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Abstract

We develop a Bayesian model for decision-making under tiresgure with en-
dogenous information acquisition. In our model, the decishaker decides
whento observe (costly) information by sampling an underlyirgntinuous-
time stochastic process (time series) that conveys infiiomabout the potential
occurrence/non-occurrence of an adverse event whichemillinate the decision-
making process. In her attempt to predict the occurrenceedativerse event, the
decision-maker follows a policy that determirvelsen to acquire informatiofrom
the time series (continuation), amthen to stopacquiring information and make
a final prediction (stopping). We show that the optimal pohias a fendezvous
structure, i.e. a structure in which whenever a new infoilomegample is gathered
from the time series, the optimal "date" for acquiring thetreample becomes
computable. The optimal interval between two informatiamples balances a
trade-off between the decision maker’s "surprise”, i.ee dhft in her posterior
belief after observing new information, and "suspense”, the probability that
the adverse event occurs in the time interval between twarnmtion samples.
Moreover, we characterize the continuation and stoppiggns in the decision-
maker’s state-space, and show that they depend not onlyeoteitision-maker’s
beliefs, but also on the "context", i.e. the current rediimraof the time series.

1 Introduction

The problem of timely risk assessment and decision-makésgth on a sequentially observed time
series is ubiquitous, with applications in finance, medicizognitive science and signal processing
[1-7]. A common setting that arises in all these domains & thdecision-maker, provided with
sequential observations of a time series, needs to decidtheshor not amdverse evere.g. finan-
cial crisis, clinical acuity for ward patients, etc) willk& place in the future. The decision-maker’s
recognition of a forthcoming adverse event needs to be yinf@l that a delayed decision may hin-
der effective intervention (e.g. delayed admission oficlily acute patients to intensive care units
can lead to mortality [5]). In the context of cognitive saenthis decision-making task is known
as thetwo-alternative forced choic@AFC) task [15]. Insightful structural solutions for thptomal
Bayesian 2AFC decision-making policies have been derind8-i16], most of which are inspired
by the classical work of Wald on sequential probabilitysaésts (SPRT) [8].

In this paper, we present a Bayesian decision-making modshich a decision-maker adaptively
decideswvhento gather (costly) information from an underlying time ssrin order to accumulate
evidence on the occurrence/non-occurrence of an adveesé &he decision-maker operates under
time pressure: occurrence of the adverse event termira@tetision-making process. Our abstract
model is motivated and inspired by many practical decisiaking tasks such as: constructing tem-
poral patterns for gathering sensory information in petegipdecision-making [1], scheduling lab
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tests for ward patients in order to predict clinical deteximn in a timely manner [3, 5], designing
breast cancer screening programs for early tumor detelc]patc.

We characterize the structure of the optimal decision-ngakiolicy that prescribes when should
the decision-maker acquire new information, and when shshie stop acquiring information and
issue a final prediction. We show that the decision-makerdeqyior belief process, based on which
policies are prescribed, is a supermartingale that reftbetdecision-maker’s tendency to deny
the occurrence of an adverse event in the future as she elsséa survival of the time series for
longer time periods. Moreover, the information acquisitigolicy has a fendezvousstructure;
the optimal "date" for acquiring the next information samphn be computed given the current
sample. The optimal schedule for gathering informatiorr dvee balances the information gain
(surprise) obtained from acquiring new samples, and thbgtitity of survival for the underlying
stochastic process (suspense). Finally, we charactéézeantinuation and stopping regions in the
decision-maker’s state-space and show that, unlike puevizodels, they depend on the time series
"context" and not just the decision-maker’s beliefs.

Related Works Mathematical models and analyses for perceptual decisi@king based on
sequential hypothesis testing have been developed in]J[9-Most of these models use tools
from sequential analysis developed by Wald [8] and Shiry@dy 22]. In [9,13,14], optimal
decision-making policies for the 2AFC task were computedmmdelling the decision-maker’s
sensory evidence using diffusion processes [20]. Theselmadsume an infinite time horizon for
the decision-making policy, and an exogenous supply of@sgnsformation.

The assumption of an infinite time horizon was relaxed in @@ [15], where decision-making is
assumed to be performed under the pressure of a stochaatilirde however, these deadlines were
considered to be drawn from known distributions that areefrhdent of the hypothesis and the
realized sensory evidence, and the assumption of an exogémormation supply was maintained.
In practical settings, the deadlines would naturally bectielent on the realized sensory information
(e.g. patients’ acuity events are correlated with theirgudipgical information [5]), which induces
more complex dynamics in the decision-making process. &biiiased decision-making models
were introduced in [17], but assuming an exogenous infadonaupply and an infinite time horizon.

