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Abstract
The goal of noisy high-dimensional phase retrieval is to estimate an s-sparse pa-
rameter β∗ ∈ Rd from n realizations of the model Y = (X>β∗)2 + ε. Based
on this model, we propose a significant semi-parametric generalization called mis-
specified phase retrieval (MPR), in which Y = f(X>β∗, ε) with unknown f and
Cov(Y, (X>β∗)2) > 0. For example, MPR encompasses Y = h(|X>β∗|) + ε
with increasing h as a special case. Despite the generality of the MPR model, it
eludes the reach of most existing semi-parametric estimators. In this paper, we pro-
pose an estimation procedure, which consists of solving a cascade of two convex
programs and provably recovers the direction of β∗. Our theory is backed up by
thorough numerical results.

1 Introduction
In scientific and engineering fields researchers often times face the problem of quantifying the
relationship between a given outcome Y and corresponding predictor vectorX , based on a sample
{(Yi,X>i )>}ni=1 of n observations. In such situations it is common to postulate a linear “working”
model, and search for a d-dimensional signal vector β∗ satisfying the following familiar relationship:

Y = X>β∗ + ε. (1.1)
When the predictor X is high-dimensional in the sense that d � n, it is commonly assumed that
the underlying signal β∗ is s-sparse. In a certain line of applications, such as X-ray crystallography,
microscopy, diffraction and array imaging1, one can only measure the magnitude ofX>β∗ but not
its phase (i.e., sign in the real domain). In this case, assuming model (1.1) may not be appropriate. To
cope with such applications in the high-dimensional setting, [7] proposed the thresholded Wirtinger
flow (TWF), a procedure which consistently estimates the signal β∗ in the following real sparse
noisy phase retrieval model:

Y = (X>β∗)2 + ε, (1.2)
where one additionally knows that the predictors have a Gaussian random designX ∼ N (0, Id). In
the present paper, taking an agnostic point of view, we recognize that both models (1.1) and (1.2)
represent an idealized view of the data generating mechanism. In reality, the nature of the data could
be better reflected through the more flexible viewpoint of a single index model (SIM):

Y = f(X>β∗, ε), (1.3)
where f is an unknown link function, and it is assumed that ‖β∗‖2 = 1 for identifiability. A recent
line of work on high-dimensional SIMs [25, 27], showed that under Gaussian designs, one can apply
`1 regularized least squares to successfully estimate the direction of β∗ and its support. The crucial
condition allowing for the above somewhat surprising application turns out to be:

Cov(Y,X>β∗) 6= 0. (1.4)
While condition (1.4) is fairly generic, encompassing cases with a binary outcome, such as logistic
regression and one-bit compressive sensing [5], it fails to capture the phase retrieval model (1.2).

1In such applications it is typically assumed that X ∈ Cd is a complex normal random vector. In this paper
for simplicity we only consider the real case X ∈ Rd.
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More generally, it is easy to see that when the link function f is even in its first coordinate, condition
(1.4) fails to hold. The goal of the present manuscript is to formalize a class of SIMs, which includes
the noisy phase retrieval model as a special case in addition to various other additive and non-additive
models with even link functions, and develop a procedure that can successfully estimate the direction
of β∗ up to a global sign. Formally, we consider models (1.3) with Gaussian design that satisfy the
following moment assumption:

Cov(Y, (X>β∗)2) > 0. (1.5)
Unlike (1.4), one can immediately check that condition (1.5) is satisfied by model (1.2). In §2 we give
multiple examples, both abstract and concrete, of SIMs obeying this constraint. Our second moment
constraint (1.5) can be interpreted as a semi-parametric robust version of phase-retrieval. Hence, we
will refer to the class of models satisfying condition (1.5) as misspecified phase retrieval (MPR)
models. In this point of view it is worth noting that condition (1.4) relates to linear regression in a
way similar to how condition (1.5) relates to the phase retrieval model. Our motivation for studying
SIMs under such a constraint can ultimately be traced to the vast sufficient dimension reduction
(SDR) literature. In particular, we would like to point out [22] as a source of inspiration.
Contributions. Our first contribution is to formulate a novel and easily implementable two-step
procedure, which consistently estimates the direction of β∗ in an MPR model. In the first step
we solve a semidefinite program producing a unit vector v̂, such that |v̂>β∗| is sufficiently large.
Once such a pilot estimate is available, we consider solving an `1 regularized least squares on the
augmented outcome Ỹi = (Yi − Y )X>i v̂, where Y is the average of Yi’s, to produce a second
estimate b̂, which is then normalized to obtain the final refined estimator β̂ = b̂/‖b̂‖2. In addition
to being universally applicable to MPR models, our procedure has an algorithmic advantage in that
it relies solely on convex optimization, and as a consequence we can obtain the corresponding global
minima of the two convex programs in polynomial time.
Our second contribution is to rigorously demonstrate that the above procedure consistently estimates
the direction of β∗. We prove that for a given MPR model, with high probability, one has:

minη∈{−1,1}‖β̂ − ηβ∗‖2 .
√
s log d/n,

provided that the sample size n satisfies n & s2 log d. While the same rates (with different constants)
hold for the TWF algorithm of [7] in the special case of noisy phase retrieval model, our procedure
provably achieves these rates over the broader class of MPR models.
Lastly, we propose an optional refinement of our algorithm, which shows improved performance in
the numerical studies.
Related Work. The phase retrieval model has received considerable attention in the recent years by
statistics, applied mathematics as well as signal processing communities. For the non-sparse version
of (1.2), efficient algorithms have been suggested based on both semidefinite programs [8, 10] and
non-convex optimization methods that extend gradient descent [9]. Additionally, a non-traditional
instance of phase retrieval model (which also happens to be a special case of the MPR model) was
considered by [11], where the authors suggested an estimation procedure originally proposed for the
problem of mixed regression. For the noisy sparse version of model (1.2), near optimal solutions
were achieved with a computationally infeasible program by [20]. Subsequently, a tractable gradient
descent approach achieving minimax optimal rates was developed by [7].
Abstracting away from the phase retrieval or linear model settings, we note that inference for SIMs
in the case when d is small or fixed, has been studied extensively in the literature [e.g., 18, 24, 26, 34,
among many others]. In another line of research on SDR, seminal insights shedding light on condition
(1.4) can be found in, e.g., [12, 21, 23]. The modified condition (1.5) traces roots to [22], where the
authors designed a procedure to handle precisely situations where (1.4) fails to hold. More recently,
there have been active developments for high-dimensional SIMs. [27] and later [31] demonstrated that
under condition (1.4), running the least squares with `1 regularization can obtain a consistent estimate
of the direction of β∗, while [25] showed that this procedure also recovers the signed support of the
direction. Excess risk bounds were derived in [14]. Very recently, [16] extended this observation to
other convex loss functions under a condition corresponding to (1.4) depending implicitly on the loss
function of interest. [28] proposed a non-parametric least squares with an equality `1 constraint to
handle simultaneous estimation of β∗ as well as f . [17] considered a smoothed-out U -process type
of loss function with `1 regularization, and proved their approach works for a sub-class of functions
satisfying condition (1.4). None of the aforementioned works on SIMs can be directly applied to
tackle the MPR class (1.5). A generic procedure for estimating sparse principal eigenvectors was
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developed in [37]. While in principle this procedure can be applied to estimate the direction in MPR
models, it requires proper initialization, and in addition, it requires knowledge of the sparsity of the
vector β∗. We discuss this approach in more detail in §4.
Regularized procedures have also been proposed for specific choices of f and Y . For example, [36]
studied consistent estimation under the model P(Y = 1|X) = (h(X>β∗) + 1)/2 with binary Y ,
where h : R 7→ [−1, 1] is possibly unknown. Their procedure is based on taking pairs of differences
in the outcome, and therefore replaces condition (1.4) with a different type of moment conditon. [35]
considered the model Y = h(X>β∗) + ε with a known continuously differentiable and monotonic
h, and developed estimation and inferential procedures based on the `1 regularized quadratic loss, in
a similar spirit to the TWF algorithm suggested by [7]. In conclusion, although there exists much
prior related work, to the best of our knowledge, none of the available literature discusses the MPR
models in the generality we attempt in the present manuscript.
Notation. We now briefly outline some commonly used notations. Other notations will be defined as
needed throughout the paper. For a (sparse) vector v = (v1, . . . , vp)

>, we let Sv := supp(v) = {j :
vj 6= 0} denote its support, ‖v‖p denote the `p norm (with the usual extension when p = ∞) and
v⊗2 := vv> is a shorthand for the outer product. With a standard abuse of notation we will denote
by ‖v‖0 = |supp(v)| the cardinality of the support of v. We often use Id to denote a d× d identity
matrix. For a real random variable X , define

‖X‖ψ2
= sup

p≥1
p−1/2(E|X|p)1/p, ‖X‖ψ1

= sup
p≥1

p−1(E|X|p)1/p.

Recall that a random variable is called sub-Gaussian if ‖X‖ψ2 <∞ and sub-exponential if ‖X‖ψ1 <
∞ [e.g., 32]. For any integer k ∈ N we use the shorthand notation [k] = {1, . . . , k}. We also use
standard asymptotic notations. Given two sequences {an}, {bn} we write an = O(bn) if there exists
a constant C <∞ such that an ≤ Cbn, and an � bn if there exist positive constants c and C such
that c < an/bn < C.
Organization. In §2 and §3 we introduce the MPR model class and our estimation procedure, and
§3.1 is dedicated to stating the theoretical guarantees of our proposed algorithm. Simulation results
are given in §4. A brief discussion is provided in §5. We defer the proofs to the appendices due to
space limitations.

