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Abstract
We introduce the Forget-me-not Process, an efficient, non-parametric meta-
algorithm for online probabilistic sequence prediction for piecewise stationary,
repeating sources. Our method works by taking a Bayesian approach to partition-
ing a stream of data into postulated task-specific segments, while simultaneously
building a model for each task. We provide regret guarantees with respect to piece-
wise stationary data sources under the logarithmic loss, and validate the method
empirically across a range of sequence prediction and task identification problems.

1 Introduction

Modeling non-stationary temporal data sources is a fundamental problem in signal processing,
statistical data compression, quantitative finance and model-based reinforcement learning. One
widely-adopted and successful approach has been to design meta-algorithms that automatically
generalize existing stationary learning algorithms to various non-stationary settings. In this paper
we introduce the Forget-me-not Process, a probabilistic meta-algorithm that provides the ability to
model the class of memory bounded, piecewise-repeating sources given an arbitrary, probabilistic
memory bounded stationary model.

The most well studied class of probabilistic meta-algorithms are those for piecewise stationary
sources, which model data sequences with abruptly changing statistics. Almost all meta-algorithms for
abruptly changing sources work by performing Bayesian model averaging over a class of hypothesized
temporal partitions. To the best of our knowledge, the earliest demonstration of this fundamental
technique was [21], for the purpose of data compression; closely related techniques have gained
popularity within the machine learning community for change point detection [1] and have been
proposed by neuroscientists as a mechanism by which humans deal with open-ended environments
composed of multiple distinct tasks [4–6]. One of the reasons for the popularity of this approach is
that the temporal structure can be exploited to make exact Bayesian inference tractable via dynamic
programming; in particular inference over all possible temporal partitions of n data points results in
an algorithm of O(n2) time complexity and O(n) space complexity [21, 1]. Many variants have been
proposed in the literature [20, 11, 10, 17], which trade off predictive accuracy for improved time and
space complexity; in particular the Partition Tree Weighting meta-algorithm [17] has O(n log n) time
and O(log n) space complexity, and has been shown empirically to exhibit superior performance
versus other low-complexity alternatives on piecewise stationary sources.

A key limitation of these aforementioned techniques is that they can perform poorly when there
exist multiple segments of data that are similarly distributed. For example, consider data generated
according to the schedule depicted in Figure 1. For all these methods, once a change-point occurs, the
base (stationary) model is invoked from scratch, even if the task repeats, which is clearly undesirable
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Figure 1: An example task segmentation.

in many situations of interest. Our main contribution in this paper is to introduce the Forget-me-not
Process, which has the ability to avoid having to relearn repeated tasks, while still maintaining
essentially the same theoretical performance guarantees as Partition Tree Weighting on piecewise
stationary sources.

2 Preliminaries

We now introduce some notation and necessary background material.

Sequential Probabilistic Data Generators. We begin with some terminology for sequential, prob-
abilistic data generating sources. An alphabet is a finite non-empty set of symbols, which we
will denote by X . A string x1x2 . . . xn ∈ Xn of length n is denoted by x1:n. The prefix x1:j of
x1:n, where j ≤ n, is denoted by x≤j or x<j+1. The empty string is denoted by ε and we define
X ∗ = {ε} ∪

⋃∞
i=1 X i. Our notation also generalizes to out of bounds indices; that is, given a string

x1:n and an integer m > n, we define x1:m := x1:n and xm:n := ε. The concatenation of two strings
s, r ∈ X ∗ is denoted by sr. Unless otherwise specified, base 2 is assumed for all logarithms.

A sequential probabilistic data generating source ρ is defined by a sequence of probability mass func-
tions ρn : Xn → [0, 1], for all n ∈ N, satisfying the constraint that ρn(x1:n) =

∑
y∈X ρn+1(x1:ny)

for all x1:n ∈ Xn, with base case ρ0(ε) = 1. From here onwards, whenever the meaning is clear
from the argument to ρ, the subscripts on ρ will be dropped. Under this definition, the conditional
probability of a symbol xn given previous data x<n is defined as ρ(xn |x<n) := ρ(x1:n)/ρ(x<n)

provided ρ(x<n) > 0, with the familiar chain rule ρ(xi:j |x<i) =
∏j
k=i ρ(xk |x<k) applying as

usual. Notice too that a new sequential probabilistic data generating source ν can be obtained from
an existing source ρ by conditioning on a fixed sequence of input data. More explicitly, given a string
s ∈ X ∗, one can define ν(x1:n) := ρ(x1:n | s) for all n; we will use the notation ρ[s] to compactly
denote such a derived probabilistic data generating source.