The notions of “suspense” and “surprise" in Bayesian decisnaking have also been recently intro-
duced in the economics literature (see [18] and the refexetierein). These models use measures
for Bayesian surpriseoriginally introduced in the context of sensory neurosce[19], in order

to model the explicit preference of a decision-maker to imstrumental information. The goal
there is to design information disclosure policies thatsargpense-optimal or surprise-optimal. Un-
like our model, such models impose suspense (and/or seyisa (behavioral) preference of the
decision-maker, and hence they do not emerge endogenaousistie of rational decision making.

2 Timely Decision Making with Endogenous I nformation Gathering

Time SeriesModel The decision-maker has access to a time-sé¥igg modeled as a continuous-
time stochastic process that takes valueR jiand is defined over the time domaire R, with an
underlying filtered probability spacg?, 7, {F;}:cr. ,IP). The processX(t) is naturally adapted

to {F; }:er, , and hence the filtratioff; abstracts the information conveyed in the time series real-
ization up to timet. The decision-maker extracts information froxi(¢) to guide her actions over
time.

We assume thatX(¢) is a stationary Markov processwith a stationary transition kernel
Py (X(t) € AlFs) = Po(X(t) € A X (s)),VA C R, Vs < t € Ry, wheref is a realization
of a latent Bernoulli random variabl® < {0,1} (unobservable by the decision-maker), with
P(6 = 1) = p. The distributional properties of the paths &f(¢) are determined by, since
the realization of) decides which Markov kerneP(, or ;) generatesy (¢). If the realizatiord is
equal tol, then an adverse event occurs almost surely at a (finitepratisner, the distribution of
which is dependent on the realization of the pa¥(t))o<;<--

!Most of the insights distilled from our results would hold for more genezpbmdency structures. However,
we keep this assumption to simplify the exposition and maintain the tractability aegbrietability of the
results.
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Figure 1:An exemplary stopped sample path f67 (¢)|© = 1, with an exemplary partitiod;.

The decision-maker’s ultimate goal is to sequentially obs& (¢), and inferd before the adverse
event happens; inference is obsolete if it is declared aft&ince© is latent, the decision-maker is
unaware whether the adverse event will occur or not, i.e.tiéréner access t& (¢) is temporary
(T < oo for & = 1) or permanent{ = oo for & = 0). In order to model the occurrence of the
adverse event; we defineas anF-stopping time for the proces¥(t), for which we assume the
following:

e The stopping timer |© = 1 is finite almost surely, whereas|© = 0 is infinite almost
surely,i.eP(r <0 |@=1)=1,andP (1 = |0 =0) =1.

e The stopping time- |© = 1 is accessibl& with a Markovian dependency on history, i.e.
P(r <t Fs)=P(7r <t|X(s)),Vs <t,whereP (7 < t| X(s)) is an injective map from
Rto[0,1] andP (7 < t| X(s)) is non-decreasing iX (s).

Thus, unlike the stochastic deadline models in [10] and, [t decision deadline in our model (i.e.
occurrence of the adverse eventrntext-dependerss it depends on the time series realization
(i.,e.P (7 < t| X(s)) is notindependent oX (¢) as in [15]). We use the notatioki™ (t) = X (tAT),
wheret A 7 = min{t,7} to denote the stopped process to which the decision-malkeraba
cess. Throughout the paper, the measitgsand P, assign probability measures to the paths
X7(t)|© = 0andX7(t)|© = 1 respectively, and we assume tifgt<< P, 3.

Information The decision-maker can only observe a set of (costly) sanpleX ™ (¢) rather
than the full continuous path. The samples observed by tloésida-maker are captured by
partitioning X (t) over specific time intervals: we defing, = {t,,t1,....txp,)—1}, With
0<t, <t <... <tnpy-1 <t asasizeN(F;) partition of X7 (¢) over the interval0, ¢],
where N (P;) is the total number of samples in the partiti®h The decision-maker observes the
values thatX " (¢) takes at the time instances#; thus the sequence of observations is given by the

processX (P;) = ZiN:(ft)’l X (t;)d¢,, whered,, is the Dirac measure. The space of all partitions
over the interval0, t] is denoted byP; = [0, t]". We denote the probability measures for partitioned

paths generated undér= 0 and1 with a partition?; asI?’O(Pt) andP, (P;) respectively.

