
Deep Learning without Poor Local Minima
Appendix

A Proofs of lemmas and corollary in Section4.2

We complete the proofs of the lemmas and corollary in Section4.2.

A.1 Proof of Lemma 4.1

Proof SinceL̄(W ) = 1
2‖Y (W,X) − Y ‖2

F = 1
2 vec(r)T vec(r),

Dvec(W T
k )L̄(W ) =

(
Dvec(r)L̄(W )

) (
Dvec(W T

k ) vec(r)
)

= vec(r)T
(
Dvec(W T

k ) vec(XT IdxWT
1 ∙ ∙ ∙WT

H+1Idy ) −Dvec(W T
k ) vec(Y T )

)

= vec(r)T
(
Dvec(W T

k )(WH+1 ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W1X)T ) vec(WT
k )
)

= vec(r)T
(
WH+1 ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W1X)T

)
.

By setting
(
Dvec(W T

k )L̄(W )
)T

= 0 for all k ∈ {1, ..., H + 1}, we obtain the statement of Lemma

4.1. For the boundary cases (i.e.,k = H + 1 or k = 1), it can be seen from the second to
the third lines that we obtain the desired results with the definition,Wk ∙ ∙ ∙Wk+1 , Idk

(i.e.,
WH+1 ∙ ∙ ∙WH+2 , Idy andW0 ∙ ∙ ∙W1 , Idx ). �

A.2 Proof of Lemma 4.2

Proof From the critical point condition with respect toW1 (Lemma4.1),

0 =
(
Dvec(W T

k )L̄(W )
)T

=
(
WH+1 ∙ ∙ ∙W2 ⊗ XT

)T
vec(r) = vec(XrWH+1 ∙ ∙ ∙W2),

which is true if and only ifXrWH+1 ∙ ∙ ∙W2 = 0. By expandingr, 0 = XXT W T
1 CT C −XY T C.

By solving forW1,

W1 = (CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L, (2)

for an arbitrary matrixL. Due to the property of any generalized inverse (Zhang, 2006, p. 41), we
have thatC(CT C)−CT C = C. Thus,

CW1 = C(CT C)−CT Y XT (XXT )−1 + (C − C(CT C)−CT C)L = C(CT C)−CT Y XT (XXT )−1.

�

A.3 Proof of Lemma 4.3

Proof For thediagonal blocks: the entries of diagonal blocks are obtained simply using the result
of Lemma4.1as

Dvec(W T
k )

(
Dvec(W T

k )L̄(W )
)T

=
(
WH+1 ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W1X)T

)T
Dvec(W T

k ) vec(r).

Using the formula ofDvec(W T
k ) vec(r) computed in the proof of of Lemma4.1 yields the desired

result.
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For the off-diagonalblockswith k = 2, ..., H :

Dvec(W T
k )[Dvec(W T

1 )L̄(W )]T

=
(
WH+1 ∙ ∙ ∙W2 ⊗ X)T

)T
Dvec(W T

k ) vec(r) +
(
Dvec(W T

k )WH+1 ∙ ∙ ∙Wk+1 ⊗ XT
)T

vec(r)

The first term above is reduced to the first term of the statement in the same way as the diagonal
blocks. For the second term,

(
Dvec(W T

k )WH+1 ∙ ∙ ∙W2 ⊗ XT
)T

vec(r)

=
m∑

i=1

dy∑

j=1

((
Dvec(W T

k )WH+1,jWH ∙ ∙ ∙W2

)
⊗ XT

i

)T

ri,j

=
m∑

i=1

dy∑

j=1

(
(Ak)j,∙ ⊗ BT

k ⊗ XT
i

)T
ri,j

=
m∑

i=1

dy∑

j=1

[
(Ak)j,1

(
BT

k ⊗ Xi

)
. . . (Ak)j,dk

(
BT

k ⊗ Xi

)]
ri,j

=
[(

BT
k ⊗

∑m
i=1

∑dy

j=1 ri,j(Ak)j,1Xi

)
. . .

(
BT

k ⊗
∑m

i=1

∑dy

j=1 ri,j(Ak)j,dk
Xi

)]
.

where Ak = WH+1 ∙ ∙ ∙Wk+1 and Bk = Wk−1 ∙ ∙ ∙W2. The third line follows the
fact that (WH+1,jWH ∙ ∙ ∙W2)T = vec(WT

2 ∙ ∙ ∙WT
HWT

H+1,j) = (WH+1,j ∙ ∙ ∙Wk+1 ⊗
WT

2 ∙ ∙ ∙WT
k−1) vec(W T

k ). In the last line, we have the desired result by rewriting
∑m

i=1

∑dy

j=1 ri,j(Ak)j,tXi = X(rWH+1 ∙ ∙ ∙Wk+1)∙,t.

For the off-diagonalblocks with k = H + 1: The first term in the statement is obtained in the
same way as above (for the off-diagonal blocks withk = 2, ..., H). For the second term, notice that

vec(WT
H+1) =

[
(WH+1)T

1,∙ . . . (WH+1)T
dy,∙

]T
where(WH+1)j,∙ is thej-th row vector ofWH+1

or the vector corresponding to thej-th output component. That is, it is conveniently organized as the
blocks, each of which corresponds to each output component (or rather we chosevec(W T

k ) instead
of vec(Wk) for this reason, among others). Also,
(
Dvec(W T

H+1)
WH+1 ∙ ∙ ∙W2 ⊗ XT

)T

vec(r) =

=

[
∑m

i=1

((
D(WH+1)T

1,∙
C1,∙

)
⊗ XT

i

)T

ri,1 . . .
∑m

i=1

((
D(WH+1)T

dy,∙
Cdy,∙

)
⊗ XT

i

)T

ri,dy

]

,

where we also used the fact that
m∑

i=1

dy∑

j=1

((
Dvec((WH+1)T

t,∙)
Cj,∙

)
⊗ XT

i

)T

ri,j =
m∑

i=1

((
Dvec((WH+1)T

t,∙)
Ct,∙

)
⊗ XT

i

)T

ri,t.

For each block entryt = 1, . . . , dy in the above, similarly to the case ofk = 2, ..., H ,
m∑

i=1

((
Dvec((WH+1)T

t,∙)
Cj,∙

)
⊗ XT

i

)T

ri,t =

(

BT
H+1 ⊗

m∑

i=1

ri,t(AH+1)j,tXi

)

.

Here, we have the desired result by rewriting
∑m

i=1 ri,t(AH+1)j,1Xi = X(rIdy )∙,t = Xr∙,t. �

A.4 Proof of Lemma 4.4

Proof Note that a similarity transformation preserves the eigenvalues of a matrix. For eachk ∈
{2, . . . , H + 1}, we take a similarity transform of∇2L̄(W ) (whose entries are organized as in
Lemma4.3) as

P−1
k ∇2L̄(W )Pk =








Dvec(W T
1 )

(
Dvec(W T

1 )L̄(W )
)T

Dvec(W T
k )

(
Dvec(W T

1 )L̄(W )
)T

∙ ∙ ∙

Dvec(W T
1 )

(
Dvec(W T

k )L̄(W )
)T

Dvec(W T
k )

(
Dvec(W T

k )L̄(W )
)T

∙ ∙ ∙
...

...
...
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Here,Pk =
[
eH+1 ek P̃k

]
is the permutation matrix whereei is thei-th element of the standard

basis (i.e., a column vector with 1 in thei-th entry and 0 in every other entries), and̃Pk is any
arbitrarily matrix that makesPk to be a permutation matrix. LetMk be the principal submatrix of
P−1

k ∇2L̄(W )Pk that consists of the first four blocks appearing in the above equation. Then,

∇2L̄(W ) � 0
⇒ ∀k ∈ {2, . . . , H + 1},Mk � 0

⇒ ∀k ∈ {2, . . . , H + 1},R(Dvec(W T
k )(Dvec(W T

1 )L̄(W ))T ) ⊆ R(Dvec(W T
1 )(Dvec(W T

1 )L̄(W ))T ),

Here, the first implication follows the necessary condition with any principal submatrix and the sec-
ond implication follows the necessary condition with the Schur complement (Zhang, 2006, theorem
1.20, p. 44).