2 MPR Models
In this section we formally introduce MPR models. In detail, we argue that the class of such models
is sufficiently rich, including numerous models of interest. Motivated by the setup in the sparse noisy
phase retrieval model (1.2), we assume throughout the remainder of the paper that X ∼ N (0, Id).
We begin our discussion with a formal definition.
Definition 2.1 (MPR Models). Assume that we are given model (1.3), whereX ∼ N (0, Id), ε ⊥⊥X
and β∗ ∈ Rd is an s-sparse unit vector, i.e., ‖β∗‖2 = 1. We call such a model misspecified phase
retrieval (MPR) model, if the link function f and noise ε further satisfy, for Z ∼ N (0, 1) andK > 0,

c0 := Cov(f(Z, ε), Z2) > 0, (2.1) ‖Y ‖ψ1 ≤ K. (2.2)

Both assumptions (2.1) and (2.2) impose moment restrictions on the random variable Y . Assumption
(2.1) states that Y is positively correlated with the random variable (X>β∗)2, while assumption
(2.2) requires Y to have somewhat light-tails. Also, as mentioned in the introduction, the unit norm
constraint on the vectorβ∗ is required for the identifiability of model (1.3). We remark that the class of
MPR models is convex in the sense that if we have two MPR models f1(X>β∗, ε) and f2(X>β∗, ε),
all models generated by their convex combinations λf1(X>β∗, ε)+(1−λ)f2(X>β∗, ε) (λ ∈ [0, 1])
are also MPR models. It is worth noting the > direction in (2.1) is assumed without loss of generality.
If Cov(Y, (X>β∗)2) < 0 one can apply the same algorithm to −Y . However, the knowledge of the
direction of the inequality is important.
In the following, we restate condition (2.1) in a more convenient way, enabling us to easily calculate
the explicit value of the constant c0 in several examples.
Proposition 2.2. Assume that there exists a version of the map ϕ(z) : z 7→ E[f(Z, ε)|Z = z] such
that ED2ϕ(Z) > 0, where D2 is the second distributional derivative of ϕ and Z ∼ N (0, 1). Then
the SIM (1.3) satisfies assumption (2.1) with c0 = ED2ϕ(Z).
We now provide three concrete MPR models as warm up examples for the more general examples
discussed in Proposition 2.3 and Remark 2.3. Consider the models:
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Y = (X>β∗)2 + ε, (2.3) Y = |X>β∗|+ ε, (2.4) Y = |X>β∗ + ε|, (2.5)

where ε ⊥⊥ X is sub-exponential noise, i.e., ‖ε‖ψ1
≤ Kε for some Kε > 0. Model (2.3) is the

noisy phase retrieval model considered by [7], while models (2.4) and (2.5) were both discussed
in [11], where the authors proposed a method to solve model (2.5) in the low-dimensional regime.
Below we briefly explain why these models satisfy conditions (2.1) and (2.2). First, observe that in
all three models we have a sum of two sub-exponential random variables, and hence by the triangle
inequality it follows that the random variable Y is also sub-exponential, which implies (2.2). To
understand why (2.1) holds, by applying Proposition 2.2 we have c0 = E2 = 2 > 0 for model (2.3),
c0 = E2δ0(Z) = 2/

√
2π > 0 for model (2.4), and c0 = E2δ0(Z + ε) = 2Eφ(ε) > 0 for model

(2.5), where δ0(·) is the Dirac delta function centered at zero, and φ is the density of the standard
normal distribution.
Admittedly, calculating the second distributional derivative could be a laborious task in general. In
the remainder of this section we set out to find a simple to check generic sufficient condition on the
link function f and error term ε, under which both (2.1) and (2.2) hold. Before giving our result note
that the condition ED2ϕ(Z) > 0 is implied whenever ϕ is strictly convex and twice differentiable.
However, strictly convex functions ϕ may violate assumption (2.2) as they can inflate the tails of Y
arbitrarily (consider, e.g., f(x, ε) = x4 + ε). Moreover, the functions in example (2.4) and (2.5) fail
to be twice differentiable. In the following result we handle those two problems, and in addition we
provide a more generic condition than convexity, which suffices to ensure the validity of (2.1).
Proposition 2.3. The following statements hold.

(i) Let the function ϕ defined in Proposition 2.2 be such that the map z 7→ ϕ(z) + ϕ(−z)
is non-decreasing on R+

0 and and there exist z1 > z2 > 0 such that ϕ(z1) + ϕ(−z1) >
ϕ(z2) + ϕ(−z2). Then (2.1) holds.

(ii) A sufficient condition for (i) to hold, is that z 7→ ϕ(z) is convex and sub-differentiable at
every point z ∈ R, and there exists a point z0 ∈ R+

0 satisfying ϕ(z0) + ϕ(−z0) > 2ϕ(0).
(iii) Assume that there exist functions g1, g2 such that f(Z, ε) ≤ g1(Z) + g2(ε), and g1 is

essentially quadratic in the sense that there exists a closed interval I = [a, b] with 0 ∈ I,
such that for all z satisfying g1(z) ∈ Ic we have |g1(z)| ≤ Cz2 for a sufficiently large
constant C > 0, and let g2(ε) be sub-exponential. Then (2.2) holds.

Remark 2.4. Proposition 2.3 shows that the class of MPR models is sufficiently broad. By (i) and
(ii) it immediately follows that the additive models

Y = h(X>β∗) + ε, (2.6)

where the link function h is even and increasing on R+
0 or convex, satisfy the covariance condition

(2.1) by (i) and (ii) of Proposition 2.3 respectively. If h is also essentially quadratic and ε is sub-
exponentially distributed, using (iii) we can deduce that Y in (2.6) is a sub-exponential random
variable, and hence under these restrictions model (2.6) is an MPR model. Both examples (2.3) and
(2.4) take this form.
Additionally, Proposition 2.3 implies that the model

Y = h(X>β∗ + ε) (2.7)
satisfies (2.1), whenever the link h is a convex sub-differentiable function, such that h(z0)+h(−z0) >
2h(0) for some z0 > 0, E|h(z + ε)| < ∞ for all z ∈ R and E|h(Z + ε)| < ∞. This conclusion
follows because under the latter conditions the function ϕ(z) = Eh(z + ε) satisfies (ii), which is
proved in Appendix C under Lemma C.1. Moreover, if it turns out that h is essentially quadratic and
h(2ε) is sub-exponential, then by Jensen’s inequality we have 2h(Z+ε) ≤ h(2Z)+h(2ε) and hence
(iii) implies that (2.2) is also satisfied. Model (2.5) is of the type (2.7). Unlike the additive noise
models (2.6), models (2.7) allow noise corruption even within the argument of the link function. On
the negative side, it should be apparent that (2.1) fails to hold in cases where ϕ is an odd function, i.e.,
ϕ(z) = −ϕ(−z). In many such cases (e.g. when ϕ is monotone or non-constant and non-positive/non-
negative on R+), one would have Cov(Y,X>β∗) = E[ϕ(Z)Z] 6= 0, and hence direct application
of the `1 regularized least squares algorithm is possible as we discussed in the introduction.

3 Agnostic Estimation for MPR
In this section we describe and motivate our two-step procedure, which consists of a convex relaxation
and an `1 regularized least squares program, for performing estimation in the MPR class of models
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described by Definition 2.1. We begin our motivation by noting that any MPR model satisfies the
following inequality

Cov((Y − µ)X>β∗,X>β∗) = E{(Y − µ)(X>β∗)2} = Cov(f(Z, ε), Z2) = c0 > 0, (3.1)
where we have denoted µ := EY . This simple observation plays a major role in the motivation
of our procedure. Notice that in view of condition (1.4), inequality (3.1) implies that if instead of
observing Y we had observed Y̆ = g(X>β∗, ε) = (Y − µ)X>β∗. However, there is no direct way
of generating the random variable Y̆ , as doing so would require the knowledge of β∗ and the mean µ.
Here, we propose to roughly estimate β∗ by a vector v̂ first, use an empirical estimate Y of µ, and
then obtain the `1 regularized least squares estimate on the augmented variable Ỹ = (Y − Y )X>v̂
to sharpen the convergence rate. At first glance it might appear counter-intuitive that introducing a
noisy estimate of β∗ can lead to consistent estimates, as the so-defined Ỹ variable depends on the
projection ofX on span{β∗, v̂}. Decompose

v̂ = (v̂>β∗)β∗ + β̂⊥, (3.2)

where β̂⊥ ⊥ β∗. To better motivate this proposal, in the following we analyze the population least
squares fit, based on the augmented variable Y̌ = (Y − µ)X>v̂ for some fixed unit vector v̂ with
decomposition (3.2). Writing out the population solution for least squares yields:

[EX⊗2]−1E[XY̌ ] = E[X(Y − µ)X>(v̂>β∗)β∗]︸ ︷︷ ︸
I1

+E[X(Y − µ)X>β̂⊥]︸ ︷︷ ︸
I2

. (3.3)

We will now argue that left hand side of (3.3) is proportional to β∗. First, we observe that
I1 = c0(v̂>β∗)β∗, since multiplying by any vector b ⊥ β∗ yields b>I1 = 0 by independence.
Second, and perhaps more importantly, we have that I2 = 0. To see this, we first take a vec-
tor b ∈ span{β∗, β̂⊥}⊥. Since the three variables b>X , Y −µ and β̂⊥X are independent, we have
b>I2 = 0. Multiplying by β∗ we have β∗>I2 = 0 since β∗>X(Y − µ) is independent ofX>β̂⊥.
Finally, multiplying by β̂⊥ yields I>2 β̂

⊥ = 0, since (X>β̂⊥)2 is independent of Y − µ.