Since the decision-maker observ&s () through the partitionP;, her information at time is
conveyed in ther-algebrasc(X7(P;)) C F;. The stopping event is observable by the decision-
maker even ifr ¢ P,. We denote the-algebra generated by the stopping everias o (I{QT}).
Thus, the information that the decision-maker has at tinie expressed by the filtratiof, =
o(X7(P;)) V S;. Hence, any decision-making policy needs tafhemeasurable.

Figure 1 depicts a Brownian path (a sample path of a Wienetgss) which satisfies all the
assumptions of our modéJ)with an exemplary partition?; over the time interval0,1]. The
decision-maker observes the samplesXifiP;) sequentially, and reasons about the realization of
the latent variabl® based on these samples and the process survival, ite= @t2, the decision-
maker’s information resides in the-algebras (X (0), X(0.1), X (0.15)) generated by the samples

20ur analyses hold if the stopping time is totally inaccessible.

3The absolute continuity dP, with respect td?; means that no sample path & (¢)|© = 0 should be
fully revealing of the realization o®.

“In Figure 1, the stopping event was simulated as a totally inaccessible finstjfia Poisson process.



in Po.2 = {0,0.1,0.15}, and thes-algebra generated by the process’ survis@b = o(1¢,50.2})-

Palicies and Risks The decision-maker’s goal is to come up with a (timely) deci$ < {0,1},
that reflects her prediction for whether the actual redtired is 0 or 1, before the procesX " (¢)
potentially stops at the unknown time The decision-maker follows olicy: a (continuous-time)
mapping from the observations gathered up to every timarust to two types of actions:

e A sensing actiod; € {0,1}: if §; = 1, then the decision-maker decides to observe a hew
sample from the running proce&s’ (¢) at timet.

e A continuation/stopping actiol; € {0,0,1}: if 6, € {0,1}, then the decision-maker
decides tastopgathering samples frol¥ " (¢), and declares a final decision (estimate) for

9. Wheneverd, = 0, the decision-makecontinuesobservingX " (¢) and postpones her
declaration for the estimate 6f

A policy m = (7¢)icr, is @ (i}—measurable) mapping rule that maps the informatiofino an
action tupler! = (4, ét) at every time instance We assume that every single observation that the
decision-maker draws froot " (¢) entails a fixed cost, hence the procé&sg;cr, has to be a point
process under any optimal polieywWe denote the space of all such policiesThy

A policy 7 generates the following random quantities as a functiohefiathsX " (¢) on the proba-
bility space($2, F, {Fi }ter. . P):

1- A stopping time T';: The first time at which the decision-maker declares it9vestt ford, i.e.
T, = inf{t e R, : 6, € {0,1}}.

2- A decision (estimate of 6) 6,.: Given byf,. = 07 ..

3- A random partition PF : A realization of the point procegs; ):cr, , comprising a finite set of
strictly increasingF-stopping times at which the decision-maker decides to fathp pathX ™ (¢).

A loss function is associated with every realization of tlediqy =, representing the overall cost
incurred when following that policy for a specific pa¥T (¢). The loss function is given by

((m0) = (Cilgy 1) +Colfy 1 9-0) T CaTe) ro<ryt Crlirsry +CN(PF L),
Type 1 error Type flerror  Delay Deadline missed  Information
1)
where( is the cost of type | error (failure to anticipate the advergent),C, is the cost of type Il
error (falsely predicting that an adverse event will occGy)is the cost of the delay in declaring the

estimated,., C,. is the cost incurred when the adverse event occurs beforstiameged., is declared
(cost of missing the deadline), adq is the cost of every observation sample (cost of information
The risk of each policyr is defined as its expected loss

R(r) £ E[t(m;0)], )

where the expectation is taken over the paths{6f¢). In the next section, we characterize the
structure of the optimal policy* = arg inf,c R(7).

3 Structureof the Optimal Policy

Since the decision-maker’s posterior belief at timelefined agi;; = P(© = 1| F;), is an impor-
tant statistic for designing sequential policies [10, 2];-2ve start our characterization far* by
investigating the belief proce$g)cr, -

3.1 ThePosterior Belief Process

Recall that the decision-maker distills information frowottypes of observations: the realization
of the partitioned time serieX ™ (P,) (i.e. the information irv (X7 (F;))), and 2) the survival of the

Note that the cost of observing any local continuous path is infinite, hemg@ptimal policy must have
(0+)ter,, being a point process to keep the number of observed samples finite.