Note thatR(M ′) ⊆ R(M) ⇔ (I − MM−)M ′ = 0 (Zhang, 2006, p. 41). Thus, by plugging in
the formulas ofDvec(W T

k )(Dvec(W T
1 )L̄(W ))T andDvec(W T

1 )(Dvec(W T
1 )L̄(W ))T that are derived in

Lemma4.3, ∇2L̄(W ) � 0 ⇒ ∀k ∈ {2, . . . , H + 1},

0 =
(
I − (CT C ⊗ (XXT ))(CT C ⊗ (XXT ))−

)
(CT Ak ⊗ BkW1X)

+
(
I − (CT C ⊗ (XXT ))(CT C ⊗ (XXT ))−

)
[BT

k ⊗ X]
[
Idk−1 ⊗ (rAk)∙,1 . . . Idk−1 ⊗ (rAk)∙,dk

]

whereAk = WH+1 ∙ ∙ ∙Wk+1 andBk = Wk−1 ∙ ∙ ∙W2. Here, we can replace(CT C ⊗ (XXT ))−

by ((CT C)−⊗(XXT )−1) (see AppendixA.7). Thus,I−(CT C⊗(XXT ))(CT C⊗(XXT ))−can
be replaced by(Id1 ⊗ Idy )− (CT C(CT C)− ⊗ Idy ) = (Id1 −CT C(CT C)−)⊗ Idy . Accordingly,
the first term is reduced to zero as
(
(Id1 − CT C(CT C)−) ⊗ Idy

)(
CT Ak ⊗ BkW1X

)
= ((Id1 − CT C(CT C)−)CT Ak) ⊗ BkW1X = 0,

sinceCT C(CT C)−CT = CT (Zhang, 2006, p. 41). Thus, with the second term remained, the
condition is reduced to

∀k ∈ {2, . . . , H + 1}, ∀t ∈ {1, . . . , dy}, (BT
k − CT C(CT C)−BT

k ) ⊗ X(rAk)∙,t = 0.

This implies
∀k ∈ {2, . . . , H + 1}, (R(BT

k ) ⊆ R(CT C) or XrAk = 0),
which concludes the proof for the positive semidefinite case. For the necessary condition of the
negative semidefinite case, we obtain the same condition since

∇2L̄(W ) � 0

⇒ ∀k ∈ {2, . . . , H + 1}, Mk � 0

⇒ ∀k ∈ {2, . . . , H + 1},R(−Dvec(W T
k

)(Dvec(W T
1 )L̄(W ))T ) ⊆ R(−Dvec(W T

1 )(Dvec(W T
1 )L̄(W ))T )

⇒ ∀k ∈ {2, . . . , H + 1},R(Dvec(W T
k

)(Dvec(W T
1 )L̄(W ))T ) ⊆ R(Dvec(W T

1 )(Dvec(W T
1 )L̄(W ))T ).

�

A.5 Proof of Corollary 4.5

Proof From the first condition in the statement of Lemma4.4,

R(WT
2 ∙ ∙ ∙WT

k−1) ⊆ R(WT
2 ∙ ∙ ∙WT

H+1WH+1 ∙ ∙ ∙W2)

⇒ rank(WT
k ∙ ∙ ∙WT

H+1) ≥ rank(WT
2 ∙ ∙ ∙WT

k−1) ⇒ rank(WH+1 ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W2).

The first implication follows the fact that the rank of a product of matrices is at most the minimum
of the ranks of the matrices, and the fact that the column space ofWT

2 ∙ ∙ ∙WT
H+1 is subspace of the

column space ofWT
2 ∙ ∙ ∙WT

k−1. �
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A.6 Proof of Lemma 4.6

Proof For the(Xr = 0) condition: LetMH+1 be the principal submatrix as defined in the proof of
Lemma4.4(the principal submatrix ofP−1

H+1∇
2L̄(W )PH+1 that consists of the first four blocks of

it). Let Bk = Wk−1 ∙ ∙ ∙W2. Let F = BH+1W1XXT WT
1 BT

H+1. Using Lemma4.3 for the blocks
corresponding toW1 andWH+1,

MH+1 =

[
CT C ⊗ XXT (CT ⊗ XXT (BH+1W1)T ) + E

(C ⊗ BH+1W1XXT ) + ET Idy ⊗ F

]

whereE =
[
BT

H+1 ⊗ Xr∙,1 . . . BT
H+1 ⊗ Xr∙,dy

]
. Then, by the necessary condition with the

Schur complement (Zhang, 2006, theorem 1.20, p. 44),MH+1 � 0 implies

0 = ((Idy
⊗ IdH

) − (Idy
⊗ F )(Idy

⊗ F )−)((C ⊗ BH+1W1XXT ) + ET )

⇒ 0 = (Idy
⊗ IdH

− FF−)(C ⊗ BH+1W1XXT ) + (Idy
⊗ IdH

− FF−)ET

= (Idy ⊗ IdH − FF−)ET

=






IdH − FF− ⊗ I1 0
...

0 IdH
− FF− ⊗ I1











BH+1 ⊗ (Xr∙,1)T

...
BH+1 ⊗ (Xr∙,dy )T






=






(IdH
− FF−)BH+1 ⊗ (Xr∙,1)T

...
(IdH

− FF−)BH+1 ⊗ (Xr∙,dy )T






where the second line follows the fact that(Idy ⊗F )− can be replaced by(Idy ⊗F−) (see Appendix
A.7). The third line follows the fact that(I − FF−)BH+1W1X = 0 becauseR(BH+1W1X) =
R(BH+1W1XXT WT

1 BT
H+1) = R(F ). In the fourth line, we expandedE and used the definition

of the Kronecker product. It implies

FF−BH+1 = BH+1 or Xr = 0.

Here, ifXr = 0, we have obtained the statement of the lemma. Thus, from now on, we focus on the
case whereFF−BH+1 = BH+1 andXr 6= 0 to obtain the other condition,C(CT C)−CT = Up̄Up̄.

For the(C(CT C)−CT = Up̄Up̄) condition: By using another necessary condition of a matrix being
positive semidefinite with the Schur complement (Zhang, 2006, theorem 1.20, p. 44),MH+1 � 0
implies that

(Idy ⊗ F ) −
(
C ⊗ BH+1W1XXT + ET

)
(CT C ⊗ XXT )−

(
CT ⊗ XXT (BH+1W1)

T + E
)
� 0 (3)

Since we can replace(CT C ⊗ XXT )− by (CT C)− ⊗ (XXT )−1 (see AppendixA.7), the second
term in the left hand side is simplified as

(
C ⊗ BH+1W1XXT + ET

)
(CT C ⊗ XXT )−

(
CT ⊗ XXT (BH+1W1)

T + E
)

=
((

C(CT C)− ⊗ BH+1W1

)
+ ET

(
(CT C)− ⊗ (XXT )−1

))((
CT ⊗ XXT (BH+1W1)

T
)

+ E
)

=
(
C(CT C)−CT ⊗ F

)
+ ET

(
(CT C)− ⊗ (XXT )−1

)
E

=
(
C(CT C)−CT ⊗ F

)
+
(
rT XT (XXT )−1Xr ⊗ BH+1(C

T C)−BT
H+1

)
(4)

In the third line, the crossed terms –
(
C(CT C)− ⊗ BH+1W1

)
E and its transpose – are vanished

to 0 because of the following. From Lemma4.1,
(
Idy ⊗ (WH ∙ ∙ ∙W1X)T

)T
vec(r) = 0 ⇔

WH ∙ ∙ ∙W1Xr = BH+1W1Xr = 0 at any critical point. Thus,
(
C(CT C)− ⊗ BH+1W1

)
E =[

C(CT C)−BT
H+1 ⊗ BH+1W1Xr∙,1 . . . C(CT C)−BT

H+1 ⊗ BH+1W1Xr∙,dy

]
= 0. The forth line
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follows

E
T
(
(C

T
C)

− ⊗ (XX
T

)
−1
)

E =








BH+1(C
T C)−BT

H+1 ⊗ (r∙,1)
T XT (XXT )−1Xr∙,1 ∙ ∙ ∙ BH+1(C

T C)−BT
H+1 ⊗ (r∙,1)

T XT (XXT )−1Xr∙,dy

...
...