(a) Initialization (b) Second Step

Figure 1: An illustration of the estimates v̂ and β̂ produced by the first and second steps of Algorithm
1. After the first step we can guarantee that the vector β∗ belongs to one of two spherical caps which
contain all vectors w such that |v̂>w| ≥ κ for some constant κ > 0, provided that the sample size
n & s2 log d is sufficiently large. After the second step we can guarantee that the vector β∗ belongs
to one of two spherical caps in (b), which are shrinking with (n, s, d) at a faster rate.

It is noteworthy to mention that the above derivation crucially relies on the fact that the Y variable
was centered, and the vector v̂ was fixed. In what follows we formulate a pilot procedure which
produces an estimate v̂ such that |v̂>β∗| ≥ κ > 0. A proper initialization algorithm can be achieved
by using a spectral method, such as the Principal Hessian Directions (PHD) proposed by [22]. Cast
into the framework of SIM, the PHD framework implies the following simple observation:
Lemma 3.1. If we have an MPR model, then argmax‖v‖2=1 v>E[Y (X⊗2 − I)]v = ±β∗.
A proof of this fact can be found in Appendix C. Lemma 3.1 encourages us to look into the following
sample version maximization problem

argmax‖v‖2=1,‖v‖0=sn
−1v>

∑n
i=1[Yi(X

⊗2
i − I)]v, (3.4)

which targets a restricted (s-sparse) principal eigenvector. Unfortunately, solving such a problem is a
computationally intensive task, and requires knowledge of s. Here we take a standard route of relaxing
the above problem to a convex program, and solving it efficiently via semidefinite programming
(SDP). A similar in spirit SDP relaxation for solving sparse PCA problems, was originally proposed
by [13]. Instead of solving (3.4), define Σ̂ = n−1

∑n
i=1 Yi(X

⊗2
i −I), and solve the following convex
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program:

Â = argmaxtr(A)=1,A∈Sd+ tr(Σ̂A)− λn
∑d
i,j=1|Aij |, (3.5)

where Sd+ is the convex cone of non-negative semidefinite matrices, and λn is a regularization param-
eter encouraging element-wise sparsity in the matrix A. The hopes of introducing the optimization
program above are that Â will be a good first estimate of β∗⊗2. In practice it could turn out that the
matrix Â is not rank one, hence we suggest taking v̂ as the principal eigenvector of Â. In theory we
show that with high probability the matrix Â will indeed be of rank one. Observation (3.3), Lemma
3.1 and the SDP formulation motivate the agnostic two-step estimation procedure for misspecified
phase retrieval in Algorithm 1.
Algorithm 1
input :(Yi,Xi)

n
i=1: data, λn, νn: tuning parameters

1. Split the sample into two approximately equal sets S1, S2, with |S1| = bn/2c, |S2| = dn/2e.
2. Let Σ̂ := |S1|−1

∑
i∈S1

Yi(X
⊗2
i − Id). Solve (3.5). Let v̂ be the first eigenvector of Â.

3. Let Y = |S2|−1
∑
i∈S2

Yi. Solve the following program:

b̂ = argminb(2|S2|)−1
∑
i∈S2

((Yi − Y )X>i v̂ −X>i b)2 + νn‖b‖1. (3.6)

4. Return β̂ := b̂/‖b̂‖2.

The sample split is required to ensure that after decomposition (3.2), the vector β̂⊥ and the value
v̂>β∗ are independent of the remaining sample. In §3.1 we demonstrate that Algorithm 1 succeeds
with optimal (in the noisy regime) `2 rate

√
s log d/n, provided that s2 log d . n. The latter require-

ment on the sample size suffices to guarantee that the solution Â of optimization program (3.5) is
rank one. Figure 1 illustrates the two steps of Algorithm 1. In addition to our main procedure, we
propose an optional refinement step (Algorithm 2) in which one applies steps 3. and 4. of Algorithm
1 on the full dataset using the output vector β̂ of Algorithm 1. Doing so can potentially result in
additional stability and further refinements of the rate constant.
Algorithm 2 Optional Refinement

input :(Yi,Xi)
n
i=1: data, ν′n: tuning parameter, output β̂ from the Algorithm 1

5. Let Y = n−1
∑
i∈[n] Yi. Solve the following program:

b̂ = argminb(2n)−1
∑n
i=1((Yi − Y )X>i β̂ −X>i b)2 + ν′n‖b‖1. (3.7)

6. Return β̂′ := b̂/‖b̂‖2.

3.1 Theoretical Guarantees

In this section we present our main theoretical results, which consist of theoretical justification of our
procedures, as well as lower bounds for certain types of SIM (1.3). To simplify the presentation for
this section, we slightly change the notation and assume that the sample size is 2n and S1 = [n] and
S2 = {n + 1, . . . , 2n}. Of course this abuse of notation does not restrict our analysis to only even
sample size cases.
Our first result shows that the optimization program (3.5) succeeds in producing a vector v̂ which is
close to the vector β∗.

Proposition 3.2. Assume that n is large enough so that s
√

log d/n < (1/6 − κ/4)c0/(C1 + C2)
for some small but fixed κ > 0 and constants C1, C2 (depending on f and ε). Then there exists a
value of λn �

√
log d/n such that the principal eigenvector v̂ of Â, the solution of (3.5), satisfies

|v̂>β∗| ≥ κ > 0,

with probability at least 1− 4d−1 −O(n−1).
Proposition 3.2 shows that the first step of Algorithm 1 narrows down the search for the direction
of β∗ to a union of two spherical caps (i.e., the estimate v̂ satisfies |v̂>β∗| ≥ κ for some constant
κ > 0, see also Figure 1a). Our main result below, demonstrates that in combination with program
(3.6) this suffices to recover the direction of β∗ at an optimal rate with high probability.
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Theorem 3.3. There exist values of λn, νn �
√

log d/n and a constant R > 0 depending on f and
ε, such that if s

√
log d/n < R and log(d) log2(n)/n = o(1), the output of Algorithm 1 satisfies:

sup
‖β∗‖2=1,‖β∗‖0≤s

Pβ∗
(

min
η∈{1,−1}

‖β̂ − ηβ∗‖2 > L

√
s log d

n

)
≤ O(d−1 ∨ n−1), (3.8)

where L is a constant depending solely on f and ε.
We remark that although the estimation rate is of the order

√
s log d/n, our procedure still requires

that s
√

log d/n is sufficiently small. This phenomenon is similar to what has been observed by [7],
and it is our belief that this requirement cannot be relaxed for computationally feasible algorithms.
We would further like to mention that while in bound (3.8) we control the worst case probability of
failure, it is less clear whether the estimate β̂ is universally consistent (i.e., whether the sup can be
moved inside the probability in (3.8)).

4 Numerical Experiments
In this section we provide numerical experiments based on the three models (2.3), (2.4) and (2.5)
where the random variable ε ∼ N (0, 1). All models are compared with the Truncated Power Method
(TPM), proposed in [37]. For model (2.3) we also compare the results of our approach to the ones
given by the TWF algorithm of [7]. Our setup is as follows. In all scenarios the vector β∗ was held
fixed at β∗ = (−s−1/2, s−1/2, . . . , s−1/2︸ ︷︷ ︸

s

, 0, . . . 0︸ ︷︷ ︸
d−s

). Since our theory requires that n & s2 log d, we

have setup four different sample sizes n ≈ θs2 log d, where θ ∈ {4, 8, 12, 16}. We let s depend on
the dimension d and we take s ≈ log d. In addition to the suggested approach in Algorithm 1, we
also provide results using the refinement procedure (see Algorithm 3.7). We also provide the values
of two “warm” starts of our algorithm, produced by solving program (3.5) with half and full data
correspondingly. It is evident that for all scenarios the second step of Algorithms 1 and 2 outperform
the warm start from SDP, except in Figure 2 (b), (c), when the sample size is simply two small to for
the warm start on half of the data to be accurate. All values we report are based on an average over
100 simulations.
The SDP parameter was kept at a constant value (0.015) throughout all simulations, and we observed
that varying this parameter had little influence on the final SDP solution. To select the νn parameter
for (3.6) a pre-specified grid of parameters {ν1, . . . , νl} was selected, and the following heuristic
procedure based on K-fold cross-validation was used. We divide S2 into K = 5 approximately
equally sized non-intersecting sets S2 = ∪j∈[K]S̃

j
2 . For each j ∈ [K] and k ∈ [l] we run (3.6) on the

set ∪r∈[K],r 6=jS̃
r
2 with a tuning parameter νn = νk to obtain an estimate β̂k,−S̃j

2
. Lemma 3.1 then

justifies the following criteria to select the optimal index for selecting ν̂n = ν l̂ where

l̂ = argmax
k∈[l]

∑
j∈[K]

∑
i∈S̃j

2

Yi(X
>
i β̂k,−S̃j

2
)2.

Our experience suggests this approach works well in practice provided that the values {ν1, . . . , νl}
are selected within appropriate range and are of the magnitude

√
log d/n.

Since the TPM algorithm requires an estimate of the sparsity s, we tuned it as suggested in Section
4.1.2 of [37]. In particular, for each scenario we considered the set of possible sparsities K =
{s, 2s, 4s, 8s}. For each k ∈ K the algorithm is ran on the first part of the data S1, to obtain an
estimate β̂k, and the final estimate is taken to be β̂k̂ where k̂ is given by

k̂ = argmax
k∈K

β̂>k |S2|−1
∑
i∈S2

Yi(X
⊗2
i − Id)β̂k.