4
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Figure 2:Depiction for exemplary belief paths of different policies un@es 1.

process up to time (i.e. the information inS;). In the following Theorem, we study the evolution
of the decision-maker’s beliefs as she integrates thesepief information over tinfe

Theorem 1 (Information and beliefs). Every posterior belief trajectorfy.; ),cr, associated with
a policyn € II that creates a partitioR € P, of X7 (¢) is a cadlag path given by

- -1
1—p dP,(PF)
p dﬁ)l (Ptﬂ) ,

pt = 1>y + ljo<t<ry <1 +

%) is the Radon—Nikodym derivatiVef the measur®,(P;) with respect tdP; (P),
and is given by the foIIowmg elementary predictable preces

1 & e e =1 .
Fo(r) Z Fx (e =) P D0 = 1) Narzsrren,
dPy (PF) Survival probability

Likelihood ratio

fort > Pr(1),andpP(r > t|© = 1) fort < P/ (k). Moreover, the patfi).cr, has exactly
N(PF A;) + 1{r<o0) jJumps at the time indexes iR/, U {7}. O

Theorem 1 says that every belief path is right-continuouh teit limits, and has jumps at the time
indexes in the partitior", whereas between each two jumps, the path$.c(;, 1,),t1,t2 € Pf

are predictable (i.e. they are known ahead of time once wavkhe magnitudes of the jumps
preceding them). This means that the decision-maker abtaiative” information by probing
the time series to observe new samples (i.e. the informatier{X " (F;))), inducing jumps that
revive her beliefs, whereas the progression of time witlatriessing a stopping event offers the
decision-maker "passive information" that is distilledtjfrom the costless observation of process
survival information. Both sources of information mantfésemselves in terms of the likelihood

ratio, and the survival probability in the expressnon%-fgpﬁ above.

In Figure 2, we plot the cadlag belief paths for policigsandwy, where P™ C P™ (i.e. policy
m, observe a subset of the samples observed-)y We also plot the (predictable) belief path of
a wait-and-watchpolicy that observes no samples. We can seesthatvhich has more jumps of
"active information”, copes faster with the truthful bélgver time. Between each two jumps, the
belief process exhibits a non-increasing predictable patt fed with a new piece of information.
The wait-and-watch policy has its belief drifting away frahe priorp = 0.5 towards the wrong
belief..; = 0 since it only distills information from the process surVjwahich favors the hypothesis
© = 0. This discussion motivates the introduction of the followkey quantities.

Information gain (surprise) I;(At): The amount of drift in the decision-maker’s belief at time
t + At with respect to her belief at timg given the information available up to time i.e.

L(At) = (pyae — 1) | Fe.

SAll proofs are provided in the supplementary material
’Since we impose the conditidh, << P; and fix a partitionP;, then the Radon—Nikodym derivative
exists.




Posterior survival function (suspense) S;(At): The probability that a process generated
with © = 1 survives up to timet + At given the information observed up to tinte i.e.

Sy(At) = P(t > t + At|F;,© = 1). The functionS,(At) is a non-increasing function iAt, i.e.
95:(A1)
“oar =V

That is, the information gain is the amount of “surprise"tttiee decision-maker experiences in
response to a new information sample expressed in termg ahéinge in here belief, i.e. the jumps
in ¢, whereas the survival probability (suspense) is her agsgggor the risk of having the adverse
event taking places in the ne&it time interval. As we will see in the next subsection, the opli
policy would balance the two quantities when schedulingithes to sens& " ().

We conclude our analysis for the procesdy noting that lack of information samples creates bias
towards the belief thad = 0 (e.g. see the belief path of the wait-and-watch policy iruFég). We
formally express this behavior in the following Corollary.