...
BH+1(C

T C)−BT
H+1 ⊗ (r∙,dy )T XT (XXT )−1Xr∙,1 ∙ ∙ ∙BH+1(C

T C)−BT
H+1 ⊗ (r∙,dy )T XT (XXT )−1Xr∙,dy








= rT XT (XXT )−1Xr ⊗ BH+1(C
T C)−BT

H+1,

where the last line is due to the fact that∀t, (r∙,t)T XT (XXT )−1Xr∙,t is a scalar and the fact that

for any matrixL, rT Lr =







(r∙,1)
T Lr∙,1 ∙ ∙ ∙ (r∙,1)

T Lr∙,dy

.

.

.
. . .

.

.

.
(r∙,dy )T Lr∙,1 ∙ ∙ ∙(r∙,dy )T Lr∙,dy





.

From equations3 and4, MH+1 � 0 ⇒

((Idy
− C(CT C)−CT ) ⊗ F ) −

(
rT XT (XXT )−1Xr ⊗ BH+1(C

T C)−BT
H+1

)
� 0. (5)

In the following, we simplify equation5 by first showing thatR(C) = R(UIp̄) and then simplifying
rT XT (XXT )−1Xr, F andBH+1(CT C)−BT

H+1.

Showing that R(C) = R(UIp̄
) (following the proof in Baldi & Hornik, 1989): Let PC =

C(CT C)−CT be the projection operator onR(C). We first show thatPCΣPC = ΣPC = PCΣ.

PCΣPC = WH+1 ∙ ∙ ∙W1XXT WT
1 ∙ ∙ ∙W T

H+1

= Y XT WT
1 ∙ ∙ ∙WT

H+1

= Y XT (XXT )−1XY T PC

= ΣPC ,

where the first line follows Lemma4.2, the second line is due to Lemma4.1with k = H+1 (i.e.,0 =
WH ∙ ∙ ∙W1Xr ⇔ WH+1 ∙ ∙ ∙W1XXT WT

1 ∙ ∙ ∙WT
H = Y XT WT

1 ∙ ∙ ∙W T
H ), the third line follows

Lemma4.2, and the fourth line uses the definition ofΣ. SincePCΣPC is symmetric,ΣPC(=
PCΣPC) is also symmetric and henceΣPC = (ΣPC)T = PT

C ΣT = PCΣ. Thus,PCΣPC =
ΣPC = PCΣ. Note thatPC = UPUT CUT asPUT C = UT C(CT UUT C)−CT U = UT PCU .
Thus,

UPUT CUT UΛUT = PCΣ = ΣPC = UΛUT UPUT CUT ,

which implies thatPUT CΛ = ΛPUT C . Since the eigenvalues (Λ1,1, . . . , Λdy,dy ) are distinct, this
implies thatPUT C is a diagonal matrix (otherwise,PUT CΛ = ΛPUT C implies Λi,i = Λj,j for
i 6= j, resulting in contradiction). BecausePUT C is the orthogonal projector of rank̄p (asPUT C =
UT PCU ), this implies thatPUT C is a diagonal matrix with its diagonal entries being ones (p̄ times)
and zeros (dy − p̄ times). Thus,

C(CT C)−CT = PC = UPUT CUT = UIp̄UT
Ip̄

,

for some index setIp̄. This means thatR(C) = R(UIp̄
).

Simplifying rT XT (XXT )−1Xr:

rT XT (XXT )−1Xr = (CW1X − Y )XT (XXT )−1X(XT (CW1)
T − Y T )

= CW1XXT (CW1)
T − CW1XY T − Y XT (CW1)

T + Σ
= PCΣPC − PCΣ − ΣPC + Σ

= Σ − Up̄ΛIp̄UT
p̄

wherePC = C(CT C)−CT = UIp̄
UT
Ip̄

and the last line follows the facts:

PCΣPC = UIp̄UT
Ip̄

UΛUT UIp̄UT
Ip̄

= UIp̄ [Ip̄ 0]

[
ΛIp̄

0
0 Λ−Ip̄

] [
Ip̄

0

]

UT
Ip̄

= UIp̄ΛIp̄UT
Ip̄

,

PCΣ = UIp̄
UT
Ip̄

UΛUT = UIp̄
[Ip̄ 0]

[
ΛIp̄ 0
0 Λ−Ip̄

] [
UT
Ip̄

U−Ip̄

]

= UT
Ip̄

ΛIp̄
UIp̄

,
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and similarly,ΣPC = UT
Ip̄

ΛIp̄
UIp̄

.

Simplifying F : In the proof of Lemma4.2, by using Lemma4.1 with k = 1, we obtained that
W1 = (CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L. Also, from Lemma4.4, we have that
Xr = 0 or BH+1(CT C)−CT C = (CT C(CT C)−BT

H+1)
T = BH+1. If Xr = 0, we got the

statement of the lemma, and so we consider the case ofBH+1(CT C)−CT C = BH+1. Therefore,

BH+1W1 = BH+1(C
T C)−CT Y XT (XXT )−1.

SinceF = BH+1W1XXT WT
1 BT

H+1,

F = BH+1(C
T C)−CT ΣC(CT C)−BT

H+1.

From Lemma4.4 with k = H + 1, R(BT
H+1) ⊆ R(CT C) = R(BT

H+1W
T
H+1WH+1BH+1) ⊆

R(BT
H+1), which implies thatR(BT

H+1) = R(CT C). Then, we haveR(C(CT C)−BT
H+1) =

R(C) = R(UIp̄
). Accordingly, we can write it in the form,C(CT C)−BT

H+1 = [UIp̄
,0]G2, where

0 ∈ Rdy×(d1−p̄) andG2 ∈ GLd1(R) (ad1 × d1 invertible matrix). Thus,

F = GT
2

[
UT
Ip̄

0

]

UΛUT [UIp̄
,0]G2 = GT

2

[
Ip̄ 0
0 0

]

Λ

[
Ip̄ 0
0 0

]

G2 = GT
2

[
ΛIp̄ 0
0 0

]

G2.

Simplifying BH+1(CT C)−BT
H+1: From Lemma4.4, CT C(CT C)−BH+1 = BH+1 (again since

we are done ifXr = 0). Thus,BH+1(CT C)−BT
H+1 = BH+1(CT C)−CT C(CT C)−BT

H+1. As
discussed above, we writeC(CT C)−BT

H+1 = [UIp̄ ,0]G2. Thus,

BH+1(C
T C)−BT

H+1 = GT
2

[
UT
Ip̄

0

]

[UIp̄ ,0]G2 = GT
2

[
Ip̄ 0
0 0

]

G2.

Puttingresults together: We use the simplified formulas ofC(CT C)−CT , rT XT (XXT )−1Xr, F
andBH+1(CT C)−BT

H+1 in equation5, obtaining

((Idy − UIp̄UT
Ip̄

) ⊗ GT
2

[
ΛIp̄ 0
0 0

]

G2) −

(

(Σ − Up̄ΛIp̄UT
p̄ ) ⊗ GT

2

[
Ip̄ 0
0 0

]

G2

)

� 0.

Due to Sylvester’s law of inertia (Zhang, 2006, theorem 1.5, p. 27), with a nonsingular matrix
U ⊗ G−1

2 (it is nonsingular because each ofU andG−1
2 is nonsingular), the necessary condition is

reduced to

(
U ⊗ G−1

2

)T
((

(Idy − UIp̄UT
Ip̄

) ⊗ GT
2

[
ΛIp̄ 0

0 0

]

G2

)

−

(

(Σ − Up̄ΛIp̄UT
p̄ ) ⊗ GT

2

[
Ip̄0

0 0

]

G2

))
(
U ⊗ G−1

2

)

=

((

Idy −

[
Ip̄ 0

0 0

])

⊗

[
ΛIp̄ 0

0 0

])

−

((

Λ −

[
ΛĪ‘p

0

0 0

])

⊗

[
Ip̄ 0

0 0

])

=

([
0 0

0 I(dy−p̄)

]

⊗

[
ΛIp̄ 0

0 0

])

−

([
0 0

0 Λ−Ip̄

]

⊗

[
Ip̄ 0

0 0

])

=









0 0

0
ΛIp̄ − (Λ−Ip̄ )1,1Ip̄ 0

...
0 ΛIp̄ − (Λ−Ip̄ )(dy−p̄),(dy−p̄)Ip̄









� 0,

which implies that for all(i, j) ∈ {(i, j) | i ∈ {1, . . . , p̄}, j ∈ {1, . . . , (dy − p̄)}}, (ΛIp̄)i,i ≥
(Λ−Ip̄

)j,j . In other words, the index setIp̄ must select the largest̄p eigenvalues whatever̄p is.
SinceC(CT C)−CT = UIp̄UT

Ip̄
(which is obtained above), we have thatC(CT C)−CT = Up̄Up̄ in

this case.

