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1 Derivation of the Generalized Reparameterization Gradient

Here we show the mathematical derivation of the generalized reparameterization gradient. Firstly,
recall the definition of the functions

h.�I v/ , rvT .�I v/; (1)

u.�I v/ , rv logJ.�; v/; (2)

which are provided in the main text.

We start from the following expression of the gradient, also derived in the main text:

rvEq.zIv/ Œf .z/� D
Z
q�.�I v/rvf .T .�I v// d�„ ƒ‚ …

grep

C

Z
q�.�I v/f .T .�I v//rv log q�.�I v/d�„ ƒ‚ …

gcorr

; (3)

We can write the former term, grep, as

grep
D

Z
q�.�I v/rvf .T .�I v// d� (4)

D

Z
q .T .�I v/I v/ J.�; v/rvf .T .�I v// d� (5)

D

Z
q .T .�I v/I v/ J.�; v/rzf .z/

ˇ̌
zDT .�Iv/rvT .�I v/d� (6)

D

Z
q.zI v/rzf .z/h

�
T �1.zI v/I v

�
dz (7)

D Eq.zIv/
�
rzf .z/h

�
T �1.zI v/I v

��
; (8)

where we have first replaced the variational distribution on the transformed space with its form as a
function of q.zI v/, i.e., q�.�I v/ D q .T .�I v/I v/ J.�; v/. We have then applied the chain rule, and
finally we have made a new change of variables back to the original space z (thus multiplying by the
inverse Jacobian).

For the latter, gcorr, we have that

gcorr
D

Z
q�.�I v/f .T .�I v//rv log q�.�I v/d� (9)

D

Z
q .T .�; v/I v/ J.�; v/f .T .�I v//rv .log q .T .�I v/I v/C logJ.�; v// d� (10)

D

Z
q .T .�I v/I v/ J.�; v/f .T .�I v// .rv log q .T .�I v/I v/Crv logJ.�; v// d�: (11)
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The derivative rv log q .T .�I v/I v/ can be obtained by the chain rule. If z D T .�I v/, then
rv log q .T .�I v/I v/ D rz log q.zI v/rvT .�I v/ C rv log q.zI v/. We substitute this result in the
above equation and revert the change of variables back to the original space z (also multiplying by the
inverse Jacobian), yielding

gcorr
D

Z
q.zI v/f .z/

�
rz log q.zI v/h

�
T �1.zI v/I v

�
Crv log q.zI v/C u

�
T �1.zI v/I v

��
dz

D Eq.zIv/
�
f .z/

�
rz log q.zI v/h

�
T �1.zI v/I v

�
Crv log q.zI v/C u

�
T �1.zI v/I v

���
;

(12)

where we have used the definition of the functions h.�I v/ and u.�I v/.

2 Particularization for the Gamma Distribution

For the gamma distribution we choose the transformation

z D T .�I˛; ˇ/ D exp.�
p
 1.˛/C  .˛/ � log.ˇ//: (13)

Thus, we have that

J.�; ˛; ˇ/ D j detr�T .�I˛; ˇ/j D T .�I˛; ˇ/
p
 1.˛/: (14)

The derivatives of log q.zI˛; ˇ/ with respect to its arguments are given by

@

@z
log q.zI˛; ˇ/ D

˛ � 1

z
� ˇ; (15)

@

@˛
log q.zI˛; ˇ/ D log.ˇ/ �  .˛/C log.z/; (16)

@

@ˇ
log q.zI˛; ˇ/ D

˛

ˇ
� z: (17)

Therefore, the auxiliary functions h.�I˛; ˇ/ and u.�I˛; ˇ/ for the components of the gradient with
respect to ˛ and ˇ can be written as

h˛.�I˛; ˇ/ D
@

@˛
T .�I˛; ˇ/ D T .�I˛; ˇ/

 
� 2.˛/

2
p
 1.˛/

C  1.˛/

!
; (18)

hˇ .�I˛; ˇ/ D
@

@ˇ
T .�I˛; ˇ/ D �

T .�I˛; ˇ/

ˇ
; (19)

u˛.�I˛; ˇ/ D
@

@˛
logJ.�; ˛; ˇ/ D

 
� 2.˛/

2
p
 1.˛/

C  1.˛/

!
C

 2.˛/

2 1.˛/
; (20)

uˇ .�I˛; ˇ/ D
@

@ˇ
logJ.�; ˛; ˇ/ D �

1

ˇ
: (21)

