
Supplementary Material
7 More examples of Assumption 1.2
Assumption 1.3 is one simple example of a support change model that ensures that, if M2,t =
ITt , the assumption on M2,t given in Assumption 1.2 holds. If instead of one object, there are k
objects, and each of their supports satisfies Assumption 1.3, then again, with some modifications, it
is possible to show that both the PCA-missing and PCA-SDDC problems satisfy Assumption 1.2.
Moreover, notice that Assumption 1.3 does not require the entries in Tt to be contiguous at all (they
need not correspond to the support of one or a few objects). Similarly, we can replace the condition
that Tt be constant for at most β̃ time instants in Assumption 1.3 by |{t : Tt = T [k]}| ≤ β̃.
Thirdly, the requirement of the object(s) always moving in one direction may seem too stringent.
As explained in [4, Lemma 9.4], a Bernoulli-Gaussian “constant velocity with random acceleration”
motion model will also work whp. It allows the object to move at each frame with probability p
and not move with probability 1 − p independent of past or future frames; when the object moves,
it moves with an iid Gaussian velocity that has mean 1.1s/ρ and variance σ2; σ2 needs to be upper
bounded and p needs to be lower bounded.

Lastly, if s < c1α for c1 � 1, another model that works is that of an object of length s or less
moving by at least one pixel and at most b pixels at each time [4, Lemma 9.5].

8 Proof of Theorem 2.1
This result also follows as a corollary of Theorem 3.3. We prove it separately first since its proof
is short and and less notation-ally intensive. It will help understand the proof of Theorem 3.3 much
more easily. Both results rely on the sin θ theorem reviewed next.
8.1 sin θ theorem
Davis and Kahan’s sin θ theorem [19] studies the rotation of eigenvectors by perturbation.

Theorem 8.1 (sin θ theorem [19]). Consider two Hermitian matrices D and D̂. Suppose that D
can be decomposed as

D = [ E E⊥ ]

[
A 0
0 A⊥

] [
E′

E⊥
′

]
where [E E⊥] is an orthonormal matrix. Suppose that D̂ can be decomposed as

D̂ = [ F F⊥ ]

[
Λ 0
0 Λ⊥

] [
F ′

F⊥
′

]
where [F F⊥] is another orthonormal matrix and is such that rank(F ) = rank(E). Let H :=

D̂ −D denote the perturbation. If λmin(A) > λmax(Λ⊥), then

‖(I − FF ′)E‖ ≤ ‖H‖
λmin(A)− λmax(Λ⊥)

.

Let r = rank(E). Suppose that F is the matrix of top r eigenvectors of D̂. Then Λ and Λ⊥ are
diagonal and λmax(Λ⊥) = λr+1(D̂) ≤ λr+1(D) + ‖H‖. The inequality follows using Weyl’s
inequality. Suppose also that λmin(A) > λmax(A⊥). Then, (i) λr(D) = λmin(A) and λr+1(D) =
λmax(A⊥) and (ii) range(E) is equal to the span of the top r eigenvectors of D. Thus, λmax(Λ⊥) ≤
λmax(A⊥) + ‖H‖. With this we have the following corollary.

Corollary 8.2. Consider a Hermitian matrix D and its perturbed version D̂. Suppose that D can
be decomposed as

D = [ E E⊥ ]

[
A 0
0 A⊥

] [
E′

E⊥
′

]
where E is a basis matrix. Let F denote the matrix containing the top rank(E) eigenvectors of D̂.
Let H := D̂ −D denote the perturbation. If λmin(A)− λmax(A⊥)− ‖H‖ > 0, then

‖(I − FF ′)E‖ ≤ ‖H‖
λmin(A)− λmax(A⊥)− ‖H‖

.

and range(E) is equal to the span of the top rank(E) eigenvectors of D.
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8.2 Proof of Theorem 2.1
We use the sin θ theorem [19] from Corollary 8.2. Apply it with D̂ = 1

α

∑
t ytyt

′ and
D = 1

α

∑
t `t`t

′. Thus, F = P̂ . Recall that at = P ′`t. Then, D can be decomposed as
P ( 1

α

∑
t atat

′)P ′ + P⊥0P ′⊥, and so we have E = P , A = 1
α

∑
t atat

′ and A⊥ = 0. Moreover,
it is easy to see that the perturbation H := 1

α

∑
t ytyt

′ − 1
α

∑
t `t`t

′ satisfies

H =
1

α

∑
t

`tw
′
t +

1

α

∑
t

wt`
′
t +

1

α

∑
t

wtw
′
t. (7)

Thus,
SE(P̂ ,P )

≤
2‖ 1α

∑
t `tw

′
t‖+ ‖ 1α

∑
twtw

′
t‖

λr(
1
α

∑
t `t`

′
t)− (2‖ 1α

∑
t `tw

′
t‖+ ‖ 1α

∑
twtw′t‖)

if the denominator is positive.
Remark 8.3. Because wt is correlated with `t, the `tw

′
t terms are the dominant ones in the per-

turbation expression given in (7). If they were uncorrelated, these two terms would be close to zero
whp due to law of large numbers and the wtw

′
t term would be the dominant one.