Summarizing the above case analysis, if∇2L̄(W ) � 0 at a critical point,C(CT C)−CT = Up̄Up̄

or Xr = 0. �
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A.7 Generalized inverse of Kronecker product

(A− ⊗ B−) is a generalized inverse ofA ⊗ B.

Proof For a matrixM , the definition of a generalized inverse,M−, is MM−M = M . Setting
M := A ⊗ B, we check if(A− ⊗ B−) satisfies the definition:(A ⊗ B)(A− ⊗ B−)(A ⊗ B) =
(AA−A ⊗ BB−B) = (A ⊗ B) as desired. �

Here, we arenot claiming that(A− ⊗ B−) is the unique generalized inverse ofA ⊗ B. Notice that
the necessary condition that we have in our proof (where we need a generalized inverse ofA⊗B) is
for any generalized inverse ofA⊗B. Thus, replacing it by one of any generalized inverse suffices to
obtain a necessary condition. Indeed, choosing Moore−Penrose pseudoinverse suffices here, with
which we know(A ⊗ B)† = (A† ⊗ B†). But, to give a simpler argument later, we keep more
generality by choosing(A− ⊗ B−) as a generalized inverse ofA ⊗ B.

B Proof of Theorem2.3

We complete the proofs of Theorem2.3. Since we heavily rely on the necessary conditions of local
minima, we remind the reader of the elementary logic: for a point to be a local minimum, it must
satisfy all thenecessaryconditions of local minima, but a point satisfying thenecessaryconditions
can be a point that is not a local minimum (in contrast, a point satisfying thesufficientcondition of
local minimum is a local minimum).

B.1 Proof of Theorem2.3 (ii)

Proof By case analysis, we show that any point that satisfies the necessary conditions and the defi-
nition of a local minimum is a global minimum. When we write a statement in the proof, we often
mean that a necessary condition of local minima implies the statement as it should be clear (i.e., we
are not claiming that the statement must hold true unless the point is the candidate of localminima.).

CaseI: rank(WH ∙ ∙ ∙W2) = p anddy ≤ p: Assume thatrank(WH ∙ ∙ ∙W2) = p. We first obtain a
necessary condition of the Hessian being positive semidefinite at a critical point,Xr = 0, and then
interpret the condition. Ifdy < p, Corollary4.5 with k = H + 1 implies the necessary condition
thatXr = 0. This is because the other conditionp > rank(WH+1) ≥ rank(WH ∙ ∙ ∙W2) = p is
false.

If dy = p, Lemma 4.6 with k = H + 1 implies the necessary condition thatXr = 0 or
R(WH ∙ ∙ ∙W2) ⊆ R(CT C). Suppose thatR(WH ∙ ∙ ∙W2) ⊆ R(CT C). Then, we have that
p = rank(WH ∙ ∙ ∙W2) ≤ rank(CT C) = rank(C). That is,rank(C) ≥ p.

From Corollary4.5with k = 2 implies the necessary condition that

rank(C) ≥ rank(Id1) or XrWH+1 ∙ ∙ ∙W3 = 0.

Suppose the latter:XrWH+1 ∙ ∙ ∙W3 = 0. Sincerank(WH+1 ∙ ∙ ∙W3) ≥ rank(C) ≥ p anddH+1 =
dy = p, the left null space ofWH+1 ∙ ∙ ∙W3 contains only zero. Thus,

XrWH+1 ∙ ∙ ∙W3 = 0 ⇒ Xr = 0.

Suppose the former:rank(C) ≥ rank(Id1). Becausedy = p, rank(C) ≥ p, andR(C) ⊆ R(Y XT )
as shown in the proof of Lemma4.6, we have thatR(C) = R(Y XT ).

rank(C) ≥ rank(Id1) ⇒ CT C is full rank ⇒ Xr = XY T C(CT C)−1CT − XY T = 0,

where the last equality follows the fact that(Xr)T = C(CT C)−1CT Y XT − Y XT = 0 since
R(C) = R(Y XT ) and thereby the projection ofY XT onto the range ofC is Y XT . Therefore, we
have the condition,Xr = 0 whendy ≤ p.

To interpret the conditionXr = 0, consider a loss function with a linear model without any hidden
layer,f(W ′) = ‖W ′X − Y ‖2

F whereW ′ ∈ Rdy×dx . Let r′ = (W ′X − Y )T be the corresponding
error matrix. Then, any point satisfyingXr′ = 0 is known to be a global minimum off by its
convexity.5 For any values ofWH+1 ∙ ∙ ∙W1, there existsW ′ such thatW ′ = WH+1 ∙ ∙ ∙W1 (the

5proof: any point satisfyingXr′ = 0 is a critical point off , which directly follows the proof of Lemma
4.1. Also,f is convex since its Hessian is positive semidefinite for all inputWH+1, and thus any critical point
of f is a global minimum. Combining the pervious two statements results in the desired claim
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opposite is also true whendy ≤ p although we don’t need it in our proof). That is, image(L̄) ⊆
image(f) and image(r) ⊆ image(r′) (as functions ofW andW ′ respectively) (the equality is also
true whendy ≤ p although we don’t need it in our proof). Summarizing the above, whenever
Xr = 0, there existsW ′ = WH+1 ∙ ∙ ∙W1 such thatXr = Xr′ = 0, which achieves the global
minimum value off (f∗) andf∗ ≤ L̄∗ (i.e., the global minimum value off is at most the global
minimum value ofL̄ since image(L̄) ⊆ image(f)). In other words,WH+1 ∙ ∙ ∙W1 achievingXr = 0
attains a global minimum value off that is at most the global minimum value ofL̄. This means that
WH+1 ∙ ∙ ∙W1 achievingXr = 0 is a global minimum.

Thus, we have proved that whenrank(WH ∙ ∙ ∙W2) = p anddy ≤ p, if ∇2L̄(W ) � 0 at a critical
point, it is a globalminimum.

CaseII: rank(WH ∙ ∙ ∙W2) = p anddy > p: We first obtain a necessary condition of the Hessian
being positive semidefinite at a critical point and then interpret the condition. From Lemma4.6, we
have thatC(CT C)−CT = Up̄U

T
p̄ or Xr = 0. If Xr = 0, with the exact same proof as in the case

of dy ≤ p, it is a global minimum. Suppose thatC(CT C)−CT = Up̄Up̄. Combined with Lemma
4.2, we have a necessary condition:

WH+1 ∙ ∙ ∙W1 = C(CT C)−CT Y XT (XXT )−1 = Up̄U
T
p̄ Y XT (XXT )−1.

From Lemma4.4 with k = H + 1, R(WT
2 ∙ ∙ ∙WT

H) ⊆ R(CT C) = R(CT ), which implies that
p̄ , rank(C) = p (sincerank(WH ∙ ∙ ∙W2) = p). Thus, we can rewrite the above equation as
WH+1 ∙ ∙ ∙W1 = UpU

T
p Y XT (XXT )−1, which is the orthogonal projection on to subspace spanned

by thep eigenvectors corresponding to thep largest eigenvalues following the ordinary least square
regression matrix. This is indeed the expression of a global minimum (Baldi & Hornik, 1989; Baldi
& Lu, 2012).

Thus, we have proved that whenrank(WH ∙ ∙ ∙W2) = p, if ∇2L̄(W ) � 0 at a critical point, it is a
globalminimum.