Temporal Partitions, Piecewise Sources and Piecewise-repeating sources. We now introduce
some notation to formally describe temporal partitions and piecewise sources. A segment is a tuple
(a, b) ∈ N× N with a ≤ b. A segment (a, b) is said to overlap with another segment (c, d) if there
exists an i ∈ N such that a ≤ i ≤ b and c ≤ i ≤ d. A temporal partition P of a set of time
indices S = {1, 2, . . . n}, for some n ∈ N, is a set of non-overlapping segments such that for all
x ∈ S, there exists a segment (a, b) ∈ P such that a ≤ x ≤ b. We also use the overloaded notation
P(a, b) := {(c, d) ∈ P : a ≤ c ≤ d ≤ b} to denote the set of segments falling inclusively within
the range (a, b). Finally, Tn will be used to denote the set of all possible temporal partitions of
{1, 2, . . . , n}.

We can now define a piecewise data generating source µhP in terms of a partition P =
{(a1, b1), (a2, b2), . . . } and a set of probabilistic data generating sources {µ1, µ2, . . . }, such that for
all n ∈ N, for all x1:n ∈ Xn,

µhP(x1:n) :=
∏

(a,b)∈Pn

µh(a)(xa:b),

where Pn := {(a, b) ∈ P : a ≤ n} and h : N → N is a task assignment function that maps
segment beginnings to task identifiers.

A piecewise repeating data generating source is a special case of a piecewise data generating source
that satisfies the additional constraint that ∃a, c ∈ {x : (x, y) ∈ P} such that a 6= c and h(a) = h(c).
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In terms of modeling a piecewise repeating source, there are three key unknowns: the partition
which defines the location of the change points, the task assignment function, and the model for each
individual task.

Bayesian Sequence Prediction. A fundamental technique for constructing algorithms that work
well under the logarithmic loss is Bayesian model averaging. We now provide a short overview
sufficient for the purposes of this paper; for more detail, we recommend the work of [12] and [14].

Given a non-empty discrete set of probabilistic data generating sourcesM := {ρ1, ρ2, . . . } and a
prior weight wρ0 > 0 for each ρ ∈ M such that

∑
ρ∈M wρ0 = 1, the Bayesian mixture predictor

is defined in terms of its marginal by ξ(x1:n) :=
∑
ρ∈M wρ0 ρ(x1:n). The predictive probability is

thus given by the ratio of the marginals ξ(xn | x<n) = ξ(x1:n) / ξ(x<n). The predictive probability
can also be expressed in terms of a convex combination of conditional model predictions, with each
model weighted by its posterior probability. More explicitly,

ξ(xn | x<n) =

∑
ρ∈M

wρ0 ρ(x1:n)∑
ρ∈M

wρ0 ρ(x<n)
=
∑
ρ∈M

wρn−1 ρ(xn | x<n), where wρn−1 :=
wρ0 ρ(x<n)∑

ν∈M
wν0 ν(x<n)

.

A fundamental property of Bayesian mixtures is that if there exists a model ρ∗ ∈ M that predicts
well, then ξ will predict well since the cumulative loss satisfies

− log ξ(x1:n) = − log
∑
ρ∈M

wρ0 ρ(x1:n) ≤ − logwρ
∗

0 − log ρ∗(x1:n). (1)

Equation 1 implies that a constant regret is suffered when using ξ in place of the best (in hindsight)
model withinM.

3 The Forget-me-not Process

We now introduce the Forget-me-not Process (FMN), a meta-algorithm designed to better model
piecewise-repeating data generating sources. As FMN is a meta-algorithm, it takes as input a base
model, which we will hereby denote as ν. At a high level, the main idea is to extend the Partition
Tree Weighting [17] algorithm to incorporate a memory of previous model states, which is used
to improve performance on repeated tasks. More concretely, our construction involves defining a
two-level hierarchical process, with each level performing exact Bayesian model averaging. The first
level will perform model averaging over a set of postulated segmentations of time, using the Partition
Tree Weighting technique. The second level will perform model averaging over a growing set of
stored base model states. We describe each level in turn before describing how to combine these
ideas into the Forget-me-not Process.

