
A Additional Background

For higher-order tensors, we have similar notation definitions. The ith entry of a vector is denoted by
ai, element (i, j) of a matrix A is denoted by Aij , and the element (i1, . . . , ik) of a k-dimensional
tensor T 2 RI1⇥...⇥Ik is denoted by Ti1,...,ik . For notation simplicity, we assume that (i1, . . . , ik)
also represents an index between 1 and I1I2 · · · Ik, which is location of the element with subscript
(i1, . . . , ik).

Special Matrix Products
Our manipulation of tensors as matrices revolves around several matrix products. For a pair of
matrices A 2 RI⇥K and B 2 RJ⇥L,

• the Kronecker product of matrices is denoted by A⌦B 2 R(IJ)⇥(KL), where the element
((i, j), (k, l)) is AikBjl;

• the Khatri-Rao product of matrices, A�B 2 R(IJ)⇥K when K = L, has element ((i, j), k)
as AikBjk; and

• the Hadamard product, when I = J and K = L, is the elementwise matrix product. It is
denoted by A ⇤B 2 RI⇥K , where the element (i, k) is AikBik.

More details on these products can be found in [21].

Tensor Matricization Here we consider only the case of mode-n matricization. For n = 1, 2, . . . , k,
the mode-n matricization of a tensor T 2 RI1⇥...⇥Ik is denoted by T(n) 2 RIn⇥

Q
s 6=n Is , where the

element (in, (i1, . . . , in�1, in+1, . . . , ik)) is Ti1,...,ik .

B Useful Identities

Lemma B.1.

(AU)� (BV) = (A⌦B)(U�V). (6)

Proof. Assume A 2 RI⇥N , B 2 RJ⇥M , U 2 RN⇥R, and V 2 RM⇥R.

Then we have (AU)� (BV) 2 RIJ⇥R and the (ij, r)-th element is

[(AU)� (BV)]ij,r =(AU)ir(BV)jr (7)

=(

NX

p=1

AipUpr)(

MX

q=1

BjqVqr) (8)

=

NX

p=1

MX

q=1

AipBjqUprVqr (9)

=

NX

p=1

MX

q=1

(A⌦B)ij,pq(U�V)pq,r (10)

= [(A⌦B)(U�V)](ij,r) (11)

C Proof for Theorem 3.3

Theorem 3.3. For matrices A(k) 2 RIk⇥R where Ik > R for k = 1, . . . ,K, let ⌧ (k)i be the statistical
leverage score of the i-th row of A(k). Then, for the

Q
k Ik-by-R matrix A(1) �A(2) � · · ·�A(K)

with statistical leverage score ⌧i1,...,iK for the row corresponding to ⌧i1,...,iK , we have

⌧1:Ki1,...,iK
KY

k=1

⌧
(k)
ik

,

10

where ⌧1:Ki1,...,iK denotes the statistical leverage score of the row of A(1) � A(2) � · · · � A(K)

corresponding to the ik-th row of A(k) for k = 1, . . . ,K.

Proof. Assume that the claim holds for K � 1, that is, we have

⌧2:Ki2,...,iK
KY

k=2

⌧
(k)
ik

.

Let A = A(1) and let B = A(2) �A(3) � · · ·�A(K), then by Theorem 3.2, we have

⌧1:Ki1,...,iK = ⌧A�B

i1,(i2,...,iK) ⌧
(1)
i1

⌧2:Ki2,...,iK
KY

k=1

⌧
(k)
ik

.

Therefore, it also holds for K. By Theorem 3.2, it holds for K = 2. Then by induction, it holds for
any K 2 Z+.

D Proof for Theorem 4.2

Theorem 4.2. For matrix A 2 RI⇥M and matrix B 2 RJ⇥N , where I > M and J > N , let ⌧Ai
and ⌧Bj be the statistical leverage score of the i-th and j-th row of A and B, respectively. Then, for
matrix A ⌦B 2 RIJ⇥MN with statistical leverage score ⌧A⌦B

i,j for the (iJ + j)-th row, we have
⌧A⌦B

i,j = ⌧Ai ⌧Bj .