CaseIII: rank(WH ∙ ∙ ∙W2) < p: Suppose thatrank(WH ∙ ∙ ∙W2) < p. Let p̂ = min(p, dy). Then,
if rank(C) ≥ p̂, every local minimum is a global minimum because of the following. Ifp ≤ dy,
rank(WH ∙ ∙ ∙W2) ≥ rank(C) ≥ p̂ = p and thereby we have the case ofrank(WH ∙ ∙ ∙W2) = p
(since we have thatp ≥ rank(WH ∙ ∙ ∙W2) ≥ p where the first inequality follows the definition
of p). For this case, we have already proven the desired statement above. On the other hand,
if p > dy, we havep̄ , rank(C) ≥ dy. Thus, WH+1 ∙ ∙ ∙W1 = Up̄U

T
p̄ Y XT (XXT )−1 =

UUT Y XT (XXT )−1, which is a global minimum. We can see this in various ways. For example,
Xr = XY T UUT − XY T = 0, which means that it is a global minimum as discussed above.

Thus, in the following, we consider the remaining case whererank(WH ∙ ∙ ∙W2) < p and
rank(C) < p̂. In this case, we show that we can haverank(C) ≥ p̂ with arbitrarily small per-
turbations of each entry ofWH+1, . . . ,W1, without changing the loss value. In order to show this,
by induction onk = {1, . . . , H + 1}, we prove that we can haverank(Wk ∙ ∙ ∙W1) ≥ p̂ with
arbitrarily small perturbation of each entry ofWk, . . . ,W1 without changing the value of̄L(W ).

We start with the base case withk = 1. For convenience, we reprint a necessary condition of local
minima that is represented by equation2 in the proof of Lemmas4.2: for an arbitraryL1,

W1 = (CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L1 (6)

Suppose that(CT C) ∈ Rd1×d1 is nonsingular. Then, we have thatrank(WH ∙ ∙ ∙W2) ≥ rank(C) =
d1 ≥ p, which is false in the case being analyzed (the case ofrank(WH ∙ ∙ ∙W2) < p). Thus,CT C
is singular.

If CT C is singular, it is inferred that we can perturbW1 to haverank(W1) ≥ p̂. To see this in a
concrete algebraic way, first note that from Lemma4.6, R(C) = R(Up̄) or Xr = 0. If Xr = 0,
with the exact same proof as in the previous case, it is a global minimum. So, we consider the
case ofR(C) = R(Up̄). Then, we can writeC = [Up̄ 0]G1 for someG1 ∈ GLd1(R) where
0 ∈ Rdy×(d1−p̄). Thus,

CT C = GT
1

[
Ip̄ 0
0 0

]

G1.
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Again, note that the set of all generalized inverse ofGT
1

[
Ip̄ 0
0 0

]

G1 is as follows (Zhang, 2006,

p. 41): {

G−1
1

[
Ip̄ L′

1
L′

2 L′
3

]

G−T
1 | L′

1, L
′
2, L

′
3 arbitrary

}

.

Since equation6 must necessarily hold forany generalized inversein order for a point to be a local
minimum, we choose a generalized inverse withL′

1 = L′
2 = L′

3 = 0 to have a weaker yet simpler
necessary condition. That is,

(CT C)− := G−1
1

[
Ip̄ 0
0 0

]

G−T
1 .

By plugging this into equation6, we obtain the following necessary condition of local minima: for
an arbitraryL1,

W1 = G−1
1

[
UT

p̄

0

]

Y XT (XXT )−1 + (Id1 − G−1
1

[
Ip̄ 0
0 0

]

G1)L1

= G−1
1

[
UT

p̄ Y XT (XXT )−1

0

]

+ G−1
1

[
0 0
0 I(d1−p̄)

]

G1L1

= G−1
1

[
UT

p̄ Y XT (XXT )−1

[0 I(d1−p̄)]G1L1

]

. (7)

Here, [0 I(d1−p̄)]G1L1 ∈ R(d1−p̄)×dx is the last (d1 − p̄) rows of G1L1. Since
rank(Y XT (XXT )−1) = dy (because the multiplication with the invertible matrix preserves the
rank), the submatrix with the first̄p rows in the above have rank̄p. Thus,W1 has rank at least
p̄, and the possible rank deficiency comes from the last (d1 − p̄) rows, [0 I(d1−p̄)]G1L1. Since
WH+1 ∙ ∙ ∙W1 = CW1 = [Up̄ 0]G1W1,

WH+1 ∙ ∙ ∙W1 = [Up̄ 0]

[
UT

p̄ Y XT (XXT )−1

[0 I(d1−p̄)]G1L1

]

= Up̄U
T
p̄ Y XT (XXT )−1.

This means that changing the values of the last (d1 − p̄) rows ofG1L1 (i.e., [0 I(d1−p̄)]G1L1) does
not change the value of̄L(W ). Thus, we consider the perturbation of each entry ofW1 as follows:

W̃1 := W1 + εG−1
1

[
0

Mptb

]

= G−1
1

[
UT

p̄ Y XT (XXT )−1

[0 I(d1−p̄)]G1L1 + εMptb

]

.

Here, with an appropriate choice ofMptb, we can makeW̃1 to be full rank (see footnote6 for the
proof of the existence of suchMptb).6

Thus, we have shown that we can haverank(W1) ≥ min(d1, dx) ≥ min(p, dy) = p̂ with arbitrarily
small perturbation of each entry ofW1 with the loss value being unchanged. This concludes the
proof for the base case of the induction withk = 1.

For the inductive step7 with k ∈ {2, . . . , H + 1}, we have the inductive hypothesis that we can have
rank(Wk−1 ∙ ∙ ∙W1) ≥ p̂ with arbitrarily small perturbations of each entry ofWk−1, . . .W1 without
changing the loss value. Here, we want to show that ifrank(Wk−1 ∙ ∙ ∙W1) ≥ p̂, we can have

6In this footnote, we prove the existence ofεMptb that makesW1 full rank. Although this is trivial since
the set of full rank matrices is dense, we show a proof in the following to be complete. Letp̄′ ≥ p̄ be the rank

of W1. That is, in

[
UT

p̄ Y XT (XXT )−1

[0 I(d1−p̄)]G1L1

]

, there exist̄p′ linearly independent row vectors including the firstp̄

row vectors, denoted byb1, . . . , bp̄′ ∈ R1×dx . Then, we denote the rest of row vectors byv1, v2, . . . , vd1−p̄′ ∈
R1×dx . Letc = min(d1−p̄′, dx−p̄′). There exist linearly independent vectorsv̄1, v̄2, . . . , v̄c such that the set,
{b1, . . . , bp̄′ , v̄1, v̄2, . . . , v̄c}, is linearly independent. Settingvi := vi + εv̄i for all i ∈ {1, . . . , c} makesW1

full rank sinceεv̄i cannot be expressed as a linear combination of other vectors. Thus, a desired perturbation
matrixεMptb can be obtained by settingεMptb to consist ofεv̄1, εv̄2, . . . , εv̄c row vectors for the corresponding
rows and0 row vectors for other rows.