Corollary 1 (Leaning towardsdenial). For every policyr € 11, the posterior belief procegs is
asupermartingalevith respect toF;, where

Elperarl Fi] = e — p Se(At)(1 = Si(At)) < py, VAL € Ry O

Thus, unlike classical Bayesian learning models with aelbefiartingale [18, 21-23], the belief
process in our model is a supermartingale that leans towectkdsing over time. The reason for
this is that in our model, time conveys information. Thauislike [10] and [15] where the decision
deadline is hypothesis-independent and is almost surelyrong in finite time for any path, in our
model the occurrence of the adverse event is itself a hypsthieence observing the survival of the
process is informative and contributes to the evolutiorneftielief. The informativeness of both the
acquired information samples and process survival candsntlingled using Doob decomposition,
by writing . asp: = fir + A(pe, St (At)), whereg, is a martingale, capturing the information gain
from the acquired samples, add ., S;(At)) is a predictableompensatoprocess [23], capturing
information extracted from the process survival.

3.2 TheOptimal Policy

The optimal policyr* minimizes the expected risk as defined in (1) and (2) by g¢ingrthe tuple

of random processed’, 0, P") in response to the paths &f"(¢) on (Q, F, {Fi}ier,,P) ina
way that "shapes" a belief procegs that maximizes informativeness, maintains timeliness and
controls cost. In the following, we introduce the notion dfandezvous policy", then in Theorem
2, we show that the optimal policy* complies with this definition.

Rendezvous policies We say that a policyr is arendezvougpolicy, if the random partitionP7
constructed by the sequence of sensing acti@fi$;c(o, 7,1, iS @ point process with predictable

jumps, where for every two consecutive jumps at timesid¢ , with ¢ > ¢ andt,t € Pr_, we
have that is 7;-measurable.

That is, a rendezvous policy is a policy that constructs aisgnschedul€o] );c(0, 7,1, such that

every timet” at which the decision-maker acquires information is atyuadmputable using the
information available up to time, the previous time instance at which information was gatier
Hence, the decision-maker can decide the next "date" intwstie will gather information directly
after she senses a new information sample. This struct@@atural consequence of the informa-
tion structure in Theorem 1, since the belief paths betweenyegwo jumps are predictable, then
they convey no "actionable” information, i.e. if the desisimaker was to respond to a predictable
belief path, say by sensing or making a stopping decisi@n #he should have taken that decision
right before the predictable path starts, which leads hdretter off by saving the delay coél;.
We denote the space of all rendezvous policie$lby In the following Theorem, we establish that
the rendezvous structure is optimal.

Theorem 2 (Rendezvous). The optimal policyr* is a rendezvous policyr( € I1,.). O



A direct implication of Theorem 2 is that the time variablencaow be viewed as a state
variable, whereas the problem is virtually solved in "ditertime" since the decision-maker
effectively jumps from one time instance to another in a it manner. Hence, we alter the
definition of the actiord; from an indicator variable that indicates sensing the tierées at time,

to a "rendezvous action" that takes real values, and spettifetime after which the decision-maker
would sense a new sample, i.edif= At, then the decision-maker gathers the new sample-ast.
This transformation restricts our policy design problemthe space of rendezvous policigs,
which we know from Theorem 2 that it contains the optimal poli.e. 7* = arg inf, ¢y, R(7)).
Having established the result in Theorem 2, in the followlingorem, we characterize the optimal

policy 7* in terms of the random procesffﬂ*,éﬂ*,Pt’T*) using discrete-time Bellman optimality
conditions [24].

Theorem 3 (The optimal policy). The optimal policyr* is a sequence of action8} ", 57" );cr, ,
resulting in a random proce(;&T*,Tﬂ* , P}r; ) with the following properties:

(Continuation and stopping)

1. The proces:{t,ut,X(Pg”))teR+ is a Markov sufficient statistic for the distribution of
(O, Tr-, PE..), where X(P7") is the most recent sample in the partitidtf, i.e.
X(PF") = X(t*),t* = max P[" .

2. The policy 7* recommendsontinuation i.e. éf* = (), as long as the beliefi; €
C(t, X (PF")), whereC(t, X (PF ")), is a time and context-dependexntinuation sewith
the following propertiesC(t', X) c C(t, X),Vt > t,andC(t,X') c C(t, X),vX > X.

(Rendezvous and decisions)
1. Whenevey, € C(t, X(PF")), andt € P}, then the rendezvou is set as follows
oF = arginfsegr, f(E[1;(5)], S:(9)),
wheref(E[;(5)], S¢(9)) is decreasing ifE[1;(4)] and.S;(9).

