w) as in Equation 5
Compute the gradient∇wL(y, yw) as in Equation 2

else if using mAP-SSVM then
Compute F (X , yGT , w) as in Equation 6
Compute the gradient∇wL(y, yw) as in Equation 1 (using ydirect in the place of yhinge)

end if
Perform the weight update rule with stepsize η: w ← w − η∇wL(y, yw)

until stopping criteria

We note that by construction of our scoring function defined above, we will only have to compute
yikj’s where k and i belong to the same class ci and j is a point from another class. Because of this, we
set the yiGT for each query i to be an appropriately-sized matrix of ones: yiGT = ones(|Pci |, |N ci |).
The overall score of the ground truth is then

F (X , yGT , w) =
∑
i∈B

F i(X , yiGT , w) (6)

Optimizing mAP via SSVM and DLM We have now defined all the necessary components to
compute the gradient update as specified by the General Loss Gradient Theorem of [20] in equation 2
or as defined by the Structural SVM in equation 1. For clarity, Algorithm 1 describes this process,
outlining the two variants of our approach for few-shot learning, namely mAP-DLM and mAP-SSVM.

5 Evaluation

In what follows, we describe our training setup, the few-shot learning tasks of interest, the datasets we
use, and our experimental results. Through our experiments, we aim to evaluate the few-shot retrieval
ability of our method and additionally to compare our model to competing approaches for few-shot
classification. For this, we have updated our tables to include very recent work that is published
concurrently with ours in order to provide the reader with a complete view of the state-of-the-art on
few-shot learning. Finally, we also aim to investigate experimentally our model’s aptness for learning
from little data via its training objective that is designed to fully exploit each training batch.

Controlling the influence of loss-augmented inference on the loss gradient We found empirically
that for the positive update of mAP-DLM and for mAP-SSVM, it is beneficial to introduce a
hyperparamter α that controls the contribution of the loss-augmented F (X , ydirect, w) relative to that
of F (X , yw, w) in the case of mAP-DLM, or F (X , yGT , w) in the case of mAP-SSVM. The updated
rules that we use in practice for training mAP-DLM and mAP-SSVM, respectively, are shown below,
where α is a hyperparamter.

∇wL(y, yw) = ± lim
ε→0

1

ε
(α∇wF (X , ydirect, w)−∇wF (X , yw, w)) and

∇wL(y) = α∇wF (X , ydirect, w)−∇wF (X , yyGT
, w)

We refer the reader to the supplementary material for more details concerning this hyperparameter.
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Classification Retrieval
1-shot 5-shot 1-shot

5-way 20-way 5-way 20-way 5-way 20-way

Siamese 98.8 95.5 - - 98.6 95.7
Matching Networks [1] 98.1 93.8 98.9 98.5 - -
Prototypical Networks [17] 98.8 96.0 99.7 98.9 - -
MAML [18] 98.7 95.8 99.9 98.9 - -
ConvNet w/ Memory [19] 98.4 95.0 99.6 98.6 - -
mAP-SSVM (ours) 98.6 95.2 99.6 98.6 98.6 95.7
mAP-DLM (ours) 98.8 95.4 99.6 98.6 98.7 95.8

Table 1: Few-shot learning results on Omniglot (averaged over 1000 test episodes). We report accuracy for the
classification and mAP for the retrieval tasks.

Few-shot Classification and Retrieval Tasks Each K-shot N-way classification ‘episode’ is con-
structed as follows: N evaluation classes and 20 images from each one are selected uniformly at
random from the test set. For each class, K out of the 20 images are randomly chosen to act as the
‘representatives’ of that class. The remaining 20−K images of each class are then to be classified
among the N classes. This poses a total of (20 − K)N classification problems. Following the
standard procedure, we repeat this process 1000 times when testing on Omniglot and 600 times for
mini-ImageNet in order to compute the results reported in tables 1 and 2.

We also designed a similar one-shot N-way retrieval task, where to form each episode we select N
classes at random and 10 images per class, yielding a pool of 10N images. Each of these 10N images
acts as a query and ranks all remaining (10N - 1) images. The goal is to retrieve all 9 relevant images
before any of the (10N - 10) irrelevant ones. We measure the performance on this task using mAP.
Note that since this is a new task, there are no publicly available results for the competing few-shot
learning methods.