Thus, we finally obtain that the components of grep corresponding to the derivatives with respect to ˛
and ˇ are given by

grep
˛ D Eq.zI˛;ˇ/

"
@

@z
f .z/ � z

 
T �1.zI˛; ˇ/ 2.˛/

2
p
 1.˛/

C  1.˛/

!#
; (22)

grep
ˇ
D Eq.zI˛;ˇ/

�
@

@z
f .z/ �

�z

ˇ

�
; (23)

while the components of gcorr can be similarly obtained by substituting the expressions above into
Eq. 12. Remarkably, we obtain that

gcorr
ˇ D 0: (24)
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3 Particularization for the Beta Distribution

For a random variable z � Beta.˛; ˇ/, we could rewrite z D z01=.z
0
1 C z

0
2/ for z

0
1 � Gamma.˛; 1/

and z02 � Gamma.ˇ; 1/, and apply the above method for the gamma-distributed variables z01 and
z02. Instead, in the spirit of applying standardization directly over z, we define a transformation to
standardize the logit function. This leads to

z D T .�I˛; ˇ/ D
1

1C exp.��� �  .˛/C  .ˇ//
: (25)

This transformation ensures that � has mean zero. However, in this case we do not specify the form of
� , and we let it be a function of ˛ and ˇ. This allows us to choose � in such a way that gcorr D 0 for
the sampled value of z, which we found to work well (even though this introduces some bias). For
simplicity, we write � D exp.�/.

Thus, we have that
J.�; ˛; ˇ/ D j detr�T .�I˛; ˇ/j D T .�I˛; ˇ/.1 � T .�I˛; ˇ//�: (26)

The derivatives of log q.zI˛; ˇ/ with respect to its arguments are given by
@

@z
log q.zI˛; ˇ/ D

˛ � 1

z
�
ˇ � 1

1 � z
; (27)

@

@˛
log q.zI˛; ˇ/ D  .˛ C ˇ/ �  .˛/C log.z/; (28)

@

@ˇ
log q.zI˛; ˇ/ D  .˛ C ˇ/ �  .ˇ/C log.1 � z/: (29)

Therefore, the auxiliary functions h.�I˛; ˇ/ and u.�I˛; ˇ/ for the components of the gradient with
respect to ˛ and ˇ can be written as

h˛.�I˛; ˇ/ D
@

@˛
T .�I˛; ˇ/ D T .�I˛; ˇ/.1 � T .�I˛; ˇ//

�
 1.˛/C ��

@�

@˛

�
; (30)

hˇ .�I˛; ˇ/ D
@

@ˇ
T .�I˛; ˇ/ D T .�I˛; ˇ/.1 � T .�I˛; ˇ//

�
� 1.ˇ/C ��

@�

@ˇ

�
; (31)

u˛.�I˛; ˇ/ D
@

@˛
logJ.�; ˛; ˇ/ D .1 � 2T .�I˛; ˇ//

�
 1.˛/C ��

@�

@˛

�
C
@�

@˛
; (32)

uˇ .�I˛; ˇ/ D
@

@ˇ
logJ.�; ˛; ˇ/ D .1 � 2T .�I˛; ˇ//

�
� 1.ˇ/C ��

@�

@ˇ

�
C
@�

@ˇ
: (33)

Note that the term �� above can be computed from z without knowledge of the value of � as
�� D T �1.zI˛; ˇ/� D

logit.z/� .˛/C .ˇ/
�

� D logit .z/ �  .˛/C  .ˇ/.