2. Whenevey; ¢ C(t, X(P")), then a decisiod” = 0,  {0,1} is issued, and is based

on a belief threshold as follows,~ = 1 o, 1. The stopping time is given by
{/JtZ ropEory }

T =inf{t € Ry : g & C(t, X(PF))}. O

Theorem 3 establishes the structure of the optimal policyienprescribed actions in the decision-
maker’s state-space. The first part of the Theorem says mthatder to generate the random

tuple (Tﬂ*,éﬂ*,PgT*) optimally, we only need to keep track of the realization o throcess
(t, e, X (Py))er, in every time instance. That is, an optimal policy maps theent belief, the

current time, and the most recently observed realizatighesfime series to an action tuglér, 67),
i.e. a decision on whether to stop and declare an estimatedosense a new sample. Hence, the
process(t, i, X (P;))tcr, represents the "state" of the decision-maker, and theideeaisaker’s
actions can partially influence the state through the belietess, i.e. a decision on when to ac-
quire the next sample affects the distributional propsitigthe posterior belief. The remaining state

variablest and X (¢) are beyond the decision-maker’s control.
We note that unlike the previous models in [9-16], with theeption of [17], a policy in our model

is context-dependentThat is, since the state {, u;, X (P)) and not just the time-belief tuple
(t, ut), a policyw can recommend different actions for the same belief andessdime time but for

a different context. This is because, whilg captures what the decision-maker learned from the
history, X (P[") captures her foresightedness into the future, i.e. it catdiethe belief, is not
decisive (e.gu: ~ p), but the context is "risky" (i.eX (Pf") is large), which means that a potential

forthcoming adverse event is likely to happen in the nearrfythence the decision-maker would be
more eager to make a stopping decision and declare an estimathis is manifested through the
dependence of the continuation €€t, X (P/)) on both time and context; the continuation set is
monotonically decreasing in time due to the deadline pressund is also monotonically decreasing
in X (Pf) due to the dependence of the deadline on the time seriezatai.



Figure 3:Context-dependence of the poligy

The context dependence of the optimal policy is pictoriaigpicted in Figure 3 where we show
two exemplary trajectories for the decision-maker’s statel the actions recommended by a policy
« for the same time and belief, but a different context, i.etop@ing action recommended when
X (t) is large since it corresponds to a low survival probabiltyereas for the same belief and
time, a continuation action can be recommended (f) is low since it is safer to keep observing
the process for that the survival probability is high. Sugrescription specifies optimal decision-
making in context-driven settings such as clinical decisitaking in critical care environment [3-5],
where a combination of a patient’s length of hospital stes. (i), clinical risk score (i.e.;) and
current physiological test measurements (&P )) determine the decision on whether or not a
patient should be admitted to an intensive care unit.

The second part of Theorem 3 says that whenever the optinigl ptecides to stop gathering
information and issue a conclusive decision, it imposesestiold on the posterior belief, based on
which it issues the estimatg--; the threshold |sC(i71C1 and hence weights the estimates by their
respective risks. When the policy favors continuation stiess a rendezvous action, i.e. the next time
instance at which information will be gathered. This rendes balances surprise and suspense:
the decision-maker prefers maximizing surprise in ordedr@w~ the maximum informativeness
from the costly sample it will acquire; this is captured imnts of the expected information gain
E[I:(4)]. Maximizing surprise may increase suspense, i.e. the pilityaof process termination,
which is controlled by the survival functio$ (), and hence it can be that harvesting the maximum
informativeness entails a survival risk whéh is high. Therefore, the optimal policy selects a
rendezvous] that optimizes a combination of the survival risk surviaptured by the cost,

and the survival functios; (At), and the value of information, captured by the c@%isC; and the
expected information gaii[;(9)].

4 Conclusions

We developed a model for decision-making with endogenofgrimation acquisition under time
pressure, where a decision-maker needs to issue a comcliestision before an adverse event (po-
tentially) takes place. We have shown that the optimal gdi&s a "rendezvous"” structure, i.e. the
optimal policy sets a "date" for gathering a new sample whenthe current information sample is
observed. The optimal policy selects the time between tfasimation samples such that it balances
the information gain (surprise) with the survival probépi(suspense). Moreover, we characterized
the optimal policy’s continuation and stopping conditipasd showed that they depend on the con-
text and not just on beliefs. Our model can help understatti nature of optimal decision-making
in settings where timely risk assessment and informatiohegang is essential.

5 Acknowledgments

This work was supported by the ONR and the NSF (Grant numhie€E1462245).



References

[1] Balci, F., Freestone, D., Simen, P., de Souza, L., Cohen, J&Molmes, P. (2011) Optimal temporal risk
assessmenfrontiers in Integrative NeurosciencB(56), 1-15.