Averaging over Temporal Segmentations. We now define the class of binary temporal partitions,
which will correspond to the set of temporal partitions we perform model averaging over in the first
level of our hierarchical model. Although more restrictive than the class of all possible temporal
partitions, binary temporal partitions possess important computational advantages.
Definition 1. Given a depth parameter d ∈ N and a time t ∈ N, the set Cd(t) of all binary temporal
partitions from t is recursively defined by

Cd(t) :=
{
{(t, t+ 2d − 1)}

}
∪
{
S1 ∪ S2 : S1 ∈ Cd−1 (t) ,S2 ∈ Cd−1

(
t+ 2d−1

)}
,

with C0(t) :=
{
{(t, t)}

}
. We also define Cd := Cd(1).

Each binary temporal partition can be naturally mapped onto a tree structure known as a partition tree;
for example, Figure 2 shows the collection of partition trees represented by C2; the leaves of each
tree correspond to the segments within each particular partition. There are two important properties
of binary temporal partition trees. The first is that there always exists a partition P ′ ∈ Cd which is
close to any temporal partition P , in the sense that P ′ always starts a new segment whenever P does,
and |P ′| ≤ |P|(dlog ne+ 1) [17, Lemma 2]. The second is that exact Bayesian model averaging can
be performed efficiently with an appropriate choice of prior. This is somewhat surprising, since the

3



•

(1,4)

(1,2)

•

(3,4)

•

•

(2, 2)

(3, 4) (1,2)

•

(3,3) (4,4) (1,1)

•

•

(2,2) (3,3)

•

(4,4)(1,1)

Figure 2: The set C2 represented as a collection of temporal partition trees.

number of binary temporal partitions |Cd| grows double exponentially in d. The trick is to define,
given a data sequence x1:n, the Bayesian mixture

PTWd(x1:n) :=
∑
P∈Cd

2−Γd(P)
∏

(a,b)∈P

ρ(xa:b), (2)

where Γd(P) gives the number of nodes in the partition tree associated with P that have a depth less
than d and ρ denotes the base model to the PTW process. This prior weighting is identical to how
the Context Tree Weighting method [22] weighs over tree structures, and is an application of the
general technique used by the class of Tree Experts described in Section 5.3 of [3]. It is a valid prior,
as one can show

∑
P∈Cd 2−Γd(P) = 1 for all d ∈ N. A direct computation of Equation 2 is clearly

intractable, but we can make use of the tree structured prior to recursively decompose Equation 2
using the following lemma.
Lemma 1 (Veness et al. [17]). For any depth d ∈ N, for all x1:n ∈ Xn satisfying n ≤ 2d,

PTWd(x1:n) = 1
2ρ(x1:n) + 1

2 PTWd−1 (x1:k) PTWd−1 (xk+1:n) ,

where k = 2d−1.

Averaging over Previous Model States given a Known Temporal Partition. Given a data se-
quence x1:n ∈ Xn, a base model ρ and a temporal partition P := {(a1, b1), . . . , (am, bm)} satisfying
P ∈ Tn, consider a sequential probabilistic model defined by

πP(x1:n) :=

|P|∏
i=1

 ∑
ρ∈Mi

1
|Mi| ρ(xai:bi)

 ,

whereM1 := {ρ} andMi :=Mi−1 ∪ {ρ [xai:bi ]}ρ∈Mi−1
for 1 < i ≤ |P|.