In the next lemma, we bound the terms in the bound on SE(P̂ ,P ) using the matrix Hoeffding
inequality [20].
Lemma 8.4. Let ε = 0.01rζλ−.

1. With probability at least 1− 2n exp
(
−α ε2

32(ηrqλ+)2

)
,

‖ 1
α

∑
t

`twt
′‖ ≤ qλ+

√
β

α
+ ε = [qf

√
β

α
+ 0.01rζ]λ−

2. With probability at least 1− 2n exp(− αε2

32(ηrq2λ+)2 ),

‖ 1
α

∑
t

wtwt
′‖ ≤ β

α
q2λ+ + ε = [q2f

β

α
+ 0.01rζ]λ−

3. With probability at least 1− 2n exp(− αε2

32(ηrλ+)2 ),

λr(
1

α

∑
t

`t`
′
t) ≥ (1− (rζ)2)λ− − ε

Proof. This follows by using Lemma 9.6 given later with Gcur ≡ P , Gdet ≡ [.], Gundet ≡ [.],
ζdet ≡ 0, rζ ≡ 0, rcur = r, g ≡ f , χ ≡ 0, ϑ ≡ 1. �

Using this lemma to bound the subspace error terms, followed by using the bounds on β/α and ζ,
we conclude the following: w.p. at least 1 − 2n exp

(
−α ε2

32(ηrqλ+)2

)
− 2n exp(− αε2

32(ηrq2λ+)2 ) −

2n exp(− αε2

32(ηrλ+)2 ),

SE(P̂ ,P )

≤
2qf
√

β
α + q2f βα + 0.03rζ

1− (rζ)2 − 0.01rζ − (2qf
√

β
α + q2f βα + 0.03rζ)

≤ 0.75(1− rζ)rζ + 0.03rζ

1− rζ
< rζ

Using the bound α ≥ α0 from the theorem, the probability of the above event is at least 1− 6n−10.
We get this by bounding each of the three negative terms in the probability expression by −2n−10.
We work this out for the first term: α ε2

32(ηrqλ+)2 ≥
32·11
(0.01)2

η2r2(logn)
(rζ)2 (qf)2 (0.01rζλ−)2

32η2r2q2λ+2 = 11 log n.

Thus, 2n exp
(
−α ε2

32(ηrqλ+)2

)
≤ 2n exp(−11 log n) ≤ 2n−10.
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9 Proof of Theorem 3.3
We explain the overall idea of the proof next. In Sec. 9.2, we give a sequence of lemmas in general-
ized form (so that they can apply to various other problems). The proof of Theorem 3.3 is given in
Sec. 9.3 and follows easily by applying these. One of the lemmas of Sec. 9.2 is proved in Sec. 10
while the others are proved there itself.
9.1 Overall idea
We need to bound SE(P̂ ,P ). From Algorithm 1, P̂ = [Ĝ1, Ĝ2, . . . , Ĝϑ] where Ĝk is the matrix
of top r̂k eigenvectors of D̂k defined in Algorithm 1. Also, P = [G1,G2, . . . ,Gϑ] where Gk is a
basis matrix with rk columns.
Definition 9.1. Define ζk := SE([Ĝ1, Ĝ2, . . . , Ĝk],Gk) and ζ0 = 0. Define ζ+k := rkζ. Let
r0 = 0.

It is easy to see that

SE(P̂ ,P ) ≤
ϑ∑
k=1

SE(P̂ ,Gk)

≤
ϑ∑
k=1

SE([Ĝ1, Ĝ2, . . . , Ĝk],Gk) =
ϑ∑
k=1

ζk (8)

The first inequality is triangle inequality, the second follows because [Ĝ1, Ĝ2, . . . , Ĝk] is orthogonal
to [Ĝk+1, . . .Gϑ]. Since r =

∑
k rk, if we can show that ζk ≤ ζ+k = rkζ for all k we will be done.

We bound ζk using induction. The base case is easy and follows just from the definition, ζ0 =
SE([.], [.]) = 0 = r0ζ. For bounding ζk, assume that for all i = 1, 2, . . . , k − 1, ζi ≤ riζ. This
implies that

SE([Ĝ1, Ĝ2, . . . , Ĝk−1], [G1,G2, . . . ,Gk−1])

≤
k−1∑
i=1

SE([Ĝ1, Ĝ2, . . . , Ĝk−1],Gi)

≤
k−1∑
i=1

ζi ≤
k−1∑
i=1

riζ ≤ rζ (9)

Using this, we will first show that r̂k = rk, and then we will use this and the sin θ result to bound
ζk.

Before proceeding further, we simplify notation.
Definition 9.2.