Our Algorithm for K-shot N-way classification Our model classifies image x into class c =
argmaxiAP

i(x), where AP i(x) denotes the average precision of the ordering that image x assigns
to the pool of all KN representatives assuming that the ground truth class for image x is i. This
means that when computing AP i(x), the K representatives of class i will have a binary relevance of
1 while the K(N − 1) representatives of the other classes will have a binary relevance of 0. Note that
in the one-shot learning case where K = 1 this amounts to classifying x into the class whose (single)
representative is most similar to x according to the model’s learned similarity metric.

We note that the siamese model does not naturally offer a procedure for exploiting all K representatives
of each class when making the classification decision for some reference. Therefore we omit few-shot
learning results for siamese when K > 1 and examine this model only in the one-shot case.

Training details We use the same embedding architecture for all of our models for both Omniglot and
mini-ImageNet. This architecture mimics that of [1] and consists of 4 identical blocks stacked upon
each other. Each of these blocks consists of a 3x3 convolution with 64 filters, batch normalization
[23], a ReLU activation, and 2x2 max-pooling. We resize the Omniglot images to 28x28, and the
mini-ImageNet images to 3x84x84, therefore producing a 64-dimensional feature vector for each
Omniglot image and a 1600-dimensional one for each mini-ImageNet image. We use ADAM [24]
for training all models. We refer the reader to the supplementary for more details.

Omniglot The Omniglot dataset [25] is designed for testing few-shot learning methods. This dataset
consists of 1623 characters from 50 different alphabets, with each character drawn by 20 different
drawers. Following [1], we use 1200 characters as training classes and the remaining 423 for
evaluation while we also augment the dataset with random rotations by multiples of 90 degrees. The
results for this dataset are shown in Table 1. Both mAP-SSVM and mAP-DLM are trained with
α = 10, and for mAP-DLM the positive update was used. We used |B| = 128 and N = 16 for our
models and the siamese. Overall, we observe that many methods perform very similarly on few-shot
classification on this dataset, ours being among the top-performing ones. Further, we perform equally
well or better than the siamese network in few-shot retrieval. We’d like to emphasize that the siamese
network is a tough baseline to beat, as can be seen from its performance in the classification tasks
where it outperforms recent few-shot learning methods.

mini-ImageNet mini-ImageNet refers to a subset of the ILSVRC-12 dataset [26] that was used as
a benchmark for testing few-shot learning approaches in [1]. This dataset contains 60,000 84x84
color images and constitutes a significantly more challenging benchmark than Omniglot. In order to
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Classification Retrieval
5-way 5-way 20-way

1-shot 5-shot 1-shot 1-shot

Baseline Nearset Neighbors* 41.08 ± 0.70 % 51.04 ± 0.65 % - -
Matching Networks* [1] 43.40 ± 0.78 % 51.09 ± 0.71 % - -
Matching Networks FCE* [1] 43.56 ± 0.84 % 55.31 ± 0.73 % - -
Meta-Learner LSTM* [2] 43.44 ± 0.77 % 60.60 ± 0.71 % - -
Prototypical Networks [17] 49.42 ± 0.78% 68.20 ± 0.66 % - -
MAML [18] 48.70 ± 1.84 % 63.11 ± 0.92 % - -
Siamese 48.42 ± 0.79 % - 51.24 ± 0.57 % 22.66 ± 0.13 %
mAP-SSVM (ours) 50.32 ± 0.80 % 63.94 ± 0.72 % 52.85 ± 0.56 % 23.87 ± 0.14 %
mAP-DLM (ours) 50.28 ± 0.80 % 63.70 ± 0.70 % 52.96 ± 0.55 % 23.68 ± 0.13 %

Table 2: Few-shot learning results on miniImageNet (averaged over 600 test episodes and reported with 95%
confidence intervals). We report accuracy for the classification and mAP for the retrieval tasks. *Results reported
by [2].

compare our method with the state-of-the-art on this benchmark, we adapt the splits introduced in [2]
which contain a total of 100 classes out of which 64 are used for training, 16 for validation and 20 for
testing. We train our models on the training set and use the validation set for monitoring performance.
Table 2 reports the performance of our method and recent competing approaches on this benchmark.
As for Omniglot, the results of both versions of our method are obtained with α = 10, and with the
positive update in the case of mAP-DLM. We used |B| = 128 and N = 8 for our models and the
siamese. We also borrow the baseline reported in [2] for this task which corresponds to performing
nearest-neighbors on top of the learned embeddings. Our method yields impressive results here,
outperforming recent approaches tailored for few-shot learning either via deep-metric learning such
as Matching Networks [1] or via meta-learning such as Meta-Learner LSTM [2] and MAML [18] in
few-shot classification. We set the new state-of-the-art for 1-shot 5-way classification. Further, our
models are superior than the strong baseline of the siamese network in the few-shot retrieval tasks.