Here, whenever the ith segment of data is seen, each model in Mi is given the option of either
ignoring or adapting to this segment’s data, which implies |Mi| = 2 |Mi−1|. Using an argument
similar to Equation 1, and letting xh(t)

<t denote the subsequence of x<t generated by µh(t), we can see
that the cumulative loss when the data is generated by a piecewise-repeating source µhP is bounded by

− log πP(x1:n) = − log

|P|∏
i=1

 ∑
ρ∈Mi

1
|Mi| ρ(xai:bi)

 = − log

|P|∏
i=1

 ∑
ρ∈Mi

2−i+1 ρ(xai:bi)


≤ − log

|P|∏
i=1

2−i+1 ρ
(
xai:bi | x

h(ai)
<ai

)
=
|P|2 − |P|

2
− log

|P|∏
i=1

ρ
(
xai:bi | x

h(ai)
<ai

)
. (3)

Roughly speaking, this bound implies that πP(x1:n) will perform almost as well as if we knew
h(·) in advance, provided the number of segments grows o(

√
n). The two main drawbacks with

this approach are that: a) computing πP(x1:n) takes time exponential in |P|; and b) a regret of
(|P|2 − |P|)/2 seems overly large in cases where the source isn’t repeating. These problems can be
rectified with the following modified process,

νP(x1:n) :=

|P|∏
i=1

1

2
ρ(xai:bi) +

1

2

∑
ρ′∈Mi\{ρ}

1
|Mi|−1 ρ

′(xai:bi)

 (4)

where nowM1 := {ρ} andMi :=Mi−1 ∪
{
ρ∗[xai:bi ]

∣∣∣ ρ∗ = argmaxρ∈Mi−1
{ρ (xai:bi)}

}
.
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Figure 3: A graphical depiction of the Forget Me Not process (d = 3) after processing 7 symbols.

With this modified definition ofMi, where the argmax implements a greedy approximation (ties are
broken arbitrarily), |Mi| now grows linearly with the number of segments, and thus the overall time
to compute νP(x1:n) is O(|P| n) assuming the base model runs in linear time. Although heuristic,
this approximation is justified provided that ρ[ε] assigns the highest probability out of any model in
Mi whenever a task is seen for the first time, and that a model trained on k segments for a given task
is always better than a model trained on less than k segments for the same task (or a model trained on
any number of other tasks). Furthermore, using a similar dominance argument to Equations 1 and 3,
the cost of not knowing h(·) with respect to piecewise non-repeating sources is now |P| vs O(|P|2).

Averaging over Binary Temporal Segmentations and Previous Model States. This section de-
scribes how to hierarchically combine the PTW and νP models to give rise to the Forget Me Not
process. Our goal will be to perform model averaging over both binary temporal segmentations and
previous model states. This can be achieved by instantiating the PTW meta-algorithm with a sequence
of time dependent base models similar in spirit to νP .

Intuitively, this requires modifying the definition ofMi so that the best performing model state, for
any completed segment within the PTW process, is available for future predictions. For example,
Figure 3 provides a graphical depiction of our desired FMN3 process after processing 7 symbols.
The dashed segments ending in unfilled circles describe the segments whose set of base models
are contributing to the predictive distribution at time 8. The solid-line segments denote previously
completed segments for which we want the best performing model state to be remembered and made
available to segments starting at later times. A solid circle indicates a time where a model is added to
the pool of available models; note that now multiple models can be added at any particular time.

We now formalize the above intuitions. Let Bt := {(a, b) ∈ Cd : b = t} be the set of segments ending
at time t ≤ 2d. Given an an arbitrary string s ∈ X ∗, our desired sequence of base models is given by

νt(s) :=
1

2
ρ(s) +

1

2

∑
ρ′∈Mt\{ρ}

1
|Mt|−1 ρ

′(s), (5)

with the model pool defined byM1 := {ρ} and

Mt :=Mt−1 ∪
⋃

(a,b)∈Bt−1

{
ρ∗[sa:b]

∣∣∣∣ ρ∗ = argmax
ρ∈Ma

{ρ (sa:b)}
}

for t > 1. (6)

Finally, substituting Equation 5 in for the base model of PTW yields our Forget Me Not process

FMNd(x1:n) :=
∑
P∈Cd

2−Γd(P)
∏

(a,b)∈Pn

νa(xa:b). (7)

Algorithm. Algorithm 1 describes how to compute the marginal probability FMNd(x1:n). The rj
variables store the segment start times for the unclosed segments at depth j; the bj variables implement
a dynamic programming caching mechanism to speed up the PTW computation as explained in Section
3.3 of [17]; thewj variables hold intermediate results needed to apply Lemma 1. The Most Significant
Changed Bit routine MSCBd(t), invoked at line 4, is used to determine the range of segments ending
at the current time t, and is defined for t > 1 as the number of bits to the left of the most significant
location at which the d-bit binary representations of t−1 and t−2 differ, with MSCBd(1) := 0 for all
d ∈ N. For example, in Figure 3, at t = 5, before processing x5, we need to deal with the segments
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Algorithm 1 FORGET-ME-NOT - FMNd(x1:n)