1. Let

Gdet := [G1,G2, . . . ,Gk−1], Gcur := Gk,

Gundet := [Ĝk+1, . . .Gϑ]

2. Similarly, let Ĝdet := [Ĝ1, Ĝ2, . . . , Ĝk−1], Ĝcur := Ĝk.

3. Let Gdet := G1 ∪ G2 · · · ∪ Gk−1 and Gcur = Gk.

4. Let rcur := rk = rank(Gk) and r̂cur := r̂k.

5. Let λ+cur := λ+k , λ
−
cur := λ−k , λ

+
undet := λ+k+1

6. Let t∗ = kα.

9.2 Main lemmas - generalized form
In this section, we give a sequence of lemmas that apply to a generic problem where yt = `t +
wt = `t + Mt`t with `t satisfying Assumption 1.1; Mt satisfying Assumption 1.2; and with
P split into three parts as P = [Gdet,Gcur,Gundet]. We can correspondingly split Λ as Λ =
diag(Λdet,Λcur,Λundet).
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We are given Ĝdet that was computed using (some or all) yt’s for t ≤ t∗ and that satisfies ζdet ≤ rζ.
The goal is to estimate range(Gcur) and bound the estimation error. This is done by first estimating
r̂cur and then computing Ĝcur as the top r̂cur eigenvectors of

D̂ :=
1

α

t∗+α∑
t=t∗+1

Ψytyt
′Ψ. (10)

To bound the estimation error, we first show that, whp, r̂cur = rcur and so Ĝcur = Gcur; and then we
use this to show that ζcur ≤ rcurζ.
Definition 9.3.

1. Define Ψ := I − ĜdetĜdet
′.

2. Define ζdet := SE(Ĝdet,Gdet) = ‖ΨGdet‖ and ζ+det = rζ

3. Define ζcur := SE([Ĝdet, Ĝcur],Gcur).

4. Let (ΨGcur)
QR
= EcurRcur denote its reduced QR decomposition. Thus Ecur is a basis

matrix whose span equals that of (ΨGcur) and Rcur is a square upper triangular matrix
with ‖Rcur‖ = ‖ΨGcur‖ ≤ 1.

5. Let λ+cur = λmax(Λcur), λ−cur = λmin(Λcur), λ+undet = λmax(Λundet).

6. Let rcur = rank(Gcur). Clearly, rcur ≤ r.

Remark 9.4. In special cases, Gdet (and hence Ĝdet) could be empty; and/or Gundet could be
empty.

• Since Λ contains eigenvalues in decreasing order, when Gundet is not empty, λ− ≤
λ+undet ≤ λ−cur ≤ λ+cur ≤ λ+.

• When Gundet is empty, λ+undet = 0 and λ− ≤ λ−cur ≤ λ+cur ≤ λ+.

Using ‖Rcur‖ = ‖ΨGcur‖ ≤ 1,

ζcur = ‖(I − ĜcurĜcur
′)ΨGcur‖

= ‖(I − ĜcurĜcur
′)EcurRcur‖

≤ ‖(I − ĜcurĜcur
′)Ecur‖ = SE(Ĝcur,Ecur).

Thus, to bound ζcur we need to bound SE(Ĝcur,Ecur). Ĝcur is the matrix of top r̂cur eigenvectors
of D̂. From its definition, Ecur is a basis matrix with rcur columns. Suppose for a moment that
r̂cur = rcur. Then, in order to bound SE(Ĝcur,Ecur), we can use the sin θ result, Corollary 8.2. To
do this, we need to define a matrix D so that, under appropriate assumptions, the span of its top rcur
eigenvectors equals range(Ecur). For the simple EVD proof, we used 1

α

∑t∗+α
t=t∗+1 Ψ`t`

′
tΨ as the

matrix D. However, this will not work now since Ecur is not orthonormal to ΨGdet or to ΨGundet.
But, instead we can use

D = EcurAEcur
′ +Ecur,⊥A⊥Ecur,⊥

′, where

A := Ecur
′(
1

α

t∗+α∑
t=t∗+1

Ψ`t`
′
tΨ)Ecur and

A⊥ := Ecur,⊥
′(
1

α

t∗+α∑
t=t∗+1

Ψ`t`
′
tΨ)Ecur,⊥ (11)

Now, by construction, D is in the desired form.

With the above choice of D, H := D̂ − D satisfies1 H = term1 + term1′ + term2 +
term3 + term3′ where term1 := 1

α

∑
t Ψ`tw

′
tΨ, term2 := 1

α

∑
t Ψwtw

′
tΨ and term3 =

EcurEcur
′( 1
α

∑
t Ψ`t`

′
tΨ)Ecur,⊥Ecur,⊥

′.