[2] Banerjee, T. & Veeravalli, V. V. (2012) Data-efficient quickesiaage detection with on—off observation
control, Sequential Analysj81(1), 40-77.

[3] Wiens, J., Horvitz, E., & Guttag, J. V. (2012) Patient risk stratifiaatior hospital-associated c. diff as a
time-series classification tadk, Advances in Neural Information Processing Systgips467-475.

[4] Schulam, P., & Saria, S. (2015) A Framework for Individualizirgedictions of Disease Trajectories by
Exploiting Multi-resolution Structurdn Advances in Neural Information Processing Systgips748-756.

[5] Chalfin, D. B., Trzeciak, S., Likourezos, A., Baumann, B. Bellinger, R. P., & DELAY-ED study group.
(2007) Impact of delayed transfer of critically ill patients from the ereagy department to the intensive care
unit, Critical care medicine35(6), pp. 1477-1483.

[6] Bortfeld, T., Ramakrishnan, J., Tsitsiklis, J. N., & Unkelbachi2D15) Optimization of radiation therapy
fractionation schedules in the presence of tumor repopulalidPORMS Journal on Computin@7(4), pp.
788-803.

[7] Shapiro, S., et al., (1998) Breast cancer screening pragesin 22 countries: current policies, administra-
tion and guidelinednternational journal of epidemiolog®7(5), pp. 735-742.

[8] Wald, A., Sequential analysi§ourier Corporation 1973.

[9] Khalvati, K., & Rao, R. P. (2015) A Bayesian Framework for Mtidg Confidence in Perceptual Decision
Making, In Advances in neural information processing systqmps 2404-2412.

[10] Dayanik, S., & Angela, J. Y. (2013) Reward-Rate Maximization eg&ential Identification under a
Stochastic Deadlin&SIAM J. Control Optim.51(4), pp. 2922—2948.

[11] Zhang, S., & Angela, J.Y. (2013) Forgetful Bayes and myggémning: Human learning and decision-
making in a bandit settindn Advances in neural information processing systgups2607-2615.

[12] Shenoy, P., & Angela, J.Y. (2012) Strategic impatience in Go/Ne&sus forced-choice decision-making,
In Advances in neural information processing systgmps2123-2131.

[13] Drugowitsch, J., Moreno-Bote, R., & Pouget, A. (2014) Optirdatision-making with time-varying
evidence reliabilityln Advances in neural information processing systgups 748-756.

[14] Yu, A. J., Dayan, P., & Cohen, J. D. (2009) Dynamics of attergicselection under conflict: toward a
rational Bayesian accounipurnal of Experimental Psychology: Human Perception and Perdoog 35(3),
700.

[15] Frazier, P. & Angela, J. Y. (2007) Sequential hypothesis testimeustochastic deadlinds, Advances in
Neural Information Processing Systerpp. 465-472.

[16] Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., ShadM. N., & Pouget, A. (2012) The cost of
accumulating evidence in perceptual decision makiigg Journal of Neurosciencg2(11), 3612-3628.

[17] Shvartsman, M., Srivastava, V., & Cohen J. D. (2015) A Tigeaf Decision Making Under Dynamic
Context,In Advances in Neural Information Processing Systeps2476-2484. 2015.

[18] Ely, J., Frankel, A., & Kamenica, E. (2015) Suspense andr&e,Journal of Political Economy123(1),
pp. 215-260.

[19]1tti, L., & Baldi, P. (2005) Bayesian Surprise Attracts Human AttentiorAdvances in Neural Information
Processing Systemgp. 547-554.

[20] Bogacz, R., Brown, E., Moehlis, J., Holmes, P. J., & Cohdd.J2006) The physics of optimal decision
making: A formal analysis of models of performance in two-alternafitreed-choice tasksPsychological
Review 113(4), pp. 700-765.

[21] Peskir, G., & Shiryaev, A. (2006) Optimal stopping and freexfary problemsBirkhduser Basel
[22] Shiryaev, A. N. (2007) Optimal stopping rules (Vol. pringer Science & Business Media

[23] Shreve, Steven E. (2004) Stochastic calculus for finance iti@aous-time models (Vol. 11gpringer
Science & Business Media004.

[24] Bertsekas, D. P., & Shreve, S. E. Stochastic optimal control:di$erete time case (Vol. 23New York:
Academic Pressl978.