Require: A depth parameter d ∈ N, and a base probabilistic model ρ
Require: A data sequence x1:n ∈ Xn satisfying n ≤ 2d

1: bj ← 1, wj ← 1, rj ← 1, for 0 ≤ j ≤ d
2: M← {ρ}
3: for t = 1 to n do

4: i← MSCBd(t)
5: bi ← wi+1

6: for j = i+ 1 to d do
7: M← UPDATEMODELPOOL(νrj , xrj :t−1)
8: wj ← 1, bj ← 1, rj ← t
9: end for

10: wd ← νrd(xrd:t)
11: for i = d− 1 to 0 do
12: wi ← 1

2νri(xri:t) + 1
2wi+1bi

13: end for

14: end for

15: return w0

(1, 4), (3, 4), (4, 4) finishing. The method UPDATEMODELPOOL applies Equation 6 to remember
the best performing model in the mixture νrj on the completed segment (rj , t− 1). Lines 11 to 13
invoke Lemma 1 from bottom-up, to compute the desired marginal probability FMNd(x1:n) = w0.

(Space and Time Overhead) Under the assumption that each base model conditional probability can
be obtained in O(1) time, the time complexity to process a sequence of length n is O(nk log n),
where k is an upper bound on |M|. The n log n factor is due to the number of iterations in the inner
loops on Lines 6 to 9 and Lines 11 to 13 being upper bounded by d+ 1. The k factor is due to the
cost of maintaining the vt terms for the segments which have not yet closed. An upper bound on k
can be obtained from inspection of Figure 3, where if we set n = 2d, we have that the number of
completed segments is given by

∑d
i=0 2i = 2d+1 − 1 = 2n+ 1 = O(n); thus the time complexity is

O(n2 log n). The space overhead is O(k log n), due to the O(log n) instances of Equation 5.

(Complexity Reducing Operations) For many applications of interest, a running time of O(n2 log n)
is unacceptable. A workaround is to fix k in advance and use a model replacement strategy that
enforces |M| ≤ k via a modified UPDATEMODELPOOL routine; this reduces the time complexity to
O(nk log n). We found the following heuristic scheme to be effective in practice: when a segment
(a, b) closes, the best performing model ρ∗ ∈Ma for this segment is identified. Now, 1) letting yρ∗
denote a uniform sub-sample of the data used to train ρ∗, if log ρ∗[xa:b](yρ∗) − log ρ∗(yρ∗) > α
then replace ρ∗ with ρ∗[xa:b] inM; else 2) if a uniform Bayes mixture ξ overM assigns sufficiently
higher probability to a uniform sub-sample s of xa:b than ρ∗ does, that is log ξ(s)− log ρ∗(s) > β,
then leaveM unchanged; else 3) add ρ∗[xa:b] toM; if |M| > k, remove the oldest model inM.
This requires choosing hyperparameters α, β ∈ R and appropriate constant sub-sample sizes. Step
1 avoids adding multiple models for the same task; Step 2 avoids adding a redundant model to the
model pool. Note that the per model and per segment sub-samples can be efficiently maintained
online using reservoir sampling [19]. As a further complexity reducing operation, one can skip calls
to UPDATEMODELPOOL unless (b− a+ 1) ≥ 2c for some c < d.

(Strongly Online Prediction) A strongly online FMN process, where one does not need to fix a d in
advance such that n ≤ 2d, can be obtained by defining FMN(x1:n) :=

∏n
i=1 FMNdlog ie(xi |x<i), and

efficiently computed in the same manner as for PTW, with a similar loss bound − log FMN(x1:n) ≤
− log FMNd(x1:n) + dlog ne(log 3− 1) following trivially from Theorem 2 in [17].