7The boundary cases withk = 2 andk = H +1 as well pose no problem during the proof for the inductive
step: remember our notational definition,Wk ∙ ∙ ∙Wk′ , Idk if k < k′.
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rank(Wk ∙ ∙ ∙W1) ≥ p̂ with arbitrarily small perturbation of each entry ofWk without changing the
value ofL̄(W ). Accordingly, suppose thatrank(Wk−1 ∙ ∙ ∙W1) ≥ p̂. From Lemma4.4, we have the
following necessary condition for the Hessian to be (positive or negative) semidefinite at a critical
point: for anyk ∈ {2, . . . , H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0,

where the first condition is shown to implyrank(WH+1 ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W2) in Corollary
4.5. If the former condition is true,rank(C) ≥ rank(Wk−1 ∙ ∙ ∙W2) ≥ rank(Wk−1 ∙ ∙ ∙W1) ≥ p̂,
which is false in the case being analyzed (i.e., the case whererank(C) < p̂. If this is not the case,
we can immediately conclude the desired statement as it has been already proven for the case where
rank(C) ≥ p̂). Thus, we suppose that the latter condition is true. LetAk = WH+1 ∙ ∙ ∙Wk+1. Then,
for an arbitraryLk,

0 = XrWH+1 ∙ ∙ ∙Wk+1

⇒Wk ∙ ∙ ∙W1 =
(
AT

k Ak

)−
AT

k Y XT (XXT )−1 + (I − (AT
k Ak)−AT

k Ak)Lk (8)

⇒WH+1 ∙ ∙ ∙W1 = Ak

(
AT

k Ak

)−
AT

k Y XT (XXT )−1

= C(CT C)−CT Y XT (XXT )−1 = Up̄U
T
p̄ Y XT (XXT )−1,

where the last two equalities follow Lemmas4.2and4.6 (since ifXr = 0, we immediately obtain
the desired result as discussed above). Taking transpose,

(XXT )−1XY T Ak

(
AT

k Ak

)−
AT

k = (XXT )−1XY T Up̄U
T
p̄ ,

which implies that
XY T Ak

(
AT

k Ak

)−
Ak = XY T Up̄Up̄.

SinceXY T is full rank with dy ≤ dx (i.e., rank(XY T ) = dy), there exists a left inverse and the
solution of the above linear system is unique as((XY T )T XY T )−1(XY T )T XY T = I, yielding,

Ak

(
AT

k Ak

)−
Ak = Up̄U

T
p̄ (= Up̄(U

T
p̄ Up̄)

−1UT
p̄ ).

In other words,R(Ak) = R(C) = R(Up̄).

Suppose that(AT
k Ak) ∈ Rdk×dk is nonsingular. Then, sinceR(Ak) = R(C), rank(C) =

rank(Ak) = dk ≥ p̂ , min(p, dy), which is false in the case being analyzed (the case of
rank(C) < p̂). Thus,AT

k Ak is singular. Notice that for the boundary case withk = H + 1,
AT

k Ak = Idy , which is always nonsingular and thus the proof ends here (i.e., For the case with
k = H + 1, since the latter condition,XrWH+1 ∙ ∙ ∙Wk+1 = 0, implies a false statement, the
former condition,rank(C) ≥ p̂, which is the desired statement, must be true).

If AT
k Ak is singular, it is inferred that we can perturbWk to haverank(Wk ∙ ∙ ∙W1) ≥ min(p, dx).

To see this in a concrete algebraic way, first note that sinceR(Ak) = R(Up̄), we can writeAk =
[Up̄ 0]Gk for someGk ∈ GLdk

(R) where0 ∈ Rdy×(dk−p̄). Then, similarly to the base case with
k = 1, we select a general inverse (we can do this because it remains to be a necessary condition as
explained above) to be

(AT
k Ak)− := G−1

k

[
Ip̄ 0
0 0

]

G−T
k ,

and plugging this into the condition in equation8: for an arbitraryLk,

Wk ∙ ∙ ∙W1 = G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

. (9)

Here, [0 I(dk−p̄)]GkLk ∈ R(dk−p̄)×dx is the last (dk − p̄) rows of GkLk. Since
rank(Y XT (XXT )−1) = dy, the first p̄ rows in the above have rank̄p. Thus,Wk ∙ ∙ ∙W1 has
rank at least̄p and the possible rank deficiency comes from the last (dk − p̄) rows,[0 I(dk−p̄)]GkLk.
SinceWH+1 ∙ ∙ ∙W1 = AkWk ∙ ∙ ∙W1 = [Up̄ 0]GkWk ∙ ∙ ∙W1,

WH+1 ∙ ∙ ∙W1 = [Up̄ 0]

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

= Up̄U
T
p̄ Y XT (XXT )−1,
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which means that changing the values of the last (dk − p̄) rows does not change the value ofL̄(W ).

We consider the perturbation of each entry ofWk as follows. From equation9, all the possible
solutions ofWk can be written as: for an arbitraryL0k

andLk,

Wk = G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

B†
k + LT

0k
(I − BkB†

k).

whereBk = Wk−1 ∙ ∙ ∙W1 andB†
k is the the Moore–Penrose pseudoinverse ofBk. We perturbWk

as

W̃k := Wk + εG−1
k

[
0
M

]

B†
k

= G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk + εM

]

B†
k + LT

0k
(I − BkB†

k).

whereM = Mptb(BT
k Bk)†BT

k Bk. Then,

W̃kWk−1 ∙ ∙ ∙W1 = W̃kBk

= G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

B†
kBk + G−1

k

[
0

εM

]

B†
kBk

= G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

+ G−1
k

[
0

εM

]

B†
kBk

= G−1
k

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk + εMptb(BT
k Bk)†B

T

k Bk

]

,

where the second line follows equation9 and the third line is due to the fact thatMB†
kBk =

Mptb(BT
k Bk)†BT

k (BkB†
kBk) = Mptb(BT

k Bk)†BT
k Bk. Here, we can constructMptb such that

rank(W̃kBk) ≥ p̂ as follows. Letp̄′ ≥ p̄ be the rank ofW̃kBk. That is, in

[
UT

p̄ Y XT (XXT )−1

[0 I(dk−p̄)]GkLk

]

,

there existp̄′ linearly independent row vectors including the firstp̄ row vectors, denoted by
b1, . . . , bp̄′ ∈ R1×dx . Then, we denote the rest of row vectors byv1, v2, . . . , vdk−p̄′ ∈ R1×dx . Since
rank(BT

k Bk) ≥ p̂ (due to the inductive hypothesis), the dimension ofR(BT
k Bk) is at least̂p. There-

fore, there exist vectors̄v1, v̄2, . . . , v̄(p̂−p̄′) such that the set,{bT
1 , . . . , bT

p̄′ , v̄T
1 , v̄T

2 , . . . , v̄T
(p̂−p̄′)}, is

linearly independent and̄vT
1 , v̄T

2 , . . . , v̄T
(p̂−p̄′) ∈ R(BT

k Bk). A desired perturbation matrixMptb can
be obtained by settingMptb to consist of̄v1, v̄2, . . . , v̄(p̂−p̄) row vectors for the first(p̂− p̄) rows and
0 row vectors for the rest:

MT
ptb :=

[
v̄T
1 ∙ ∙ ∙ v̄T

(p̂−p̄) 0 ∙ ∙ ∙ 0
]
.

Then, Mptb(BT
k Bk)†BT

k Bk = (BT
k Bk(BT

k Bk)†MT
ptb)

T = Mptb (since v̄T
1 , v̄T

2 , . . . , v̄T
(p̂−p̄) ∈

R(BT
k Bk)). Thus, as a result of our perturbation, the original row vectorsv1, v2, . . . , v(p̂−p̄′) are

perturbated asvi := vi + εv̄i for all i ∈ {1, . . . , p̂ − p̄′}, which guaranteesrank(W̃kBk) ≥ p̂ since
εv̄i cannot be expressed as a linear combination of other row vectors (b1, . . . , bp̄′ and∀j 6= i, v̄j)
by its construction. Therefore, we have thatrank(Wk ∙ ∙ ∙W1) ≥ p̂ upon such a perturbation onWk

without changing the loss value.

Thus, we conclude the induction, proving that we can haverank(WH+1 ∙ ∙ ∙W1) ≥ p̂ with arbitrar-
ily small perturbation of each parameter without changing the value ofL̄(W ). Sincerank(C) ≥
rank(WH+1 ∙ ∙ ∙W1) ≥ p̂, upon such a perturbation, we have the case whererank(C) ≥ p̂, for
which we have already proven that a critical point is not a local minimum unless it is a global
minimum. This concludes the proof of the case whererank(WH ∙ ∙ ∙W2) < p.