1This follows easily by writing H = (D̂ − 1
α

∑
tΨ`t`

′
tΨ) + ( 1

α

∑
tΨ`t`

′
tΨ − D) and using the fact

that M = (EE′ +E⊥E⊥
′)M(EE′ +E⊥E⊥

′) for 1
α

∑
tΨ`t`

′
tΨ.
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Thus, using the above along with Corollary 8.2, we can conclude the following.
Fact 9.5.

1. If r̂cur = rcur, and λmin(A)− λmax(A⊥)− ‖H‖ > 0,

ζcur ≤ SE(Ĝcur,Ecur) ≤
‖H‖

λmin(A)− λmax(A⊥)− ‖H‖
.

2. Let Q := EcurEcur
′( 1
α

∑
t Ψ`t`

′
tΨ)Ecur,⊥Ecur,⊥

′. We have

‖H‖ ≤ 2‖ 1
α

∑
t

Ψ`tw
′
t‖+ ‖

1

α

∑
t

wtw
′
t‖+ 2‖Q‖.

The next lemma bounds the RHS terms in the above lemma and a few other quantities needed for
showing r̂cur = rcur.
Lemma 9.6. (1) Assume that yt = `t+wt = `t+Mt`t with `t satisfying Assumption 1.1 and Mt

satisfying Assumption 1.2.

(2) Assume that we are given Ĝdet that was computed using (some or all) yt’s for t ≤ t∗ and that
satisfies ζdet ≤ rζ.

Define g := λ+cur/λ
−
cur, χ := λ+undet/λ

−
cur. Set ε := 0.01rcurζλ

−
cur.

Then, the following hold:

1. Let p1 := 2n exp(− αε2

32b2prob
where bprob := ηrq((rζ)λ+ + λ+cur + (rζ)

√
λ+λ+cur +√

λ+λ+cur). Conditioned on {ζdet ≤ rζ}, with probability at least 1− p1

‖ 1
α

∑
t

Ψ`twt
′‖ ≤ q((rζ)λ+ + λ+cur)

√
β

α
+ ε

≤ [q(rζ)f

√
β

α
+ qg

√
β

α
+ 0.01rcurζ]λ

−
cur.

2. Let p2 := 2n exp(− αε2

32(q2ηrλ+)2 ). Conditioned on {ζdet ≤ rζ}, with probability (w.p.) at
least 1− p2,

‖ 1
α

∑
t

wtwt
′‖ ≤ β

α
q2λ+ + ε ≤ [

β

α
q2f + 0.01rcurζ]λ

−
cur.

3. Let p3 := 2n exp(− αε2

32b2prob
) with bprob := ηr((rζ)2λ+ + λ+cur + 2(rζ)

√
λ+λ+cur). Condi-

tioned on {ζdet ≤ rζ}, with probability at least 1− p3,

‖EcurEcur
′(
1

α
Ψ`t`

′
tΨ)Ecur,⊥Ecur,⊥

′‖

≤ (rζ)2λ+ +
(rζ)2√
1− (rζ)2

λ+undet + ε

≤ [(rζ)2f +
(rζ)2√
1− (rζ)2

χ+ 0.01rcurζ]λ
−
cur.

4. Conditioned on {ζdet ≤ rζ}, w.p. at least 1− p3,

λmin(A) ≥ (1− (rζ)2)λ−cur − ε
= [1− (rζ)2 − 0.01rcurζ]λ

−
cur

5. Conditioned on {ζdet ≤ rζ}, w.p. at least 1− p3,

λmax(A⊥) ≤ ((rζ)2λ+ + λ+undet) + ε

≤ [(rζ)2f + χ+ 0.01rcurζ]λ
−
cur.
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6. Conditioned on {ζdet ≤ rζ}, with probability at least 1− p3,

λmax(A⊥) ≥ (1− (rζ)2 − (rζ)2√
1− (rζ)2

)λ+undet − ε.

7. Conditioned on {ζdet ≤ rζ}, w.p. at least 1− p3,

λmax(A) ≥ (1− (rζ)2)λ+cur − ε
= [(1− (rζ)2)g − 0.01rcurζ]λ

−
cur.

8. Conditioned on {ζdet ≤ rζ}, w.p. at least 1− p3,

λmax(A) ≤ λ+cur + (rζ)2λ+ +
1

1− r2ζ2
(rζ)2λ+undet + ε

≤ [g + (rζ)2f +
(rζ)2

1− (rζ)2
χ+ 0.01rcurζ]λ

−
cur.

Proof. The proof is in Section 10. �

Corollary 9.7. Consider the setting of Lemma 9.6. Assume

1. r(rζ) ≤ 0.0001, and r(rζ)f ≤ 0.01. Since rcur ≤ r, this implies that rcurζ ≤ 0.0001,
and

2. β ≤
(

(1−rcurζ−χ)
2

)2
min

(
(rcurζ)

2

4.1q2g2 ,
(rcurζ)
q2f

)
α.