Proof. Let the singular value decomposition of A and B be A = Ua⇤aVa> and B = Ub⇤bVb>,
where Ua 2 RI⇥R, Ub 2 RJ⇥R, and ⇤a,⇤b,Va,Vb 2 RR⇥R.

By the definition of Khatri-Rao product from Section 2.6 of [21], we have that

A⌦B =

�
Ua ⌦Ub

�
(⇤a ⌦⇤a

)

�
Ua ⌦Ub

�>
(12)

which is the legit SVD of A ⌦B. Therefore the leverage score of A ⌦B can be computed from
Ua ⌦Ub, that

H = [Ua ⌦Ub] [Ua ⌦Ub]
> (13)

and for the index k = iI + j, we have

⌧A�B

i,j = Hk,k =e>k Hek (14)

=

���
⇥
Ua ⌦Ub

⇤>
ek

���
2

2
(15)

=

RX

p=1

RX

q=1

(Ua
i,p)

2
(Ub

j,q)
2

(16)

=(

RX

p=1

(Ua
i,p)

2
)(

RX

q=1

(Ub
j,q)

2
) (17)

=⌧Ai ⌧Bj . (18)

E Lemmas for Least Square Regression Approximation

For the least square regression problem

min

x

kAx� bk22,

11

where design matrix A 2 Rn⇥p with n > p (assuming full column rank), coefficients x 2 Rp⇥1 and
response vector b 2 Rn⇥1.

The optimal solution is

xopt =
�
A>A

��1
A>b,

The percentage explained by x is ⇢ (x):

⇢ (x) = 1� kAx� bk22
kbk22

The optimal result is

⇢ (xopt) =
b>A

�
A>A

��1
A>b

b>b

Lemma E.1. Given S 2 Rm⇥n, such that
��U>b�U>S>Sb

��
2
 ✏

3

kbk2,

the solution x
B

=

�
A>A

��1
A>S>Sb, satisfies that

⇢ (x
B

) � ⇢ (xopt)� ✏.

Proof. Let the SVD of matrix A is of the form A = U⇤V>. We have that

xopt = V⇤�1U>b

and
x
B

= V⇤�1U>S>Sb

We have that

⇢ (xopt) = 1�
���I�UU>�b

��2
2

kbk22
Similarity, we have that

⇢ (x
B

) =1�
���I�UU>S>S

�
b
��2
2

kbk22

=1�
���I�UU>

+UU> �UU>S>S
�
b
��2
2

kbk22
�⇢ (xopt)

�

2

���I�UU>�b
��
2

kbk2
+

���UU> �UU>S>S
�
b
��
2

kbk2

!

���UU> �UU>S>S
�
b
��
2

kbk2
Note that

��U>b�U>S>Sb
��
2
 ✏

3

kbk2,
and

2

���I�UU>�b
��
2

kbk2
+

���UU> �UU>S>S
�
b
��
2

kbk2
 3,

which concludes that
⇢ (x

B

) � ⇢ (xopt)� ✏.

12

Lemma E.2 (Matrix Multiplication Approximation [15]). Given matrix A 2 Rm⇥n and B 2 Rn⇥p,
and sampling probability pi, i = 1, 2, . . . , n satisfies that

pi � �

��A(i)
��
2

��B(i)

��
2

kAkkBk ,

where A(i) and B(i) is the i-th column and row of A and B, respectively. Then with probability at
least 1� �, the random matrix multiplication with c samples, we have that

kAB�CDk 1 +

p
(8/�) log 1/�

�c
kAkkBk.

Proof. See Appendix A.3 in [15].