Thus, we finally obtain that the components of grep corresponding to the derivatives with respect to ˛
and ˇ are given by

grep
˛ D Eq.zI˛;ˇ/

�
@

@z
f .z/ � z.1 � z/

�
 1.˛/C .logit .z/ �  .˛/C  .ˇ//

@�

@˛

��
; (34)

grep
ˇ
D Eq.zI˛;ˇ/

�
@

@z
f .z/ � z.1 � z/

�
� 1.ˇ/C .logit .z/ �  .˛/C  .ˇ//

@�

@ˇ

��
; (35)

where we are still free to choose @�=@˛ and @�=@ˇ. We have found that the choice of these values
such that gcorr

˛ D gcorr
ˇ
D 0 works well in practice. Thus, we set the derivatives of � such that the

relationships
@

@z
log q.zI˛; ˇ/ � h˛

�
T �1.zI˛; ˇ/I˛; ˇ

�
C

@

@˛
log q.zI˛; ˇ/C u˛

�
T �1.zI˛; ˇ/I˛; ˇ

�
D 0;

(36)
@

@z
log q.zI˛; ˇ/ � hˇ

�
T �1.zI˛; ˇ/I˛; ˇ

�
C

@

@ˇ
log q.zI˛; ˇ/C uˇ

�
T �1.zI˛; ˇ/I˛; ˇ

�
D 0;

(37)
hold for the sampled value of z. This involves solving a simple linear equation for @�=@˛ and
@�=@ˇ.
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4 Particularization for the Dirichlet Distribution

For a Dirichlet.˛/ distribution, with ˛ D Œ˛1; : : : ; ˛K �, we can apply the standardization

z D T .�I˛/ D exp
�
†1=2�C �

�
; (38)

where the mean � is a K-length vector and the covariance † is a K � K matrix,1;2 which are
respectively given by

� D Eq.zI˛/ Œlog.z/� D

264  .˛1/ �  .˛0/
:::

 .˛K/ �  .˛0/

375 (39)

and
.†/ij D Cov.log.zi /; log.zj // D

�
 1.˛i / �  1.˛0/ if i D j;
� 1.˛0/ if i ¤ j: (40)

Here, we have defined ˛0 D
P
k ˛k . The covariance matrix † can be rewritten as a diagonal matrix

plus a rank one update, which can be exploited for faster computations:

† D diag

0B@
264  1.˛1/

:::
 1.˛K/

375
1CA �  1.˛0/11>: (41)

Note that, since † is positive semidefinite, †1=2 can be readily obtained after diagonalization. In
other words, if we express† D VDV>, where V is an orthonormal matrix and D is a diagonal matrix,
then †1=2 D VD1=2V>.
Given the transformation above, we can write

J.�;˛/ D j detr�T .�I˛/j D det.†1=2/
Y
i

Ti .�I˛/: (42)

The derivatives of log q.zI˛/ with respect to its arguments are given by

@

@zi
log q.zI˛/ D

˛i � 1

zi
; (43)

@

@˛i
log q.zI˛/ D  .˛0/ �  .˛i /C log.zi /: (44)

Therefore, the auxiliary functions h.�I˛/ and u.�I˛/ can be written as

h.�I˛/ D r˛T .�I˛/ D

2666664
T1.�I˛/

�
@.†

1=2
1W

/

@˛1
�C @�1

@˛1

�
� � � T1.�I˛/

�
@.†

1=2
1W

/

@˛K
�C @�1

@˛K

�
:::

: : :
:::

TK.�I˛/

�
@.†

1=2
KW

/

@˛1
�C @�K

@˛1

�
� � � TK.�I˛/

�
@.†

1=2
KW

/

@˛K
�C @�K

@˛K

�
3777775 ;
(45)

u.�I˛/ D r˛ logJ.�;˛/ D

2666664
@ log det.†1=2/

@˛1
C
P
i

�
@.†

1=2

iW
/

@˛1
�C

@�i

@˛1

�
:::

@ log det.†1=2/
@˛K

C
P
i

�
@.†

1=2

iW
/

@˛K
�C

@�i

@˛K

�
3777775 : (46)

1Instead, we could define a transformation that ignores the off-diagonal terms of the covariance matrix. This
would lead to faster computations but higher variance of the resulting estimator.