Summarizing the above, any point that satisfies the definition (and necessary conditions) of a local
minimum is a global minimum, concluding the proof ofTheorem2.3 (ii) . �
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B.2 Proof of Theorem2.3 (i)

Proof We can prove the non-convexity and non-concavity from its Hessian (Theorem2.3(i)). First,
considerL̄(W ). For example, from Corollary4.5 with k = H + 1, it is necessary for the Hessian
to be positive or negative semidefinite at a critical point thatrank(WH+1) ≥ rank(WH ∙ ∙ ∙W2) or
Xr = 0. The instances ofW unsatisfying this condition at critical points form some uncountable
set. As an example, consider a uncountable set that consists of the points withWH+1 = W1 = 0
and with anyWH , . . . ,W2. Then, every point in the set defines a critical point from Lemma4.1.
Also, Xr = XY T 6= 0 asrank(XY T ) ≥ 1. So, it does not satisfy the first semidefinite condition.
On the other hand, with any instance ofWH ∙ ∙ ∙W2 such thatrank(WH ∙ ∙ ∙W2) ≥ 1, we have that
0 = rank(WH+1) � rank(WH ∙ ∙ ∙W2). So, it does not satisfy the second semidefinite condition
as well. Thus, we have proven that in the domain of the loss function, there exist points, at which
the Hessian becomes indefinite.This implies Theorem2.3 (i): the functions are non-convex and
non-concave.

�

B.3 Proof of Theorem2.3 (iii)

Proof We now prove Theorem2.3(iii) : every critical point that is not a global minimum is a saddle
point. Here, we want to show that if the Hessian is negative semidefinite at a critical point, then
there is a increasing direction so that there is no local maximum. From Lemma4.3with k = 1,

Dvec(W T
1 )

(
Dvec(W T

1 )L̄(W )
)T

=
(
(WH+1 ∙ ∙ ∙W2)

T (WH+1 ∙ ∙ ∙W2) ⊗ XXT
)
� 0.

The positive semidefiniteness follows the fact that(WH+1 ∙ ∙ ∙W2)T (WH+1 ∙ ∙ ∙W2) andXXT are
positive semidefinite. SinceXXT is full rank, if (WH+1 ∙ ∙ ∙W2)T (WH+1 ∙ ∙ ∙W2) has at least one
strictly positive eigenvalue,(WH+1 ∙ ∙ ∙W2)T (WH+1 ∙ ∙ ∙W2) ⊗ XXT has at least one strictly pos-
itive eigenvalue (by the spectrum property of Kronecker product). Thus, with other variables being
fixed, if WH+1 ∙ ∙ ∙W2 6= 0, with respect toW1 at any critical point, there exists some increas-
ing direction that corresponds to the strictly positive eigenvalue. This means that there is no local
maximum ifWH+1 ∙ ∙ ∙W2 6= 0.

If WH+1 ∙ ∙ ∙W2 = 0, we claim that at a critical point, if the Hessian is negative semidefinite (i.e.,
a necessary condition of local maxima), we can makeWH+1 ∙ ∙ ∙W2 6= 0 with arbitrarily small per-
turbation of each parameter without changing the loss value. We can prove this by using the similar
proof procedure to that used for Theorem2.3 (ii) in the case ofrank(WH ∙ ∙ ∙W2) < p. Suppose
thatWH+1 ∙ ∙ ∙W2 = 0 and thusrank(WH+1 ∙ ∙ ∙W2) = 0. By induction onk = {2, . . . , H + 1},
we prove that we can haveWk ∙ ∙ ∙W2 6= 0 with arbitrarily small perturbation of each entry of
Wk, . . . ,W2 without changing the loss value.

We start with the base case withk = 2. From Lemma4.4, we have a following necessary condition
for the Hessian to be (positive or negative) semidefinite at a critical point: for anyk ∈ {2, . . . , H +
1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0,

where the first condition is shown to implyrank(WH+1 ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W2) in
Corollary 4.5. Let Ak = WH+1 ∙ ∙ ∙Wk+1. From the condition withk = 2, we have that
rank(WH+1 ∙ ∙ ∙W2) ≥ d1 ≥ 1 or XrWH+1 ∙ ∙ ∙W3 = 0. The former condition is false since
rank(WH ∙ ∙ ∙W2) < 1. From the latter condition, for an arbitraryL2,

0 = XrWH+1 ∙ ∙ ∙W3

⇒W2W1 =
(
AT

2 A2

)−
AT

2 Y XT (XXT )−1 + (I − (AT
2 A2)

−AT
2 A2)L2 (10)

⇒WH+1 ∙ ∙ ∙W1 = A2

(
AT

2 A2

)−
AT

2 Y XT (XXT )−1

= C(CT C)−CT Y XT (XXT )−1

where the last follows the critical point condition (Lemma4.2). Then, similarly to the proof of
Theorem2.3 (ii) ,

A2

(
AT

2 A2

)−
A2 = C(CT C)−CT .

In other words,R(A2) = R(C).
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Suppose thatrank(AT
2 A2) ≥ 1. Then, sinceR(A2) = R(C), we have thatrank(C) ≥ 1, which

is false (or else the desired statement). Thus,rank(AT
2 A2) = 0, which implies thatA2 = 0. Then,

sinceWH+1 ∙ ∙ ∙W1 = A2W2W1 with A2 = 0, we can haveW2 6= 0 without changing the loss
value with arbitrarily small perturbation ofW2.

For the inductive step withk = {3, . . . , H + 1}, we have the inductive hypothesis that we can
haveWk−1 ∙ ∙ ∙W2 6= 0 with arbitrarily small perturbation of each parameter without changing
the loss value. Accordingly, suppose thatWk−1 ∙ ∙ ∙W2 6= 0. Again, from Lemma4.4, for any
k ∈ {2, . . . , H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0.

If the former is true,rank(C) ≥ rank(Wk−1 ∙ ∙ ∙W2) ≥ 1, which is false (or the desired statement).
If the latter is true, for an arbitraryL1,

0 = XrWH+1 ∙ ∙ ∙Wk+1

⇒Wk ∙ ∙ ∙W1 =
(
AT

k Ak

)−
AT

k Y XT (XXT )−1 + (I − (AT
k Ak)−AT

k Ak)L1

⇒WH+1 ∙ ∙ ∙W1 = Ak

(
AT

k Ak

)−
AT

k Y XT (XXT )−1

= C(CT C)−CT Y XT (XXT )−1 = Up̄U
T
p̄ Y XT (XXT )−1,

where the last follows the critical point condition (Lemma4.2). Then, similarly to the above,

Ak

(
AT

k Ak

)−
Ak = C(CT C)−CT .

In other words,R(Ak) = R(C).

Suppose thatrank(AT
k Ak) ≥ 1. Then, sinceR(Ak) = R(C), we have thatrank(C) =

rank(Ak) ≥ 1, which is false (or the desired statement). Thus,rank(AT
k Ak) = 0, which implies

thatAk = 0. Then, sinceWH+1 ∙ ∙ ∙W1 = AkWk ∙ ∙ ∙W1 with Ak = 0, we can haveWk ∙ ∙ ∙W1 6= 0
without changing the loss value with arbitrarily small perturbation of each parameter.

Thus, we conclude the induction, proving that ifWH+1 ∙ ∙ ∙W2 = 0, with arbitrarily small perturba-
tion of each parameter without changing the value ofL̄(W ), we can haveWH+1 ∙ ∙ ∙W2 6= 0. Thus,
at any candidate point for local maximum, the loss function has some strictly increasing direction in
an arbitrarily small neighborhood. This means that there is no local maximum.Thus, we obtained
the statement of Theorem2.3 (iii) .

�

B.4 Proof of Theorem2.3 (iv)

Proof In the proof of Theorem2.3 (ii) , the case analysis with the case,rank(WH ∙ ∙ ∙W2) = p,
revealed that whenrank(WH ∙ ∙ ∙W2) = p, if ∇2L̄(W ) � 0 at a critical point,W is a global
minimum. Thus, whenrank(WH ∙ ∙ ∙W2) = p, if W is not a global minimum at a critical point, its
Hessian is not positive semidefinite, containing some negative eigenvalue. From Theorem2.3 (ii) ,
if it is not a global minimum, it is not a local minimum. From Theorem2.3 (iii) , it is a saddle point.
Thus, if rank(WH ∙ ∙ ∙W2) = p, the Hessian at any saddle point has some negative eigenvalue,
which is the statement of Theorem2.3 (iv).

�

C Proofs of Corollaries2.4and 3.2

We complete the proofs of Corollaries2.4and3.2.