Corollary E.3. Given matrix A 2 Rm⇥n and B 2 Rn⇥p, and sampling probability pi, i =

1, 2, . . . , n satisfies that

pi � �1

��A(i)
��2
2

kAk2 , and

pi � �2

��B(i)
��2
2

kBk2 .

where A(i) and B(i) is the i-th column and row of A and B, respectively. Then with probability at
least 1� �, the random matrix multiplication with c samples, we have that

kAB�CDk 1 +

p
(8/�) log 1/�p
�1�2c

kAkkBk.

Proof. Note that

pi � 1

2

�1

��A(i)
��2
2

kAk2 + �2

��B(i)
��2
2

kBk2
!

�
p

�1�2

��A(i)
��
2

��B(i)

��
2

kAkkBk .

F Full Experimental Results

0 5 10 15 20
iteration

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

ab
so

lu
te

 e
rro

r

ALS-sparse
SPALS(0.3)
SPALS(1.0)
SPALS(3.0)
SKETCH(20, 14)
SKETCH(40, 16)

0 20 40 60 80 100
time (sec)

1

1.2

1.4

1.6

1.8

2

ab
so

lu
te

 e
rro

r

SPALS(0.3)
SPALS(1.0)
SPALS(3.0)

0 5 10 15 20
iteration

0.98

0.985

0.99

0.995

1

re
la

tiv
e

er
ro

r

ALS-sparse
SPALS(0.3)
SPALS(1.0)
SPALS(3.0)

0 100 200 300 400
time (sec)

0.98

0.985

0.99

0.995

1

re
la

tiv
e

er
ro

r

ALS-sparse
SPALS(0.3)
SPALS(1.0)
SPALS(3.0)

(a) (b) (c) (d)

Figure 1: (a) Absolute errors of various tensor factorization methods plotted against iteration count
on a random high rank tensor with nsr = 1. (b) Error of SPALS with various rates plotted against
running time in seconds on a random high rank tensor with nsr = 1. (c) Errors over iterations of
deterministic and sampled variants of our sparse implementation on the sparse Amazon tensor. (d)
Errors over time (seconds) of deterministic and sampled variants of our sparse implementation on the
sparse Amazon tensor, ran with 16 threads.

We implemented and evaluated our algorithms in a single machine setting. Experiments are tested
on a single machine with two Intel Xeon E5-2630 v3 CPU and 256GB memory. All methods are

13

implemented in C++ with OpenMP parallelization. As the algorithms are randomized, all numbers of
randomized routines that we report are averages from 5 trials.

Due to the large size of the tensors involved, several implementation details were incorporated to
facilitate testing. The dense/sparse tensors were preprocessed into bit format, and in the sparse case
an index table was precomputed and stored along with the input data. In the sparse case, parallelism
was also incorporated to facilitate testing, since the comparisons are between variants of our ALS
implementations. As the implementation does not optimize cache performances, the costs of the
ALS iterations on A, B and C are uneven, and differ by factors of up to 4 in some cases. The
parallel speedup with 16 threads are only about 8. We believe these are less crucial than studying the
convergence properties of SPALS, and will discuss ways of address them in future works in Section 7.

F.1 Dense Synthetic Tensors

We start by comparing our method against the sketching based algorithm from [37], which was tested
in the single thread setting. As a result, our experiments are ran in the single thread setting. The
synthetic data we tested are third-order tensors with dimension n = 1000, as described in [37]. We
first generated a rank-1000 tensor with harmonically decreasing weights on each rank-1 component.
And then after normalization, random Gaussian noise with signal-to-noise nsr = 0.1, 1, 10 was
added to the rank-1000 tensor. As with previous experimental evaluations [37], we focus on the low
rank case, setting rank to r = 10. The performances of various routines are given in Table 1. We vary
the sampling rate of our algorithm, i.e., SPALS(↵) will sample ↵r2 log2 n rows at each iteration.