2We could also apply the full-covariance transformation for the beta distribution.
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The intermediate derivatives that are necessary for the computation of the functions h.�I˛/ and
u.�I˛/ are:

@�

@˛i
D

266666664

� 1.˛0/
� 1.˛0/

:::
 1.˛i / �  1.˛0/

:::
� 1.˛0/

377777775 (47)

@ log det.†1=2/
@˛i

D trace

 
†�1=2

@†1=2

@˛i

!
; (48)

and @†1=2

@˛i
is the solution to the Lyapunov equation

@†

@˛i
D
@†1=2

@˛i
†1=2 C†1=2

@†1=2

@˛i
; (49)

where

@†

@˛i
D diag

0BBBBBBB@

266666664

0
0
:::

 2.˛i /
:::
0

377777775

1CCCCCCCA �  2.˛0/11>: (50)

Putting all this together, we finally have the expressions for the generalized reparameterization
gradient:

grep
D Eq.zI˛/

�
h>
�
T �1.zI˛/I˛

�
rzf .z/

�
; (51)

gcorr
D Eq.zI˛/

h
f .z/

�
h>
�
T �1.zI˛/I˛

�
rz log q.zI v/Cr˛ log q.zI˛/C u

�
T �1.zI˛/I˛

� �i
;

(52)

5 Experimental Results

5.1 Using more than 1 sample

We now study the sensitivity of the generalized reparameterization gradient with respect to the number
of samples of the Monte Carlo estimator. For that, we choose the Olivetti dataset, and we apply
the generalized reparameterization approach using 2, 5, 10, and 20 Monte Carlo samples. At each
iteration, we compute the evidence lower bound (elbo) and the average sample variance of the gradient
estimator. We report these results in Figure 1 for the first 200 iterations of the inference procedure. As
expected, increasing the number of samples is beneficial because it reduces the resulting variance. The
gap between the curves with 10 and 20 samples is negligible, specially after 100 iterations. A larger
number of samples seems to be particularly helpful in the very early iterations of inference.

5.2 Reconstructed images

Here, we show some reconstructed observations for the three datasets involving images, namely, the
binarized mnist, the Olivetti dataset, and Omniglot. We plot the reconstructed images as follows: we
first draw one sample from the variational posterior, and then we compute the mean of the observations
for that particular sample of latent variables.

Figure 2 shows the results for the Olivetti dataset. The true observations are shown in the left panel,
whereas the corresponding reconstructed images are shown in the center panel (for g-rep) and the
right panel (for advi). We can observe that the images obtained from g-rep are more detailed (e.g.,
we can distinguish the glasses, mustache, or facial expressions) than the images obtained from advi.
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Figure 1: Performance of g-rep for different number of Monte Carlo samples.

We argue that this effect is due to the variational family used by automatic differentiation variational
inference (advi), which cannot capture well sparse posterior distributions, for which samples close to
0 are common.

This behavior is similar in the case of the digits from mnist or the characters from Omniglot. We
show these images in Figures 3 and 4, respectively. Once again, images sampled from the g-rep
posterior are visually closer to the ground truth that images sampled from the advi posterior, which
tend to be more blurry, or even unrecognizable in a few cases.

(a) True observations. (b) Reconstructed (g-rep). (c) Reconstructed (advi).

Figure 2: Images from the Olivetti dataset. advi provides less detailed images when compared to
g-rep.

6



(a) True observations. (b) Reconstructed (g-rep). (c) Reconstructed (advi).

Figure 3: Images from the binarized mnist dataset. advi provides more blurry images when
compared to g-rep.

(a) True observations. (b) Reconstructed (g-rep). (c) Reconstructed (advi).

Figure 4: Images from the Omniglot dataset. advi provides more blurry images when compared to
g-rep.
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