CUB We also experimented on the Caltech-UCSD Birds (CUB) 200-2011 dataset [27], where we
outperform the siamese network as well. More details can be found in the supplementary.

Learning Efficiency We examine our method’s learning efficiency via comparison with a siamese
network. For fair comparison of these models, we create the training batches in a way that enforces
that they have the same amount of information available for each update: each training batch B
is formed by sampling N classes uniformly at random and |B| examples from these classes. The
siamese network is then trained on all possible pairs from these sampled points. Figure 2 displays the
performance of our model and the siamese on different metrics on Omniglot and mini-ImageNet. The
first two rows show the performance of our two variants and the siamese in the few-shot classification
(left) and few-shot retrieval (right) tasks, for various levels of difficulty as regulated by the different
values of N. The first row corresponds to Omniglot and the second to mini-ImageNet. We observe
that even when both methods converge to comparable accuracy or mAP values, our method learns
faster, especially when the ‘way’ of the evaluation task is larger, making the problem harder.

In the third row in Figure 2, we examine the few-shot learning performance of our model and the
all-pairs siamese that were trained with N = 8 but with different |B|. We note that for a given N ,
larger batch size implies larger ‘shot’. For example, for N = 8, |B| = 64 results to on average 8
examples of each class in each batch (8-shot) whereas |B| = 16 results to on average 2-shot. We
observe that especially when the ‘shot’ is smaller, there is a clear advantage in using our method
over the all-pairs siamese. Therefore it indeed appears to be the case that the fewer examples we are
given per class, the more we can benefit from our structured objective that simultaneously optimizes
all relative orderings. Further, mAP-DLM can reach higher performance overall with smaller batch
sizes (thus smaller ‘shot’) than the siamese, indicating that our method’s training objective is indeed
efficiently exploiting the batch examples and showing promise in learning from less data.

Discussion It is interesting to compare experimentally methods that have pursued different paths
in addressing the challenge of few-shot learning. In particular, the methods we compare against
each other in our tables include deep metric learning approaches such as ours, the siamese network,
Prototypical Networks and Matching Networks, as well as meta-learning methods such as Meta-
Learner LSTM [2] and MAML [18]. Further, [19] has a metric-learning flavor but employs external
memory as a vehicle for remembering representations of rarely-observed classes. The experimental
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Figure 2: Few-shot learning performance (on unseen validation classes). Each point represents the average
performance across 100 sampled episodes. Top row: Omniglot. Second and third rows: mini-ImageNet.

results suggest that there is no clear winner category and all these directions are worth exploring
further.

Overall, our model performs on par with the state-of-the-art results on the classification benchmarks,
while also offering the capability of few-shot retrieval where it exhibits superiority over a strong
baseline. Regarding the comparison between mAP-DLM and mAP-SSVM, we remark that they
mostly perform similarly to each other on the benchmarks considered. We have not observed in this
case a significant win for directly optimizing the loss of interest, offered by mAP-DLM, as opposed
to minimizing an upper bound of it.

6 Conclusion

We have presented an approach for few-shot learning that strives to fully exploit the available
information of the training batches, a skill that is utterly important in the low-data regime of few-shot
learning. We have proposed to achieve this via defining an information-retrieval based training
objective that simultaneously optimizes all relative orderings of the points in each training batch.
We experimentally support our claims for learning efficiency and present promising results on two
standard few-shot learning datasets. An interesting future direction is to not only reason about how to
best exploit the information within each batch, but additionally about how to create training batches
in order to best leverage the information in the training set. Furthermore, we leave it as future work to
explore alternative information retrieval metrics, instead of mAP, as training objectives for few-shot
learning (e.g. ROC curve, discounted cumulative gain etc).
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