The TPM is ran for 2000 iterations. In the case of phase retrieval, the TWF algorithm was also ran
at a total number of 2000 iterations, using the tuning parameters originally suggested in [7]. As
expected the TWF algorithm which targets the sparse phase retrieval model in particular outperforms
our approach in the case when the sample size n is small, however our approach performs very
comparatively to the TWF, and in fact even slightly better once we increase the sample size. It is
possible that the TWF algorithm can perform better if it is ran for a longer than 2000 iterations,
though in most cases it appeared to have converged to its final value. The results are visualized on
Figure 2 above. The TPM algorithm, has performance comparable to that of Algorithm 1, is always
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Figure 2: Simulation results for the three examples considered in §2, in two different settings for the
dimension d = 200, 400. Here the parameter θ ≈ n

s2 log d describes the relationship between sample
size, dimension and sparsity of the signal. Algorithm 2 dominates in most settings, with exceptions
when θ is too small, in which case none of the approaches provides meaningful results.

worse than the estimate produced by Algorithm 2, and it needs an initialization (for the first step
of Algorithm 1 is used) and further requires a rough knowledge of the sparsity s, whereas both
Algorithms 1 and 2 do not require an estimate of s.

5 Discussion
In this paper we proposed a two-step procedure for estimation of MPR models with standard Gaussian
designs. We argued that the MPR models form a rich class including numerous additive SIMs (i.e.,
Y = h(X>β∗) + ε) with an even and increasing on R+ link function h. Our algorithm is based
solely on convex optimization, and achieves optimal rates of estimation.
Our procedure does require that the sample size n & s2 log d to ensure successful initialization. The
same condition has been exhibited previously, e.g., in [7] for the phase retrieval model, and in works
on sparse principal components analysis [see, e.g., 3, 15, 33]. We anticipate that for a certain subclass
of MPR models, the sample size requirement n & s2 log d is necessary for computationally efficient
algorithms to exist. We conjecture that models (2.3)-(2.5) are such models. It is however certainly
not true that this sample size requirement holds for all models from the MPR class. For example, the
following model can be solved efficiently by applying the Lasso algorithm, without requiring the
sample size scaling n & s2 log d

Y = sign(X>β∗ + c),

where c < 0 is fixed. This discussion leads to the important question under what conditions of the
(known) link and error distribution (f, ε) one can efficiently solve the SIM Y = f(X>β∗, ε) with
an optimal sample complexity. We would like to investigate this issue further in our future work.

Acknowledgments: The authors would like to thank the reviewers and meta-reviewers for carefully
reading the manuscript and their helpful suggestions which improved the presentation. The authors
would also like to thank Professor Xiaodong Li for kindly providing the code for the TWF algorithm.
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A Notation
In addition to the notation defined in §1, throughout the appendices we use� to denote the Hadamard
(or element-wise) product, and dot product will sometimes be denoted with angle notation 〈·, ·〉, to
facilitate the display of long equations. For a matrix A we denote the max and `2 norms with
‖A‖max = maxi,j |Aij | and ‖A‖2 = sup‖v‖2=1 ‖Av‖2 respectively. If A is symmetric we denote
its spectrum ordered in decreasing manner by λj(A).

B Auxiliary Results
Here we collect several results which we use in the later development.
Lemma B.1 (Lemma 5 [2]). Consider the following optimization program:

Ẑ = argmax
tr(Z)=1,Z∈Sd+

tr(AZ)− λn
d∑

i,j=1

|Zij |, (B.1)

where Sd+ is the set of all the d× d positive semi-definite matrices. Suppose there exists a matrix U
(independent of ẑ) satisfying:

Uij =

{
sign(ẑi) sign(ẑj), if ẑiẑj 6= 0;

∈ [−1, 1], otherwise.
(B.2)

Then if ẑ is the principal eigenvector of the matrix A−λnU, ẑẑ> is the optimal solution to problem
(B.1).
For convenience of the reader we briefly recall the notation and result on Gaussian concentration of
non-Lipschitz functions used by [1], which we apply in Lemma E.8 below. For the set [`], we denote
with P` the set of its partitions into non-empty and non-intersecting disjoint sets. For a partition
J = {J1, . . . , Jk}, and an `-indexed matrix A = (ai)i∈[n]` , define the norm:

‖A‖J = sup
{ ∑

i∈[n]`
ai

k∏
l=1

x
(l)
iJl

: ‖x(l)iJl
‖2 ≤ 1, 1 ≤ l ≤ k

}
,

where the indexing should be understood as iI := (ik)k∈I . Given the convention that #J = |J | is
the cardinality of the set J we restate (a shortened) version of Theorem 1.4 of [1].
Theorem B.2 (Theorem 1.4 [1]). Let X = (X1, . . . , Xn) be a random vector with independent
components, such that for all i ≤ n, ‖Xi‖ψ2

≤ Υ. Then for every polynomial f : Rn 7→ R of degree
L and every p ≥ 2 we have:

‖f(X)− Ef(X)‖p ≤ KL

L∑
`=1

Υ`
∑
J∈P`

p#J /2‖ED`f(X)‖J .

Here D` is the `th derivative of f .

C Preliminary Proofs
Proof of Proposition 2.2. We have the following equality:

c0 = Cov(f(Z, ε), Z2) = E[ϕ(Z)Z2]− Eϕ(Z) = ED2ϕ(Z) > 0,

where the last (and key) equation follows by Stein’s Lemma [see, e.g., Lemma 4 of 30].

Proof of Lemma 3.1. First of all we notice that:
E[Y (X⊗2 − I)] = E[(Y − µ)(X⊗2 − I)] = E(Y − µ)X⊗2.

Hence proving Lemma 3.1 is equivalent to showing:

β∗ = argmax
‖v‖2=1

E[(Y − µ)(v>X)2].

Next, decompose:

v>X = (v>β∗)β∗>X + (v − (v>β∗)β∗>)X = (v>β∗)β∗>X + β⊥
>
X,

10



where we used the shorthand notation β⊥ := v− (v>β∗)β∗, for the vector β⊥ which is orthogonal
to β. In terms of this notation, we have the following identity:

E[(Y − µ)(v>X)2] = (v>β∗)2E[(Y − µ)(β∗>X)2]

+ 2(v>β∗)E[(Y − µ)(β∗>X)(β⊥
>
X)] + E[(Y − µ)(β⊥

>
X)2].

We next deal with the last two terms of the above decomposition. Since β⊥>X ⊥⊥ β∗>X we have
that the second term:

E[(Y − µ)(β∗>X)(β⊥
>
X)] = E[(Y − µ)(β∗>X)]E[β⊥

>
X] = 0.

For the third term due to the same independence (β⊥>X ⊥⊥ β∗>X) we have:

E[(Y − µ)(β⊥
>
X)2] = E[(Y − µ)]E[(β⊥

>
X)2] = 0.

Hence:
E[(Y − µ)(v>X)2] = (v>β∗)2E[(Y − µ)(β∗>X)2] = (v>β∗)2c0.

Since (2.1) implies that c0 > 0, by Cauchy-Schwartz the maximizer of the above expression is
v = ±β∗.

Proof of Proposition 2.3. We prove the three statements in turn.
(i) Let Z ′ be an independent copy of Z. We have the following chain of equalities:

c0 = E(ϕ(Z)− Eϕ(Z))Z2 = E(ϕ(Z)− Eϕ(Z ′))Z2 = E(ϕ(Z)− ϕ(Z ′))Z2.

By symmetry one also has: c0 = E(ϕ(Z ′)− ϕ(Z))(Z ′)2. Adding the last two equations yields:

2c0 = E[(ϕ(Z)− ϕ(Z ′))(Z2 − (Z ′)2)]

= EX,X′∼|N (0,1)|[(ϕ(X) + ϕ(−X)− (ϕ(X ′) + ϕ(−X ′)))(X2 − (X ′)2)]/2

> 0,

where we used the fact that sign(ϕ(X) + ϕ(−X) − (ϕ(X ′) + ϕ(−X ′))) = sign(X2 − (X ′)2).
The last inequality is strict since by our condition the integrand is strictly positive on the set
[0, z2]× [z1,∞) ⊂ R2 which is a set of positive Lebesgue measure.

(ii) To see (ii) for any two points x < y, take vx ∈ ∂ϕ(x) and vy ∈ ∂ϕ(y) to be arbitrary points in the
corresponding sub-differentials. Adding the following two inequalities:

ϕ(x)− ϕ(y) ≥ vy(x− y), ϕ(y)− ϕ(x) ≥ vx(y − x),

we conclude that (vx − vy)(x − y) ≥ 0. Notice that since ϕ is convex, by Jensen’s inequality,
ϕ(z) + ϕ(−z) ≥ 2ϕ(0) for any z ≥ 0. Next take z > z′ > 0, and consider the difference:

ϕ(z) + ϕ(−z)− ϕ(z′)− ϕ(−z′) ≥ (vz′ − v−z′)(z − z′) ≥ 0,

where vz′ ∈ ∂ϕ(z′) and v−z′ ∈ ∂ϕ(−z′) are arbitrary sub-gradients, and the last inequality
follows by the fact that z′ > 0 and hence vz′ ≥ v−z′ as we verified before. The above inequality
becomes strict whenever z′ ≥ z0 since vz′ − v−z′ is non-decreasing and by assumption:

z0vz0 ≥ ϕ(z0)− ϕ(0) > ϕ(0)− ϕ(−z0) ≥ v−z0z0,
and hence vz0 − v−z0 > 0. Hence we may take z1 = 2z0 and z2 = z0 in (i) to complete the proof.