Using these and using g ≥ 1, g ≤ f , χ ≤ 1 (these hold by definition), with probability at least
1− p1 − p2 − 4p3,

‖H‖ ≤ [2.02qg

√
β

α
+
β

α
q2f + 0.08rcurζ]λ

−
cur

≤ [0.75(1− rζ − χ)rcurζ + 0.08rcurζ]λ
−
cur

≤ 0.83rcurζλ
−
cur,

λmax(A⊥) ≤ [χ+ 0.02rcurζ]λ
−
cur,

λmax(A⊥) ≥ [χ− 0.02rcurζ]λ
−
cur,

λmin(A) ≥ [1− 0.0101rcurζ]λ
−
cur,

λmax(A) ≤ [g + 0.0202rcurζ]λ
−
cur,

λmax(A) ≥ [g − 0.02rcurζ]λ
−
cur.

Lemma 9.8. Consider the setting of Corollary 9.7. In addition, also assume that

1. ĝ = 1.01g + 0.0001 and

2. χ ≤ min
(

g−0.0001
1.01g+0.0001 − 0.0001, 1− rcurζ − 0.08

0.25

)
.

Let λ̂i := λi(D̂). Then, with probability at least 1− p1 − p2 − 4p3, the following hold.

1. When Gundet is not empty: λ̂1

λ̂rcur

≤ ĝ, λ̂1

λ̂rcur+1
> ĝ, and λ̂rcur+1 ≥ λthresh.

2. When Gundet is empty: λ̂1

λ̂rcur

≤ ĝ and λ̂rcur+1 < λthresh < λ̂rcur .

3. If r̂cur = rcur, then ζcur ≤ ‖H‖
λmin(A)−λmax(A⊥)−‖H‖ ≤ 0.75rcurζ +

0.08rcurζ
(1−rcurζ−χ) ≤ rcurζ.

Proof.
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Fact 9.9. From the bound on χ, χ ≤ 1−0.0001 ≤ 1−rcurζ. Thus, using Corollary 9.7, λmin(A) >
λmax(A⊥) and so λrcur(D) = λmin(A), λrcur+1(D) = λmax(A⊥), and λ1(D) = λmax(A).
Recall: λ1(.) is the same as λmax(.).

Proof of item 1. Recall that D̂ and D are defined in (10) and (11). Using Weyl’s inequality, Fact
9.9, and Corollary 9.7, with the probability given there,

λ̂1

λ̂rcur

≤ λmax(A) + ‖H‖
λmin(A)− ‖H‖

≤ g + 0.86rcurζ

1− 0.85rcurζ

and
λ̂1

λ̂rcur+1

>
λmax(A)− ‖H‖
λmax(A⊥) + ‖H‖

>
g − 0.85rcurζ

χ+ 0.85rcurζ

Thus, if

g + 0.85rcurζ

1− 0.85rcurζ
≤ ĝ ≤ g − 0.85rcurζ

χ+ 0.85rcurζ
(12)

holds, we will be done. The above requires χ to be small enough so that the lower bound is not larger
than the upper bound and it requires ĝ to be appropriately set. Both are ensured by the assumptions
in the lemma.

Since Gundet is not empty, λ+undet = χλ−cur > λ− Thus, using Weyl’s inequality followed by
Corollary 9.7, with the probability given there,

λ̂rcur+1 ≥ λrcur+1(D)− ‖H‖ = λmax(A⊥)− ‖H‖
≥ [χ− 0.02rcurζ]λ

−
cur − 0.83rcurζλ

−
cur

≥ (1− 0.85rcurζ)λ
− > λthresh

Proof of item 2. Since Gundet is empty, λ+undet = 0 and so χ = 0. Thus, using Corollary 9.7, with
probability given there,

λ̂rcur+1 ≤ λrcur+1(D) + ‖H‖ = λmax(A⊥) + ‖H‖
≤ 0 + 0.02rcurζλ

− + ‖H‖ ≤ 0.85rcurζλ
−

< λthresh,

λ̂rcur
≥ λrcur

(D)− ‖H‖ = λmin(A)− ‖H‖
≥ λ−cur − 0.085rcurζλ

−
cur ≥ (1− 0.85rcurζ)λ

−

> λthresh,

and
λ̂1

λ̂rcur

≤ λmax(A) + ‖H‖
λmin(A)− ‖H‖

≤ g + 0.85rcurζ

1− 0.85rcurζ
≤ ĝ

Proof of item 3. Using Fact 9.5 and Corollary 9.7, since r̂cur = rcur is assumed, we get

ζcur ≤ [0.75(1− rcurζ − χ)rcurζ + 0.08rcurζ]λ
−
cur

λ−cur[1− 0.0101rcurζ − χ− 0.02rcurζ − 0.83rζ]

≤ 0.75(1− rζ − χ)rcurζ + 0.08rcurζ

(1− rcurζ − χ)
≤ rcurζ (13)

The last inequality used the bound on χ. �

9.3 Proof of Theorem 3.3
The theorem is a direct consequence of using (9) and applying Lemma 9.8 for each of the k steps
with the substitutions given in Definition 9.2; along with picking α appropriately. A detailed proof
is in Sec. 11.
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10 Proof of Hoeffding lemma, Lemma 9.6
The following lemma, which is a modification of [3, Lemma 8.15], will be used in our proof. It is
proved in Sec. 11. The proof uses [3, Lemma 2.10].