Theoretical properties. We now show that the Forget Me Not process is competitive with any
piecewise stationary source, provided the base model enjoys sufficiently strong regret guarantees on
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non-piecewise sources. Note that provided c = 0, Proposition 1 also holds when the complexity
reducing operations are used. While the following regret bound is of the same asymptotic order as
PTW for piecewise stationary sources, note that it is no tighter for sources that repeat; we will later
explore the advantage of the FMN process on repeating sources experimentally.

Proposition 1. For all n ∈ N, using FMN with d = dlog ne and a base model ρ whose redundancy
is upper bounded by a non-negative, monotonically non-decreasing, concave function g : N→ R
with g(0) = 0 on some class G of bounded memory data generating sources, the regret

log

(
µhP(x1:n)

FMNd(x1:n)

)
≤ 2|Pn| (dlog ne+ 1) + |Pn| g

(⌈
n

|Pn|(dlog ne+ 1)

⌉)
(dlog ne+ 1) + |Pn|,

where µ is a piecewise stationary data generating source, and the data in each of the stationary
regions P ∈ Tn is distributed according to some source in G.

Proof. First observe that for all x1:n ∈ Xn we can lower bound the probability

FMNd(x1:n) =
∑
P∈Cd

2−Γd(P)
∏

(a,b)∈Pn

νa(xa:b) ≥
∑
P∈Cd

2−Γd(P)
∏

(a,b)∈Pn

1
2ρ(xa:b)

= 2−|Pn|
∑
P∈Cd

2−Γd(P)
∏

(a,b)∈Pn

ρ(xa:b) = 2−|Pn| PTWd(x1:n).

Hence we have that − log FMNd(x1:n) ≤ |P| − log PTWd(x1:n). The proof is completed by using
Theorem 1 from [17] to upper bound − log PTWd(x1:n).

4 Experimental Results

We now report some experimental results with the FMN algorithm across three test domains. The first
two domains, The Mysterious Bag of Coins and A Fistful of Digits, are repeating sequence prediction
tasks. The final domain, Continual Atari 2600 Task Identification, is a video stream of game-play
from a collection of Atari games provided by the ALE [2] framework; here we qualitatively assess the
capabilities of the FMN process to provide meaningful task labels online from high dimensional input.

Domain Description. (Mysterious Bag of Coins) Our first domain is a sequence prediction game
involving a predictor, an opponent and a bag of m biased coins. Flipping the ith coin involves
sampling a value from a parametrized Bernoulli distribution B(θi), with θi ∈ [0, 1] for 1 ≤ i ≤ m.
The predictor knows neither how many coins are in the bag, nor the value of the θi parameters. The
data is generated by having the opponent flip a single coin (the choice of which is hidden from the
predictor) drawn uniformly from the bag for X ∼ G(0.005) flips, and repeating, where G(θ) denotes
the geometric distribution with success probability θ. At each time step t, the predictor outputs a
distribution ρt : {0, 1} → [0, 1], and suffers an instantaneous loss of `t(xt) := − log ρt(xt). Here
we test whether the FMN process can robustly identify change points, and exploit the knowledge that
some segments of data appear to be similarly distributed.

(A Fistful of Digits) The second test domain uses a similar setup to The Mysterious Bag of Coins,
except that now each observation is a 28x28 binary image taken from the MNIST [15] data set.
We partitioned the MNIST data into m = 10 classes, one for each distinct digit, which we used
to derive ten digit-specific empirical distributions. After picking a digit class, a random number
Y = 200 +X ∼ G(0.01) of examples are sampled (with replacement) from the associated empirical
distribution, before repeating the digit selection and generation process. Similar to before, the
predictor is required to output a distribution ρt : {0, 1}28×28 → [0, 1] over the possible outcomes,
suffering an instantaneous loss of `t(xt) := − log ρt(xt) at each time step.