(iii) Statement (iii) is an implication of the fact that we can control the tail bound of g1(Z). Notice that
when 0 < t ≤ max{|a|, |b|} we trivially have P(|g1(Z)| ≥ t) ≤ 1. When t > max{|a|, |b|} using
our assumption, by a standard normal tail bound we have:

P(|g1(Z)| ≥ t) ≤ P(|Z| ≥
√
t/C) ≤ 2 exp(−t/(2C)) ≤ exp(1− t/(2C)).

Hence setting K = max{|a|, |b|, 2C} shows that in any case P(|g1(Z)| ≥ t) ≤ exp(1 − t/K),
which shows that ‖g1(Z)‖ψ1 ≤ cK < ∞ for some absolute constant c. Finally by the triangle
inequality we conclude:

‖g1(Z)‖ψ1 + ‖g2(ε)‖ψ1 <∞,
which completes the proof.

Lemma C.1. If h is a convex function such that h(z0) + h(−z0) > 2h(0) for some z0 > 0, E|h(z +
ε)| < ∞ for every z ∈ R, and E|h(Z + ε)| < ∞ we have ϕ(z) = Eh(z + ε) is convex, sub-
differentiable and there exists a z′0 > 0 such that ϕ(z′0) + ϕ(−z′0) > 2ϕ(0).
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Proof of Lemma C.1. Since the function h is convex and the expectation is a linear operator it follows
that ϕ(z) is indeed convex. The linearity of the expectation operator, coupled with the fact that the
function |h(z + ε)| is integrable for all z, additionally implies that ϕ(z) is sub-differentiable with
E∂εh(z + ε) ∈ ∂ϕ(z)2, where ∂εh(z + ε) ∈ ∂h(z + ε) is chosen so that ε 7→ ∂εh(z + ε) is a
function3. Next, notice that for any fixed ε, we have:

EZ [h(Z + ε) + h(−Z + ε)] > 2h(ε).

The last inequality is strict, since by Jensen’s inequality EZ [h(Z + ε) + h(−Z + ε)] ≥ h(EZ + ε) +
h(−EZ + ε) = 2h(ε), and equality can be achieved only when h is linear, which is not the case
since h(z0) + h(−z0) > 2h(0) by assumption. Take an expectation with respect to ε and exchange
the expectations (by Fubini’s theorem, recall that E|h(Z + ε)| <∞) to obtain:

EZEε[h(Z + ε) + h(−Z + ε)] > 2Eεh(ε).

Naturally, the above implies the existence of z′0 such that:
Eε[h(z′0 + ε) + h(−z′0 + ε)] > 2Eεh(ε),

and completes the proof.

D Proofs for Initialization Step
Proof of Proposition 3.2. The proof follows by an application of Lemma B.1 and Lemma D.2.

Lemma D.1. Let A = avv> − bww> be a symmetric rank two matrix, with a > b ≥ 0 and
‖v‖2 = ‖w‖2 = 1, and let N be a symmetric noise matrix. Then, assuming that ‖N‖2 ≤ a−b

2 the
principal eigenvector v̂ of A + N satisfies:

|v̂>v| ≥
[a− b− 2‖N‖2

a

]1/2
Proof of Lemma D.1. First off, an elementary calculation shows that the non-zero spectrum of A is:

{λ1(A), λd(A)} =
{a− b±√(a− b)2 + 4ab(1− v>w)

2

}
.

Next we have:
a(v>v̂)2 + ‖N‖2 ≥ v̂>(A + N)v̂ ≥ λ1(A)− ‖N‖2,

and hence:

(v>v̂)2 ≥ a− b+
√

(a− b)2 + 4ab(1− v>w)

2a
− 2
‖N‖2
a

(D.1)

≥ a− b− 2‖N‖2
a

, (D.2)

where the last inequality follows by Cauchy-Schwartz.

Lemma D.2. Assume that n is large enough so that s
√

log d
n < ( 1

6 −
κ
4 ) c0

(C1+C2)
for some small but

fixed κ > 0 and constants C1, C2 as defined in Lemmas D.6 and D.7. Put λn = (C1 + C2)
√

log d
n .

There exists a sign matrix Û with ÛSβ∗Sβ∗ = sign(β∗Sβ∗
) sign(β∗Sβ∗

)> such that the principal

eigenvector of Σ̂− λÛ, v̂ satisfies:
|v̂>β∗| ≥ κ,

with probability at least 1− 4d−1 −O(n−1).
Remark D.3. The proof of Lemma D.2 also shows that with high probability the vector v̂ can be
identified with a vector ṽ (the principal eigenvector of Σ̂Sβ∗ ,Sβ∗ − λnÛSβ∗ ,Sβ∗ see below) which
is independent of the data XSc

β∗
such that v̂ ≡ ṽ with high probability. This becomes evident upon

realizing that the matrix NSβ∗Sβ∗ depends solely on XSβ∗ . In addition it is evident that the support
supp(v̂) ⊂ Sβ∗ and supp(ṽ) ⊂ Sβ∗ .

2The fact that E∂εh(z + ε) exists is implied by E|h(z + ε)| < ∞.
3Note also that ε 7→ ∂εh(z + ε) is monotone and hence measurable.
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Proof of Lemma D.2. Setting λn = (C1 + C2)
√

log d
n and using Lemma D.4 gives us that

Σ̂−λnÛ =

[
ηβ∗Sβ∗

β∗>Sβ∗
− λn sign(β∗Sβ∗

) sign(β∗Sβ∗
)> + NSβ∗Sβ∗ NSβ∗S

c
β∗
− λnÛSβ∗S

c
β∗

NSc
β∗Sβ∗ − λnÛSc

β∗Sβ∗ NSc
β∗S

c
β∗
− λnÛSc

β∗S
c
β∗

]
.

We can select the sign matrix Û such that all three terms which do not correspond to the Sβ∗Sβ∗
“corner” of the above visualization are ≡ 0, since by Lemma D.4 we have that ‖N‖max ≤ (C1 +

C2)
√

log d
n ≤ λn with high probability. Recall that by our assumption on the sample size we have

λn ≤ c0
6s and hence λnÛSc

β∗Sβ∗ ≤
c0
6

sign(β∗Sβ∗
)

√
s

sign(β∗Sβ∗
)>

√
s

. Using Lemmas D.1 and D.4 on the

event ‖NSβ∗Sβ∗‖2 ≤ (C1 + C2)s
√

log d
n we have:

|v̂>Sβ∗
β∗Sβ∗

| ≥
η − c0

6 − 2‖NSβ∗Sβ∗‖2
η

≥

≥ 1− 1

3
− 4‖NSβ∗Sβ∗‖2/c0 ≥

2

3
− 4

(C1 + C2)

c0
s

√
log d

n
≥ κ,

for values of n large enough so that the above expression is positive, which concludes the proof.

Lemma D.4. We have that:
Σ̂ = ηβ∗β∗> + N, (D.3)

where η > c0/2 and ‖NSβ∗Sβ∗‖2 ≤ (C1 + C2)s
√

log d
n and ‖N‖max ≤ (C1 + C2)

√
log d
n with

probability at least 1− 4d−1 −O(n−1), where C1 and C2 are constants depending on f, ε.

Proof of Lemma D.4. First we observe that decomposition (D.3) holds with:

ηβ∗β∗> =
1

n

n∑
i=1

Yi(β
∗>Xi)

2β∗β∗> +
1

n

n∑
i=1

Yi(Pβ∗⊥ − Id),

N =
1

n

n∑
i=1

Yi(β
∗>Xi)(β

∗X>i Pβ∗⊥ + Pβ∗⊥Xiβ
∗>) +

1

n

n∑
i=1

Yi[Pβ∗⊥(X⊗2i − Id)Pβ∗⊥ ],

where Pβ∗⊥ = (Id−β∗β∗>). Lemma D.5 shows that η ≥ c0/2 with probability at least 1−O(n−1).
Next, Lemma D.6 and Lemma D.7 show that:

‖N‖max ≤ (C1 + C2)

√
log d

n
,

with probability at least 1− 4d−1 −O(n−1), where the constants C1 and C2 depend on f, ε. Using
the fact that ‖NSβ∗Sβ∗‖2 ≤ ‖NSβ∗Sβ∗‖1 ≤ s‖N‖max completes the proof.

Lemma D.5. We have that η defined in (D.3) satisfies
η ≥ c0/2,

with probability at least 1− 4Var[f(Z,ε)(Z2−1)]
c20

n−1.

Proof of Lemma D.5. Grouping the first two terms by Chebyshev’s inequality we have that:

P
(∣∣∣ 1
n

n∑
i=1

Yi((β
∗>Xi)

2 − 1)− c0
∣∣∣ ≥ t) ≤ Var[f(Z, ε)(Z2 − 1)]

nt2
.

Notice that in the last inequality we have Var[(f(Z, ε)(Z2 − 1)] < ∞ since we are assuming that
f(Z, ε) is sub-exponential. Setting t = c0/2 brings the above probability bound to zero at a rate
n−1.

Lemma D.6. We have that:∥∥∥ 1

n

n∑
i=1

Yi(β
∗>Xi)[β

∗X>i Pβ∗⊥ + Pβ∗⊥Xiβ
∗>]
∥∥∥
max
≤ C1

√
log d

n
,
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where C1 is a constant depending on f, ε, with probability at least 1− 2d−1 − Var[f2(Z,ε)Z2]
(E[f2(Z,ε)Z2)])2n

−1.