Lemma 10.1. Given ζdet ≤ rζ.

1. ‖ΨGdet‖ ≤ rζ and ‖ΨGcur‖ ≤ 1.

2.
√
1− (rζ)2 ≤ σi(Rcur) = σi(ΨGcur) ≤ 1 and

√
1− (rζ)2 ≤ σi(ΨGundet) ≤ 1

3. ‖Ecur
′ΨGundet‖ ≤

(rζ)2√
1− (rζ)2

4.

ΨΣΨ = [ΨGdet ΨGcur ΨGundet][
Λdet 0 0

0 Λcur

0 0 Λundet

][
ΨGdet

ΨGcur

ΨGundet

]′
with λmax(Λdet) ≤ λ+, λ−cur ≤ λmin(Λcur) ≤ λmax(Λcur) ≤ λ+cur, λmax(Λundet) ≤
λ+undet.

5. Using the first four claims, it is easy to see that

(a) ‖Ecur,⊥
′ΨΣΨEcur,⊥‖ ≤ (rζ)2λ+ + λ+undet

(b) ‖Ecur,⊥
′ΨΣΨEcur‖ ≤ (rζ)2λ+ + (rζ)2√

1−(rζ)2
λ+undet

(c) ‖ΨΣ‖ ≤ (rζ)λ+ + λ+cur and ‖ΨΣM1,t
′‖ ≤ q((rζ)λ+ + λ+cur)

(d) ‖M1,tΣ‖ ≤ qλ+ and ‖M1,tΣM1,t
′‖ ≤ q2λ+

If Ĝdet = Gdet = [.], then all the terms containing (rζ) disappear.

6. λmin(A+B) ≥ λmin(A) + λmin(B)

7. Let at := P ′`t, at,det := Gdet
′`t, at,cur := Gcur

′`t and at,undet := Gundet
′`t. Also let

at,rest := [at,cur
′,at,undet

′]′. Then ‖at,rest‖2 ≤ rηλ+cur and ‖at,det‖2 ≤ ‖at‖2 ≤ rηλ+.

8. σmin(Ecur,⊥
′ΨGundet)

2 ≥ 1− (rζ)2 − (rζ)2√
1−(rζ)2

.

The following corollaries of the matrix Hoeffding inequality [20], proved in [3], will be used in the
proof.

Corollary 10.2. Given an α-length sequence {Zt} of random Hermitian matrices of size n × n, a
r.v. X , and a set C of values that X can take. For all X ∈ C, (i) Zt’s are conditionally independent
given X; (ii) P(b1I � Zt � b2I|X) = 1 and (iii) b3I � E[ 1α

∑
tZt|X] � b4I . For any ε > 0,

for all X ∈ C,

P

(
λmax

(
1

α

∑
t

Zt

)
≤ b4 + ε

∣∣∣X) ≥ 1− n exp
(

−αε2

8(b2 − b1)2

)
,

P

(
λmin

(
1

α

∑
t

Zt

)
≥ b3 − ε

∣∣∣X) ≥ 1− n exp
(

−αε2

8(b2 − b1)2

)
.

Corollary 10.3. Given an α-length sequence {Zt} of random matrices of size n1 × n2. For all
X ∈ C, (i) Zt’s are conditionally independent given X; (ii) P(‖Zt‖ ≤ b1|X) = 1 and (iii)
‖E[ 1α

∑
tZt|X]‖ ≤ b2. For any ε > 0, for all X ∈ C,

P

(∥∥∥∥ 1α∑
t

Zt

∥∥∥∥ ≤ b2 + ε
∣∣∣X) ≥ 1− (n1 + n2) exp

(
−αε2

32b1
2

)
.
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Proof of Lemma 9.6. Recall that we are given Ĝdet that was computed using (some or all) yt’s for
t ≤ t∗ and that satisfies ζdet ≤ rζ. From (2), yt is a linear function of `t. Thus, we can let
X := {`1, `2, . . . `t∗} denote all the random variables on which the event {ζdet ≤ rζ} depends.
In each item of this proof, we need to lower bound the probability of the desired event conditioned
on ζdet ≤ rζ. To do this, we first lower bound the probability of the event conditioned on X
that is such that X ∈ {ζdet ≤ rζ}. We get a lower bound that does not depend on X as long as
X ∈ {ζdet ≤ rζ}. Thus, the same probability lower bound holds conditioned on {ζdet ≤ rζ}.
Fact 10.4. For an event E and random variable X , P(E|X) ≥ p for all X ∈ C implies that
P(E|X ∈ C) ≥ p.