nsr = 0.1 nsr = 1 nsr = 10

error time error time error time
ALS-dense 0.27 64.8 1.08 66.2 10.08 67.6

sketch(20, 14) 0.45 6.50 1.37 4.70 11.11 4.90
sketch(40, 16) 0.30 16.0 1.13 12.7 10.27 12.4
ALS-sparse 0.24 501 1.09 512 10.15 498
SPALS(0.3) 0.20 1.76 1.14 1.93 10.40 1.92
SPALS(1) 0.18 5.79 1.10 5.64 10.21 5.94

SPALS(3.0) 0.21 15.9 1.09 16.1 10.15 16.16
Table 1: Running times per iterations in seconds and errors of various alternating least squares
implementations

On these instances, a call to SPALS with rate ↵ samples was about 4.77↵⇥10

3 rows, and as the tensor
is dense, 4.77↵⇥ 10

6 entries. The correspondence between running times and rates demonstrate the
sublinear runtimes of SPALS with low sampling rates.

The runs that are most directly comparable to the experiments from [37] are the ones with noise-to-
signal ratio 0.1. However, in our experiments, all routines converged in 3 iterations on these data
sets Therefore we studied convergence behaviors on instances with high noise-to-signal ratios. In
particular, the error over the first 20 iterations of SPALS with various rates are given in Figure 1 (a).

These results show that if one can tolerate a modest increase in error, a much faster convergence
can be obtained in the first few iterations of SPALS. Also, a lower sampling rate does result in a
higher final error. On the other hand, the gains of having a lower sampling rate is more clear when
we plot the errors vs. time instead of iterations in Figure 1 (b). Note that the total running time given
in this chart is comparable to the cost of a single step made by the dense ALS routine. Also, we
were unable to include sketched methods in this comparison because outputting intermediate errors
requires de-convolving the sketch, resulting in significant running time overheads.

In these evaluations, SPALS significantly outperforms existing routines under similar error require-
ments, and also has a smooth degrading towards the deterministic methods. This is despite the fact
that SPALS is optimized for sparse tensors, and stores additional bookkeeping information in its
intermediate data structures.

14

F.2 Sparse Data Tensor

Our original motivation for SPALS was to handle large sparse data tensors. We ran our algorithm
on two sparse data tensors: a Foursquare dataset containing users’ check-in records and a tensor
generated from Amazon review data [24]. The sizes of these two tensors, and convergences of SPALS
with various parameters are in Table 2.

Check-In Amazon
dims 44312 ⇤ 355 ⇤ 24 2.44m ⇤ 6.64m ⇤ 92.6k
nnz 689403 2025872645

error time error time
ALS-sparse 0.70 0.269 0.981 142
SPALS(0.3) 0.76 0.088 0.987 6.97
SPALS(1) 0.71 0.269 0.983 15.7

SPALS(3.0) 0.70 0.694 0.982 38.9
Table 2: Sizes of the two large sparse tensors and the convergent relative error and running times per
iteration of SPALS under various parameters.

The gains of sampling are less apparent on Check-in due to its smaller size and unbalanced dimensions.
As a result, we will focus our comparisons on the Amazon data tensor, which also has a much higher
noise to signal ratio than our other experiments. Running deterministic ALS with rank 10 on it leads
to a relative error of 98.1%. The bounds from Theorem 4.1 with ✏ = 0.1, gives an overhead factor of
around 100. Nonetheless, SPALS still converges rapidly towards a good approximation: the errors
over iterations and times of the deterministic variant as well as sampling with rates 0.3, 1.0, and 3.0
are shown in Figure 1 (c).

These comparisons are restricted to variants of SPALS because other methods are either for dense
tensors, or have significant memory overheads. On the other hand, this did allow us to run the
experiments in parallel with 16 threads. Although these parallelizations are for the purpose of
speeding up the trials, we encountered several rather surprising issues related to randomizations.
Standard random number generators leads to correlations between the threads, which affected both
the memory access pattern and the rates of convergence. In particular, with the RAND() function,
SPALS converges to a relative error of 98.8% on the Amazon tensor. Most of these issues were
resolved by switching to a high quality parallel random number generator obtained from sitmo.com.

15