Proof of Lemma D.6. We will only deal with the first term of the sum, as the second term follows
by the same argument after transposition. First notice that Yi(β∗>Xi) ⊥⊥X>i Pβ∗⊥ . Analyzing the
first part of this term row-wise, for j ∈ Sβ∗ (β∗j 6= 0) we have:

1

n

n∑
i=1

Yiβ
∗
j (β∗>Xi)X

>
i Pβ∗⊥ ∼ N

(
0, β∗2j

1

n2

n∑
i=1

Y 2
i (β∗>Xi)

2Pβ∗⊥
)
.

By Chebyshev’s inequality we have:

P
(∣∣∣ 1
n

n∑
i=1

Y 2
i (β∗>Xi)

2 − E[f2(Z, ε)Z2]
∣∣∣ ≥ t) ≤ Var[f2(Z, ε)Z2]

nt2
,

assuming Var[f2(Z, ε)Z2] <∞. Putting t = E[f2(Z, ε)Z2] brings the above probability converge
to zero at a rate n−1. Hence, by a conditioning argument, a standard normal tail bound coupled with
the facts that ‖Pβ∗⊥‖2 ≤ 1, |β∗j | ≤ 1 and a union bound, we obtain:

P
(

max
j∈[d]

∥∥∥ 1

n

n∑
i=1

Yi(β
∗>Xi)β

∗
jX
>
i Pβ∗⊥

∥∥∥
∞
> t
)
≤ 2d2 exp

(
− nt2

4E[f2(Z, ε)Z2]

)
,

Plugging in

t = 2
√

3Ef2(Z, ε)Z2

√
log d

n
,

brings the probability to 2d−1. This completes the proof with C1 = 4
√

3Ef2(Z, ε)Z2.

Lemma D.7. Let Yi = f(X>i β
∗, ε), where Xi ∼ N (0, I). Assume that f and ε are such that

‖f(Z, ε)‖ψ1
≤ K for Z ∼ N (0, 1) and Z ⊥⊥ ε, and in addition let log d = o(n/ log2 n). Then:∥∥∥ 1

n

n∑
i=1

YiPβ∗⊥(X⊗2i − Id)Pβ∗⊥
∥∥∥
max
≤
√
C2 log d

n
,

with probability at least 1 − 2d−1 − (211K4/(Ef2(Z, ε))2 + e)n−1, for some absolute value C2

depending on K, and large values of n.

Proof of Lemma D.7. Notice that by the properties of the multivariate normal distribution one has
that Yi ⊥⊥ Pβ∗⊥(X⊗2i −Id)Pβ∗⊥ . Next we have thatZi := Pβ∗⊥Xi ∼ N (0,Pβ∗⊥), and thus, since
‖Pβ∗⊥‖2 ≤ 1, we have that each individual entry ofZi is a normally distributed random variable with
variance at most one. Hence we have that for any j, k ∈ [d]: ‖ZijZik‖ψ1

≤ 2‖Zij‖ψ2
‖Zik‖ψ2

≤ 2,
and hence conditionally on Yi one has

‖ZijZik − EZijZik‖ψ1
= ‖ZijZik −Pβ∗⊥,jk‖ψ1

≤ 4,

for all j, k ∈ [d]. Next conditionally on the Yi values and a Bernstein type of inequality (see, e.g.,
Proposition 5.16 of [32]) we obtain:

P
(∥∥∥ 1

n

n∑
i=1

YiPβ∗⊥(X⊗2i − Id)Pβ∗⊥
∥∥∥
max
≥ t
)

(D.4)

≤ 2d2 exp
[
− cmin

( nt2

16n−1
∑n
i=1 Y

2
i

,
nt

4 maxi∈[n] |Yi|

)]
, (D.5)

for an absolute constant c > 0. Using the union bound and the fact that Yi are sub-exponential we
obtain:

P(max |Yi| ≥ t) ≤ n exp(1− t/(c′K)), (D.6)
for some absolute constant. Setting t = 2c′K log(n) brings the above probability converging to zero
at a rate n−1. Furthermore by Chebyshev’s inequality we obtain:

P
(∣∣∣n−1 n∑

i=1

Y 2
i − EY 2

∣∣∣ ≥ t) ≤ Var(Y 2
i )n−1t−2 ≤ 29K4n−1t−2, (D.7)

and thus we can set t = EY 2/2 to bring the above probability to zero at a rate n−1. In addition
we have EY 2/2 ≤ n−1

∑n
i=1 Y

2
i ≤ 2EY 2 with probability at least 211K4n−1/(EY 2)2. Selecting

14



t =
√

96EY 2 log d
cn in (D.4) gives us that:

t ≤ EY 2

c′K log n
≤

16n−1
∑n
i=1 Y

2
i

4 maxi∈[n] |Yi|
,

where the first inequality in the preceding display holds for large enough values of n so long as
log d = o(n/ log2 n). Hence we conclude:∥∥∥ 1

n

n∑
i=1

YiPβ∗⊥(X⊗2i − Id)Pβ∗⊥
∥∥∥
max
≤
√

96EY 2 log d

cn
,

with probability at least 1−2d−1− (211K4/(EY 2)2 +e)n−1. Taking into account that EY 2 ≤ 4K2

we obtain that C2 = 384K2/c.

E Proofs for Second Step
Remark E.1. For simplicity of presentation we will subtract n from the indexes of the set S2 in
the proofs, i.e., instead of having observations indexed in the range S2 = {n+ 1, . . . , 2n} we will
pretend that our observations are in the range {1, . . . , n}.

Proof of Theorem 3.3. Take the fixed estimate v̂ from the first step (recall that ‖v̂‖2 = 1), and
decompose it to:

v̂ = (v̂>β∗)β∗ + β̂⊥.

By the Pythagorean theorem we have 1 = ‖v̂‖22 = (v̂>β∗)2‖β∗‖22 + ‖β̂⊥‖22, which implies that

‖β̂⊥‖2 =
√

1− (v̂>β∗)2 ≤ 1. (E.1)

Put α := c0v̂
>β∗ so by Lemma D.2 we have |α| > κc0 with high probability. By formulation (3.6)

we have:
1

2n
‖X(b̂− αβ∗)‖22 + λn‖b̂‖1 ≤

1

n

〈
(Y − Y )�Xv̂ − αXβ∗,X(b̂− αβ∗)

〉
+ νn‖αβ∗‖1.

We handle the empirical process term in Lemma E.3, which also presents the main difficulty in the
analysis of the `1 regularized least squares procedure. Using this result we conclude that:

1

2n
‖X(b̂− αβ∗)‖22 + νn‖b̂‖1 ≤ C̃

√
log d

n

[
‖b̂− αβ∗‖1 +

1√
n
‖X(b̂− αβ∗)‖2

]
+ νn‖αβ∗‖1,

(E.2)

with probability at least 1−O(n−1 +d−1). We now distinguish two cases. First assume that ‖X(b̂−
αβ∗)‖2 > 2C̃

√
log d. Then (E.2) implies that:

1

4n
‖X(b̂− αβ∗)‖22 + νn‖b̂‖1 ≤ C̃

√
log d

n
‖b̂− αβ∗‖1 + νn‖αβ∗‖1, (E.3)

Next using a standard trick [see, e.g., 4, 6] we have:

‖b̂‖1 = ‖b̂Sβ∗‖1 + ‖b̂Sc
β∗
‖1 ≥ ‖αβ∗Sβ∗

‖1 − ‖b̂Sβ∗ − αβ
∗
Sβ∗
‖1 + ‖b̂Sc

β∗
‖1,

‖b̂− αβ∗‖1 = ‖b̂Sβ∗ − αβ
∗
Sβ∗
‖1 + ‖b̂Sc

β∗
‖1.

Selecting νn ≥ 2C̃
√

log d
n , the above equalities in combination with (E.3) guarantee that:

1

4n
‖X(b̂− αβ∗)‖22 + νn‖b̂Sc

β∗
− αβ∗Sc

β∗
‖1 ≤ 3νn‖b̂Sβ∗ − αβ

∗
Sβ∗
‖1. (E.4)

Using Corollary 1 from [29], since clearly Id satisfies the RE condition of order 2s with constants
(3, 1) (i.e., ∀S ∈

(
[d]
2s

)
∀θ ∈ {‖θSc‖1 ≤ 3‖θS‖1} we have ‖θ‖2 ≤ ‖Iθ‖2) we can further bound:

1

4n
‖X(b̂− αβ∗)‖22 ≥

1

4 · 82
‖b̂− αβ∗‖22, (E.5)

with probability at least 1 − c′ exp(−c′′n) if n > c′′′42s log d where c′, c′′, c′′′ > 0 are absolute
constants. On the above event, (E.4) implies:

1

4 · 82
‖b̂− αβ∗‖22 ≤ 3νn‖b̂Sβ∗ − αβ

∗
Sβ∗
‖1 ≤ 3νn

√
2s‖b̂− αβ∗‖2,
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where we used Cauchy-Schwartz and the fact that the vector b̂Sβ∗ −αβ∗Sβ∗
is at most 2s sparse. The

above inequality gives us that:

‖b̂− αβ∗‖2 ≤ 12 · 82
√

2sνn. (E.6)

In the second case when ‖X(b̂− αβ∗)‖2 ≤ 2C̃
√

log d, on the event (E.5) we have:

‖b̂− αβ∗‖2 ≤ 32C̃

√
log d

n
,

and we see that in either case bound (E.6) holds. Before we complete the proof we need the following
straightforward result:

Lemma E.2. Assume that n is large enough so that 12 · 82
√

2sνn ≤ κc0/2. Then with probability
at least 1−O(n−1 + d−1) we have:

min
η∈{1,−1}

∥∥∥∥∥ b̂

‖b̂‖2
− ηβ∗

∥∥∥∥∥
2

≤ 38 · 82
√

2sνn
κc0

Finally notice that s
√

log d
n < R implies that 12 · 82

√
2sνn ≤ κc0/2 when R is small enough.