Proof of Lemma 9.6, item 1. Let

term :=
1

α

∑
t

Ψ`twt
′ =

1

α

∑
t

Ψ`t`
′
tM1,t

′M2,t
′

Since Ψ is a function of X , since `t’s used in the summation above are independent of X and
E[`t`t′] = Σ,

E[term|X] =
1

α

∑
t

ΨΣM1,t
′M2,t

′

Next, we use Cauchy-Schwartz for matrices:∥∥∥∥∥
α∑
t=1

XtYt
′

∥∥∥∥∥
2

≤ λmax

(
α∑
t=1

XtXt
′

)
λmax

(
α∑
t=1

YtYt
′

)
(14)

Using (14), with Xt = ΨΣM1,t
′ and Yt = M2,t, followed by using

√
‖ 1α
∑
tXtX ′t‖ ≤

maxt ‖Xt‖, Assumption 1.2 with At ≡ I , and Lemma 10.1,

‖E[term|X]‖ ≤ max
t
‖ΨΣM1,t

′‖
√
β

α

≤ q((rζ)λ+ + λ+cur)

√
β

α

for all X ∈ {ζdet ≤ rζ}. To bound ‖Ψ`tw
′
t‖, rewrite it as Ψ`tw

′
t = [ΨGdetat,det +

ΨGrestat,rest][a
′
t,detG

′
det + a′t,restG

′
rest]M

′
1,tM

′
2,t. Thus, using ‖M2,t‖ ≤ 1, ‖M1,tP ‖ ≤ q < 1,

and Lemma 10.1,

‖Ψ`tw
′
t‖ ≤ qrη((rζ)λ+ + λ+cur + (rζ)

√
λ+λ+cur +

√
λ+λ+cur)

holds w.p. one when {ζdet ≤ rζ}.
Finally, conditioned on X , the individual summands in term are conditionally independent. Using
matrix Hoeffding, Corollary 10.3, followed by Fact 10.4, the result follows.

Proof of Lemma 9.6, item 2.

E[
1

α

∑
t

wtw
′
t|X] =

1

α

∑
t

M2,tM1,tΣM1,t
′M2,t

′

By Lemma 10.1, ‖M1,tΣM1,t
′‖ ≤ q2λ+. Thus, using Assumption 1.2 with At ≡M1,tΣM1,t

′,

‖E[ 1
α

∑
t

wtw
′
t|X]‖ ≤ β

α
q2λ+.

Using Assumption 1.2 and Lemma 10.1,

‖wtw
′
t‖ = ‖M2,tM1,tPat‖2 ≤ q2ηrλ+.

Conditional independence of the summands holds as before. Thus, using Corollary 10.3 and Fact
10.4, the result follows.
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Proof of Lemma 9.6, item 3.

E[
1

α

∑
t

EcurEcur
′Ψ`t`t

′ΨEcur,⊥Ecur,⊥
′‖|X]

= EcurEcur
′ΨΣΨEcur,⊥Ecur,⊥

′

Using Lemma 10.1, ‖EcurEcur
′ΨΣΨEcur,⊥Ecur,⊥

′‖ ≤ (rζ)2λ++ (rζ)2√
1−(rζ)2

λ+undet when {ζdet ≤

rζ}. Also, ‖Ecur
′Ψ`t`t

′ΨEcur,⊥‖ ≤ ‖Ψ`t`t
′Ψ‖ ≤ ηr((rζ)2λ+ + λ+cur + 2(rζ)

√
λ+λ+cur) :=

bprob holds w.p. one when {ζdet ≤ rζ}. In the above bound, the first inequality is used to get a loose
bound, but one that will also apply for the proofs of the later items given below. The rest is the same
as in the proofs of the earlier parts.

Proof of Lemma 9.6, item 4. Using Ostrowski’s theorem,

λmin(E[A|X]) = λmin(Ecur
′Ψ(Σ)ΨEcur)

≥ λmin(Ecur
′ΨGcurΛcurGcur

′ΨEcur)

= λmin(RcurΛcurRcur
′)

≥ λmin(RcurRcur
′)λmin(Λcur) ≥ (1− (rζ)2)λ−cur

for all X ∈ {ζdet ≤ rζ}. Ostrowski’s theorem is used to get the second-last inequality, while
Lemma 10.1 helps get the last one.

As in the proof of item 3, ‖Ecur
′Ψ`t`t

′ΨEcur‖ ≤ ‖Ψ`t`t
′Ψ‖ ≤ bprob holds w.p. one when

{ζdet ≤ rζ}. Conditional independence of the summands holds as before. Thus, by matrix Hoeffd-
ing, Corollary 10.2, the result follows.

Proof of Lemma 9.6, item 5. By Lemma 10.1,

λmax(E[A⊥|X]) = λmax(Ecur,⊥
′ΨΣΨEcur,⊥)

≤ ((rζ)2λ+ + λ+undet)

when {ζdet ≤ rζ}. The rest of the proof is the same as that of the previous part.