(Continual Atari 2600 Task Identification) Our third domain consists of a sequence of sampled Atari
2600 frames. Each frame has been downsampled to a 28× 28 resolution and a 3 bit color space for
reasons of computational efficiency. The sequence of frames is generated by first picking a game
uniformly at random from a set of 45 Atari games (for which a game-specific DQN [16] policy is
available), and then generating a random number Y = 200 + X of frames, where X ∼ G(0.005).
Each action is chosen by the relevant game specific DQN controller, which uses an epsilon-greedy
policy. Once Y frames have been generated, the process is then repeated.
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Algorithm Average Cumulative Regret
KT 783.86 ± 7.79

PTW + KT 157.19 ± 0.77
FMN + KT 148.43 ± 0.75

FMN∗ + KT 147.75 ± 0.74

Algorithm Average Per Digit Loss
MADE 94.08 ± 0.05

PTW + MADE 94.08 ± 0.05
FMN + MADE 86.12 ± 0.28

Oracle 82.81 ± 0.06

Figure 4: (Left) Results on the Mysterious Bag of Coins; (Right) Results on a Fistful of Digits.

Results. We now describe our experimental setup and results. The following base models were
chosen for each test domain: for the Mysterious Bag of Coins (MBOC), we used the KT-estimator
[13], a beta-binomial model; for A Fistful of Digits (FOD), we used MADE [9], a recently introduced,
general purpose neural density estimator, with 500 hidden units, trained online using ADAGRAD [8]
with a learning rate of 0.1; MADE was also the base model for the Continual Atari task, but here a
smaller network consisting of 50 neurons was used for reasons of computational efficiency.

(Sequence Prediction) For each domain, we compared the performance of the base model, the base
model combined with PTW and the base model combined with the FMN process. We also report
the performance relative to a domain specific oracle: for the MBOC domain, the oracle is the true
data generating source, which has the (unfair) advantage of knowing the location of all potential
change-points and task-specific data generating distributions; for the FOD domain, we trained a
class conditional MADE model for each digit offline, and applied the relevant task-specific model to
each segment. Regret is reported for MBOC since we know the true data generating source, whereas
loss is reported for FOD. All results are reported in nats. The sequence length and number of
repeated runs for MBOC and FOD was 5k/10k and 221/64 respectively. For the MBOC experiment
we set m = 7 and generated each θi uniformly at random. Our sequence prediction results for each
domain are summarized in Figure 4, with 95% confidence intervals provided. Here FMN∗ denotes the
Forget-me-not algorithm without the complexity reducing techniques previously described (these
results are only feasible to produce on MBOC). For the FMN results, the MBOC hyper-parameters
are k = 15, α = 0, β = 0, c = 4 and sub-sample sizes of 100; the FOD hyper-parameters are
k = 30, α = 0.2, β = 0.06, c = 4 with sub-sample sizes of 10. Here we see a clear advantage to
using the FMN process compared with PTW, and that no significant performance is lost by using the
low complexity version of the algorithm.

Digging a bit deeper, it is interesting to note the inability of PTW to improve upon the performance of
the base model on FOD. This is in contrast to the FMN process, whose ability to remember previous
model states allows it to, over time, develop specialized models across digit specific data from
multiple segments, even in the case where the base model can be relatively slow to adapt online.
The reverse effect occurs in MBOC, where both FMN and PTW provide a large improvement over the
performance of the base model. The advantage of being able to remember is much smaller here due
to the speed at which the KT base model can learn, although not insignificant. It is also worth noting
that a performance improvement is obtained even though each individual observation is by itself not
informative; the FMN process is exploiting the statistical similarity of the outcomes across time.

(Online Task Identification) A video demonstrating real-time segmentation of Atari frames can be
found at: http://tinyurl.com/FMNVideo. Here we see that the (low complexity) FMN
quickly learns 45 game specific models, and performs an excellent job of routing experience to
the appropriate model. These results provide evidence that this technique can scale to long, high
dimensional input sequences using state of the art density models.

5 Conclusion

We introduced the Forget-me-not Process, an efficient, non-parametric meta-algorithm for online
probabilistic sequence prediction and task-segmentation for piecewise stationary, repeating sources.
We provided regret guarantees with respect to piecewise stationary data sources under the logarithmic
loss, and validated the method empirically across a range of sequence prediction and task identification
problems. For future work, it would be interesting to see whether a single Multiple Model-based
Reinforcement Learning [7] agent could be constructed using the Forget-me-not process for task
identification. Alternatively, the FMN process could be used to augment the conditional state density
models used for value estimation in [18]. Such systems would have the potential to be able to learn to
simultaneously play many different Atari games from a single stream of experience, as opposed to
previous efforts [16, 18] where game specific controllers were learnt independently.
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