Proof of Lemma E.2. Put r = 12 · 82
√

2sνn for brevity. By (E.6) and the triangle inequality we can
conclude that:

|α| − r ≤ ‖b̂‖2 ≤ r + |α|.

Additionally:∥∥∥∥∥ b̂

‖b̂‖2
− sign(α)β∗

∥∥∥∥∥
2

≤ ‖b̂− αβ
∗‖2 + |‖b̂‖2 − |α||
‖b̂‖2

≤ 2r

|α| − r
≤ 4r

|α|
≤ 4r

κc0
,

with the last two inequalities holding with high probability when r < κc0/2 (≤ |α|/2 with high
probability by Lemma D.2). This completes the proof.

Lemma E.3. There exists a constant C̃ depending on f, ε such that:

1

n

〈
(Y − Y )�Xv̂ − αXβ∗,X(b̂− αβ∗)

〉
≤ C̃

√
log d

n

[ 1√
n
‖X(b̂− αβ∗)‖2 + ‖b̂− αβ∗‖1

]
,

with probability at least 1−O(n−1 + d−1).

Proof of Lemma E.3. Using Hölder’s inequality we obtain:
1

n

〈
(Y − Y )�Xv̂ − αXβ∗,X(b̂− αβ∗)

〉
≤ 1

n
‖X>[(Y − µ)�Xv̂ − αXβ∗]‖∞‖b̂− αβ∗‖1

(E.7)

+
1

n
‖(Y − µ)�Xv̂‖2‖X(b̂− αβ∗)‖2

where we have set µ := EY for brevity. We first handle the second term. We have 1√
n
‖(Y − µ)�

Xv̂‖2 = |Y − µ| 1√
n
‖Xv̂‖2. Since Yi is assumed to be sub-exponential by a Bernstein type of

inequality we have:
P(|Y − µ| ≥ t) ≤ 2 exp(−cmin(nt2/4K2, nt/2K))

where c is an absolute constant. Thus we conclude that |Y − µ| ≤ 2K√
c

√
log d
n with probability at

least 2d−1, for values of n such that
√

log d
n < c. Also since we have Xv̂ ∼ N (0, In) we obtain that

‖Xv̂‖22 ∼ χ2
n. Hence by Chebyshev’s inequality we obtain:

P(|‖Xv̂‖22/n− 1| ≥ t) ≤ 2/(nt),

and thus by plugging in t = 1, we conclude that 1√
n
‖Xv̂‖2 ≤

√
2 with probability at least 1− 2n−1.

Hence 1√
n
‖(Y − µ)�Xv̂‖2 ≤ C̃1

√
log d
n with probability at least 1−O(n−1)− 2d−1.
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Next we analyze the sup norm term appearing in inequality (E.7). The first fact we observe is that by
construction this term is unbiased since:

E[(Y − µ)X⊗2β∗(v̂>β∗)− αX⊗2β∗] + E[(Y − µ)X⊗2β̂⊥]

= β∗E[(Y − µ)(X>β∗)2(v̂>β∗)− αβ∗>X⊗2β∗]︸ ︷︷ ︸
0

+ E[(Y − µ)Pβ∗⊥X
⊗2β∗(v̂>β∗)]︸ ︷︷ ︸

0

−E[αPβ∗⊥X
⊗2β∗]︸ ︷︷ ︸

0

+ E[(Y − µ)Pβ∗⊥X
⊗2β̂⊥]︸ ︷︷ ︸

0

+β E[(Y − µ)β∗>X⊗2β̂⊥]︸ ︷︷ ︸
0

.

Now according to the decomposition in the preceding display, we break down the sup norm term in
(E.7) into mean zero terms using the triangle inequality:

n−1‖X>[(Y − µ)�Xv̂ − αXβ∗]‖∞ ≤ n−1‖P{β∗,β̂⊥}⊥X>[(Y − µ)�Xβ̂⊥]‖∞ (E.8)

+ n−1‖β∗β∗>X>[(Y − µ)�Xβ̂⊥]‖∞

+
n−1

‖β̂⊥‖22
‖β̂⊥(β̂⊥)>X>[(Y − µ)�Xβ̂⊥]‖∞

+ n−1‖β∗β∗>X>[(Y − µ)�Xβ∗ − c0Xβ∗]‖∞
+ n−1‖Pβ∗⊥X>[(Y − µ)�Xβ∗ − c0Xβ∗]‖∞,

where in the last two terms we used the fact that |v̂>β∗| ≤ 1 and P{β∗,β̂⊥} is the projection on the

space span{β∗, β̂⊥}⊥. We use Lemma E.4 to control the first term of the decomposition. Lemma
E.5 handles the second term, and Lemmas E.7 and E.9 show concentration for the remaining terms.
We conclude that there exists a constant C̃2 such that:

n−1‖X>[(Y − µ)�Xv̂ − αXβ∗]‖∞ ≤ C̃2

√
log d

n
,

with probability at least 1−O(n−1 +d−1), which is what we aimed to show with C̃ = max(C̃1, C̃2).

Lemma E.4. We have that:∥∥∥ 1

n

n∑
i=1

(Yi − µ)X>i β̂
⊥X>i P{β∗,β̂⊥}⊥

∥∥∥
∞
≤ ‖β̂⊥‖2C3

√
log d

n
,

for an absolute constant C3 depending on f and ε with probability at least 1 − 2d−1 −
Var(f(Z,ε)−Ef(Z,ε))2
[E(f(Z,ε)−Ef(Z,ε))2]2n

−1.

Proof of Lemma E.4. Notice that X>i P{β∗,β̂⊥}⊥ is independent of (Yi − µ)X>i β̂
⊥. Hence condi-

tionally on Y and Xβ̂⊥ we have

1

n

n∑
i=1

(Yi − µ)X>i β̂
⊥X>i P{β∗,β̂⊥}⊥ ∼ N

(
0,

1

n2

n∑
i=1

(Yi − µ)2(X>i β̂
⊥)2P{β∗,β̂⊥}⊥

)
.

Next using Chebyshev’s inequality we can control the probability of spread about the mean:

P
(∣∣∣ 1
n

n∑
i=1

(X>i β̂
⊥)2

‖β̂⊥‖22
(Yi − µ)2 − E(f(Z, ε)− Ef(Z, ε))2

∣∣∣ ≥ t) ≤ Var[(f(Z, ε)− Ef(Z, ε))2]

nt2
,

(E.9)

by setting t = E(f(Z, ε) − Ef(Z, ε))2. Using the fact that ‖P{β∗,β̂⊥}⊥‖2 ≤ 1, by a standard

normal tail bound and union bound on the event 1
n

∑n
i=1(X>i β̂

⊥)2(Yi−µ)2 ≤ 2‖β̂⊥‖22E(f(Z, ε)−
Ef(Z, ε))2 we obtain:

P
(∥∥∥ 1

n

n∑
i=1

(Yi−µ)X>i β̂
⊥X>i P{β∗,β̂⊥}⊥

∥∥∥
∞
≥ t
)
≤ 2d exp(−nt2/[4‖β̂⊥‖22E(f(Z, ε)−Ef(Z, ε))2]).
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Select t = 2
√

2E(f(Z, ε)− Ef(Z, ε))2‖β̂⊥‖2
√

log d
n yields the desired bound with

C3 = 2
√

2E(f(Z, ε)− Ef(Z, ε))2‖β̂⊥‖2.

Lemma E.5. We have that:

n−1‖β∗β∗>X>[(Y − µ)�Xβ̂⊥]‖∞ ≤ C4

√
log d

n
,

for an absolute constant C4 depending on f and ε with probability at least 1 − 2d−1 −
VarZ2(f(Z,ε)−Ef(Z,ε))2
[EZ2(f(Z,ε)−Ef(Z,ε))2]2 n

−1.

Proof of Lemma E.5. Notice that ‖β∗‖∞ ≤ ‖β∗‖2 = 1 and thus:

n−1‖β∗β∗>X>[(Y − µ)�Xβ̂⊥]‖∞ ≤ n−1|β∗>X>[(Y − µ)�Xβ̂⊥]|.
Next since ((β̂⊥)>Xi) ⊥⊥ (β∗>Xi)(Yi − µ), conditioning on {(β∗>Xi)(Yi − µ)}i∈[n] we obtain:

1

n

n∑
i=1

(β∗>Xi)(Yi − µ)((β̂⊥)>Xi) ∼ N
(

0,
‖β̂‖22
n2

n∑
i=1

(β∗>Xi)
2(Yi − µ)2

)
,

Next,

P
(∣∣∣ 1
n

n∑
i=1

(β∗>Xi)
2(Yi − µ)2 − EZ2(f(Z, ε)− Ef(Z, ε))2

∣∣∣ ≥ t) ≤ Var[Z2(f(Z, ε)− Ef(Z, ε))2]

nt2
,

(E.10)

by setting t = EZ2(f(Z, ε)− Ef(Z, ε))2 we can control the variance term above. The final bound
follows after an application of a standard Gaussian tail bound, where C4 turns out to be C4 =

‖β̂‖22
√
EZ2(f(Z, ε)− Ef(Z, ε))2.

Lemma E.6. For large enough values of n we have:

n−1

‖β̂⊥‖22
‖β̂⊥(β̂⊥)>X>[(Y − µ)�Xβ̂⊥]‖∞ ≤ C5

√
log d

n
,

with prob at least 1− 2d−1 −O(n−1).