C.1 Proof of Corollary 2.4

Proof If H = 1, the condition in Theorem2.3(iv) reads "ifrank(W1 ∙ ∙ ∙W2) = rank(Id1) = d1 =
p", which is always true. This is becausep is the smallest width of hidden layers and there is only one
hidden layer, the width of which isd1. Thus, Theorem2.3(iv) immediately implies the statement of
Corollary2.4. For the statement of Corollary2.4with H ≥ 2, it is suffice to show the existence of
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a simple set containing saddle points with the Hessian having no negative eigenvalue. Suppose that
WH = WH−1 = ∙ ∙ ∙ = W2 = W1 = 0. Then, from Lemma4.1, it defines an uncountable set of
critical points, in whichWH+1 can vary inRdy×dH . Sincer = Y T 6= 0 due torank(Y ) ≥ 1, it is
not a global minimum. To see this, we write

L̄(W ) =
1
2
‖Y (W,X) − Y ‖2

F =
1
2

tr(rT r)

=
1
2

tr(Y Y T ) −
1
2

tr(WH+1 ∙ ∙ ∙W1XY T ) −
1
2

tr((WH+1 ∙ ∙ ∙W1XY T )T )

+
1
2

tr(WH+1 ∙ ∙ ∙W1XXT (WH+1 ∙ ∙ ∙W1)
T ).

For example, withWH+1 ∙ ∙ ∙W1 = ± UpU
T
p Y XT (XX)−1,

L̄(W ) =
1
2

(
tr(Y Y T ) − tr(UpU

T
p Σ) − tr(ΣUpU

T
p ) + tr(UpU

T
p ΣUpU

T
p )
)

=
1
2

(
tr(Y Y T ) − tr(UpΛ1:pU

T
p )
)

=
1
2

(

tr(Y Y T ) ±
p∑

k=1

Λk,k

)

,

where we can see that there exists a strictly lower value ofL̄(W ) than the loss value withr = Y T ,
which is 1

2 tr(Y Y T ) (sinceX 6= 0 andrank(Σ) 6= 0).

Thus, these are not global minima, and thereby these are saddle points by Theorem2.3 (ii) and(iii) .
On the other hand, from the proof of Lemma4.3, every diagonal and off-diagonal element of the
Hessian is zero ifWH = WH−1 = ∙ ∙ ∙ = W2 = W1 = 0. Thus, the Hessian is simply a zero matrix,
which has no negative eigenvalue.

�

C.2 Proof of Corollary 3.2and discussion of the assumptions used in the previous work

Proof SinceEZ [Ŷ (W,X)] = qρ
∑Ψ

p=1[Xi](j,p)

∏H+1
k=1 w(j,p) = Y , L(W ) = 1

2‖EZ [Ŷ (W,X) −

Y ]‖F = 1
2‖EZ [Ŷ (W,X)] − Y ‖2

F = L̄(W ). �

The previous work also assumes the use of “independent random” loss functions. Consider the hinge
loss,Lhinge(W )j,i = max(0, 1−Yj,iŶ (W,X)j,i). By modeling the max operator as a Bernoulli ran-

dom variableξ, we can then writeLhinge(W )j,i = ξ − q
∑Ψ

p=1 Yj,i[Xi](j,p)ξ[Zi](j,p)

∏H+1
k=1 w

(k)
(j,p).

A1p then assumes that for alli and(j, p), theξ[Zi](j,p) are Bernoulli random variables with equal
probabilities of success. Furthermore, A5u assumes that the independence ofξ[Zi](j,p), Yj,i[Xi](j,p),
andw(j,p). Finally, A6u assumes thatYj,i[Xi](j,p) for all (j, p) andi are independent. In section
3.2, we discuss the effect of all of the seven previous assumptions to see why these are unrealistic.

D Discussion of the 1989 conjecture

The 1989 conjecture is based on the result for a 1-hidden layer network withp < dy = dx (e.g.,
an autoencoder). That is, the previous workconsideredY = W2W1X with the same loss function
as ours with the additional assumptionp < dy = dx. The previous work denotesA , W2 and
B ,W1.

The conjecture was expressed byBaldi & Hornik (1989) as

Our results, and in particular the main features of the landscape ofE, hold true in
the case of linear networks with several hidden layers.

Here, the “main features of the landscape ofE” refers to the following features, among other minor
technical facts: 1) the function is convex in each matrixA (or B) when fixing otherB (or A), and 2)
every local minimum is a global minimum. No proof was provided in this work for this conjecture.
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In 2012, the proof for the conjecture corresponding to the first feature (convexity in each matrix
A (or B) when fixing otherB (or A)) was provided in (Baldi & Lu, 2012) for both real-valued
and complex-valued cases, while the proof for the conjecture for the second feature (every local
minimum being a global minimum) was left for future work.

In (Baldi, 1989), there is an informal discussion regarding the conjecture. Leti ∈ {1, ∙ ∙ ∙ , H} be an
index of a layer with the smallest widthp. That is,di = p. We write

A := WH+1 ∙ ∙ ∙Wi+1

B := Wi ∙ ∙ ∙W1.

Then, whatA and B can represent is the same as what the originalA := W2 and B := W1,
respectively, can represent in the 1-hidden layer case, assuming thatp < dy = dx (i.e., any element
in Rdy×p and any element inRp×dx ). Thus, wewould conclude that all the local minima in the
deeper models always correspond to the local minima of the collapsed 1-hidden layer version with
A := WH+1 ∙ ∙ ∙Wi+1 andB := Wi ∙ ∙ ∙W1.

However, the above reasoning turns out to be incomplete. Let us prove the incompleteness of the
reasoning by contradiction in a way in which we can clearly see what goes wrong. Suppose that the
reasoning is complete (i.e., the following statement is true: if we can collapse the model with the
same expressiveness with the same rank restriction, then the local minima of the model correspond
to the local minima of the collapsed model). Considerf(w) = W3W2W1 = 2w2 + w3, where
W1 = [w w w], W2 = [1 1 w]T andW3 = w. Then, let us collapse the model asa := W3W2W1

andg(a) = a. As a result, whatf(w) can represent is the same as whatg(a) can represent (i.e.,
any element inR) with the same rank restriction (with a rank of at most one). Thus, with the same
reasoning, we can conclude that every local minimum off(w) corresponds to a local minimum of
g(a). However, this is clearly false, asf(w) is a non-convex function with a local minimum at
w = 0 that is not a global minimum, whileg(a) is linear (convex and concave) without any local
minima. The convexity forg(a) is preserved after the composition with any norm. Thus, we have a
contradiction, proving the incompleteness of the reasoning. What is missed in the reasoning is that
even if what a model can represent is the same, the different parameterization creates different local
structure in the loss surface, and thus different properties of the critical points (global minima, local
minima, saddle points, and local maxima).

Now that we have proved the incompleteness of this reasoning, we discuss where the reasoning
actually breaks down in a more concrete example. From Lemmas4.1 and4.2, if H = 1, we have
the following representation at critical points:

AB = A(AT A)−AT Y XT (XXT )−1.

whereA := W2 andB := W1. In contrast, from Lemmas4.1and4.2, if H is arbitrary,

AB = C(CT C)−CT Y XT (XXT )−1.

whereA := WH+1 ∙ ∙ ∙Wi+1 andB := Wi ∙ ∙ ∙W1 as discussed above, andC = WH+1 ∙ ∙ ∙W2.
Note that by using other critical point conditions from Lemmas4.1, we cannot obtain an expression
such thatC = A in the above expression unlessi = 1. Therefore, even though whatA andB can
represent is the same, the critical condition becomes different (and similarly, the conditions from
the Hessian). Because the proof in the previous work withH = 1 heavily relies on the fact that
AB = A(AT A)−AT Y XT (XXT )−1, the same proof does not apply for deeper models (we may
continue providing more evidence as to why the same proof does not work for deeper models, but
one such example suffices for the purpose here).

In this respect, we have completed the proof of the conjecture and also provided a complete analyt-
ical proof for more general and detailed statements; that is, we did not assume thatp < dy = dx,
and we also proved saddle point properties with negative eigenvalue information.
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