Proof of Lemma E.6. We have that ‖β̂⊥‖∞ ≤ ‖β̂⊥‖2, and hence:
n−1

‖β̂⊥‖22
‖β̂⊥(β̂⊥)>X>[(Y − µ)�Xβ̂⊥]‖∞ ≤

n−1

‖β̂⊥‖2
|(β̂⊥)>X>[(Y − µ)�Xβ̂⊥]|.

Observe that X>i β̂
⊥ is independent from Yi − µ, and in addition X>i β̂

⊥ ∼ N (0, ‖β̂⊥‖22). Hence
(X>i β̂

⊥)2/‖β⊥‖22 ∼ χ2
1. Next we make usage of the decomposition:

1

n

∑
i

(Yi − µ)(X>i β̂
⊥)2 =

‖β̂⊥‖22
n

∑
i

(Yi − µ)((X>i β̂
⊥)2/‖β̂⊥‖22 − 1) +

‖β̂⊥‖22
n

∑
i

(Yi − µ).

Since Yi is assumed to be sub-exponential, the second concentrates about zero by Proposition 5.16
in [32]:

P
(∣∣∣n−1 n∑

i=1

Yi − µ
∣∣∣ ≥ t) ≤ 2 exp(−cmin(nt2/K2, nt/K)).

Selecting t = K√
c

√
log d
n gives a bound on the probability equal to 2d−1, for values of n large enough

so that
√

log d
n ≤

√
c. For the remaining term, conditionally on {Yi}i∈[n], by Lemma 1 of [19] we

obtain:

P
(∣∣∣n−1∑

i

(Yi − µ)((X>i β̂
⊥)2/‖β̂⊥‖22 − 1)

∣∣∣ ≥ 2

√√√√n−1
n∑
i=1

(Yi − µ)2
√
t+ 2 max

i∈[n]
|Yi − µ|t

)
≤ 2 exp(−nt). (E.11)
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Next, by the triangle inequality:√√√√n−1
n∑
i=1

(Yi − µ)2 ≤

√√√√n−1
n∑
i=1

Y 2
i + |µ|, max

i∈[n]
|Yi − µ| ≤ max

i∈[n]
|Yi|+ |µ|.

The inequalities in the preceding display allow us to reuse the results (D.6) and (D.7) of Lemma D.7.
Thus conditioning on these events (E.11) implies:

P
(∣∣∣n−1∑

i

(Yi−µ)((X>i β̂
⊥)2/‖β̂⊥‖22−1)

∣∣∣ ≥ (2
√

2EY 2+µ)
√
t+(4c′K log n)t

)
≤ 2 exp(−nt),

on an event failing with probability at most
(

VarY 2

[EY 2]2 + e
)
n−1. Selecting t = log d

n implies that with

probability at least 1− 2d−1 −
(

VarY 2

[EY 2]2 + e
)
n−1 we have:∣∣∣n−1∑

i

(Yi − µ)((X>i β̂
⊥)2/‖β̂⊥‖22 − 1)

∣∣∣ ≤ [(2
√

2EY 2 + µ) + 4c′K]

√
log d

n
,

with the probability of failing being at most exp(−nt) ≤ max(2d−1, O(n−1)). We remind the reader
that we are assuming log(d) = o(n/ log2(n)). This completes the proof with C5 =

(
(2
√

2EY 2 +

µ) + 4c′K + K√
c

)
‖β̂⊥‖2.

Lemma E.7. We have that:

n−1‖β∗β∗>X>[(Y − µ)�Xβ∗ − c0Xβ∗]‖∞ ≤ C6

√
log d

n
,

with probability at least 1−O(n−1)− 3d−1.

Proof of Lemma E.7. As in Lemma E.5 we have:

n−1‖β∗β∗>X>[(Y − µ)�Xβ∗ − c0Xβ∗]‖∞ ≤ n−1|β∗>X>[(Y − µ)�Xβ∗ − c0Xβ∗]|,
since ‖β∗‖∞ ≤ 1. We decompose the right hand side of the preceding display to:

1

n

n∑
i=1

[(β∗>Xi)
2Yi − (c0 + µ)] +

(c0 + µ)

n

n∑
i=1

[1− (β∗>Xi)
2].

To handle the first term one can easily use Chebyshev’s inequality to obtain convergence with
probability at least (log d)−1. However, to sharpen this rate, we work around the classic Chebyshev’s
inequality, by making usage of recent concentration results on polynomials of sub-Gaussian random
variables proved in [1]. We have the following:
Lemma E.8. We have that:

1

n

n∑
i=1

[(β∗>Xi)
2Yi − (c0 + µ)] ≤ C̃6

√
log d

n
,

with probability at least 1−max(O(n−1), d−1).
Usual concentration bounds on the χ2 distribution can be used to control the second term. Using
Lemma 1 of [19] we obtain:

P
(∣∣∣ 1
n

n∑
i=1

(β∗>Xi)
2 − 1

∣∣∣ ≥ 2
√
t+ 2t

)
≤ 2 exp(−nt).

Select t =
√

log d
n to complete the proof assuming that t < 1 and setting C6 = 4(c0 + µ) + C̃6.

Proof of Lemma E.8. First we construct the random variable Zi = ηi|β∗>Xi|1/2|Yi|1/4, where ηi
is a Rademacher random variable. Notice that Z4

i = (β∗>Xi)
2Yi, and hence EZ4

i = (c0 + µ). We
now argue that Z is a sub-Gaussian random variable. By Hölder’s inequality, and the definition of ψ2

norm we have:

E|Z|p ≤
√

E|β∗>X|pE|Y |p/2 ≤ (p‖β∗>X‖ψ2
(‖Y ‖ψ1

/2)1/2)p/2 ≤ (p(‖Y ‖ψ1
/2)1/2)p/2,
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where we used that since β∗>X ∼ N (0, 1) we have ‖β∗>X‖ψ2 ≤ 1. Hence ‖Z‖ψ2 ≤ (K/2)1/4,
and thus Z is sub-Gaussian as claimed.
For the remaining part recall the notation preceding Theorem B.2. For f(x) = x4 and F (x) =∑n
i=1 f(xi) we have D`F (x) = diagd(f

(`)(x1), . . . , f (`)(xn)) for ` ∈ [4]. Using the definition of
ψ2 norm we can easily estimate E[|Z|`] ≤ (

√
`)`‖Z‖`ψ2

. To this end we observe the following:

‖diag`{x1, . . . , xn}‖J = 1(#J = 1)‖x‖2 + 1(#J ≥ 2)‖x‖max.

Hence:
‖ED`F (Z)‖J ≤ [1(#J = 1)

√
n+ 1(#J ≥ 2)]4!/(4− `)!(

√
4− `)4−`‖Z‖4−`ψ2

,

for ` ∈ [4], where with a slight abuse of notation we understand (
√

4− `)(4−`) = 1 when ` = 4.
Using the moment estimate of Theorem B.2 we obtain:
‖F (Z)− EF (Z)‖k

≤ K4

∑
`∈[4]

‖Z‖`ψ2

∑
J∈P`

k#J /2[1(#J = 1)
√
n+ 1(#J ≥ 2)]

4!(
√

4− `)4−`‖Z‖4−`ψ2

(4− `)!

≤ K̃4[
√
kn+ k2],

where P` is the set of partitions of [`], the absolute constant K4 depends solely on the dimension four,
and K̃4 on the ‖Z‖ψ2

norm and K4. Next by Chebyshev’s inequality:

P(n−1|F (Z)− EF (Z)| ≥ t) ≤
K̃k

4 [
√
k/n+ k2/n]k

tk
.

Applying this inequality with k = min(dlog de, d(n log d)1/4e), and t = 2eK̃4

√
log d
n gives us that:

1

n

n∑
i=1

[(β∗>Xi)
2Yi − (c0 + µ)] ≤ C̃5

√
log d

n
,

with probability at least 1− exp(−min(dlog de, d(n log d)1/4e)) ≥ 1−max(O(n−1), d−1) where
C̃5 = 2eK̃4. This is what we wanted to show.

Lemma E.9. We have:

n−1‖Pβ∗⊥X>[(Y − µ)�Xβ∗ − c0Xβ∗]‖∞ ≤ C6

√
log d

n
.

with probability at least 1−O(n−1)− 2d−1.

Proof of Lemma E.9. We have that Pβ∗⊥X> is independent of (Y −µ)�Xβ∗ − c0Xβ∗ and thus:

1

n
Pβ∗⊥X>[(Y − µ)�Xβ∗ − c0Xβ∗] ∼ N

(
0,

1

n2

n∑
i=1

(Yi − µ− c0)2(β∗>Xi)
2Pβ∗⊥

)
.

By Chebyshev’s inequality we obtain that∣∣∣∣∣ 1n
n∑
i=1

(Yi − µ− c0)2(β∗>Xi)
2

∣∣∣∣∣ ≤ 2E((f(Z, ε)− µ− c0)2Z2)

with probability at least Var((f(Z,ε)−µ−c0)2Z2)
[E((f(Z,ε)−µ−c0)2Z2)]2n . Since ‖Pβ∗⊥‖2 ≤ 1, by a standard Gaussian tail

bound we obtain:

P
(
‖Pβ∗⊥X>[(Y − µ)�Xβ∗ − c0Xβ∗]‖∞ ≥ t

)
≤ 2d exp

(
− nt2

4E((f(Z, ε)− µ− c0)2Z2)

)
.

Setting t = 2
√

2E((f(Z, ε)− µ− c0)2Z2) log d
n , completes the proof.
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