Proof of Lemma 9.6, item 6. Using Ostrowski’s theorem,
λmax(E[A⊥|X]) ≥ λmax(Ecur,⊥

′ΨGundetΛundetGundet
′ΨEcur,⊥) ≥

λmin(Ecur,⊥
′ΨGundetGundet

′ΨEcur,⊥)λmax(Λundet). By definition, λmax(Λundet) = λ+undet.
By Lemma 10.1, λmin(Ecur,⊥

′ΨGundetGundet
′ΨEcur,⊥) = σmin(Ecur,⊥

′ΨGundet)
2 ≥

(1− (rζ)2 − (rζ)2√
1−(rζ)2

) when {ζdet ≤ rζ}. The rest of the proof is the same as above.

Proof of Lemma 9.6, item 7. Using Ostrowski’s theorem and Lemma 10.1, λmax(E[A|X]) ≥
λmax(Ecur

′ΨGcurΛcurGcur
′ΨEcur) ≥ λmin(RcurRcur

′)λmax(Λcur) ≥ (1 − (rζ)2)λ+cur when
{ζdet ≤ rζ}. The rest of the proof is the same as above. �

11 Detailed Proof of Theorem 3.3 and Proof of Lemma 10.1
Proof of Theorem 3.3. Recall that we need to show that ζk ≤ rkζ. Assume the substitutions given
in Definition 9.2. We will use induction.

Consider a k < ϑ. For the k-th step, assume that ζi ≤ riζ for i = 1, 2, . . . , k − 1. Thus, using (9),
ζdet ≤ rζ and so Lemma 9.8 is applicable. We first show that r̂k = rk and that Algorithm 1 does
not stop (proceeds to (k+1)-th step). From Algorithm 1, r̂k = rk if λ̂1

λ̂rk

≤ ĝ, and λ̂1

λ̂rk+1
> ĝ. Also

it will not stop if λ̂rk+1 ≥ λthresh. Since k < ϑ, Gundet is not empty. Thus, item 1 of Lemma 9.8
shows that all these hold. Hence r̂k = rk and algorithm does not stop w.p. at least 1−p1−p2−4p3.
Thus, by item 3 of the same lemma, with the same probability, ζk ≤ rkζ.

Now consider k = ϑ. We first show r̂k = rk and that Algorithm 1 does stop, i.e., ϑ̂ = ϑ. This will
be true if λ̂1

λ̂rk

≤ ĝ and λ̂rk+1 < λthresh. For k = ϑ, Gundet is empty. Thus, item 2 of Lemma 9.8

shows that this holds w.p. at least 1− p1 − p2 − 4p3. Thus, by item 3 of the same lemma, with the
same probability, ζk ≤ rkζ.
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Thus, using the union bound, w.p. at least 1 − ϑ(p1 + p2 + 4p3), r̂k = rk and ζk ≤ rkζ for all k.
Using (8), this implies that SE ≤ rζ with the same probability.

Finally, the choice α ≥ α0, implies that p1 ≤ 1
ϑ2n

−10, p2 ≤ 1
ϑ2n

−10, p3 ≤ 1
ϑ2n

−10. Hence
SE ≤ rζ w.p. at least 1− 12n−10. We work this out for p1 below. The others follow similarly.

Recall that p1 = 2n exp(−α ε2

32b2prob
), ε = 0.01(rζ)λ− and bprob = ηrq((rζ)λ+ + λ+cur +

(rζ)
√
λ+λ+cur +

√
λ+λ+cur). Thus,

b2prob
(λ−)2 ≤ (4ηrmax(q(rζ)f, qg, q

√
fg, q(rζ)

√
fg))2 ≤

16η2r2 max(q(rζ)f, qg, q
√
fg)2

Thus, α ε2

32b2prob
≥ 32·16

(0.01)2
η2r2(11 logn+log ϑ)

(rζ)2 max(q(rζ)f, qg, q
√
fg) (0.01(rζ))2

32·16η2r2 max(q(rζ)f,qg,q
√
fg)2
≥

11 log n+ log ϑ. Thus, p1 ≤ 1
ϑ2n

−10. �

Proof of Lemma 10.1. The first claim is obvious. The next two claims follow using the following
lemma:

Lemma 11.1 ([3], Lemma 2.10). Suppose that P , P̂ and Q are three basis matrices. Also, P and
P̂ are of the same size, Q′P = 0 and ‖(I − P̂ P̂ ′)P ‖ = ζ∗. Then,

1. ‖(I − P̂ P̂ ′)PP ′‖ = ‖(I − PP ′)P̂ P̂ ′‖ = ‖(I − PP ′)P̂ ‖ = ‖(I − P̂ P̂ ′)P ‖ = ζ∗

2. ‖PP ′ − P̂ P̂ ′‖ ≤ 2‖(I − P̂ P̂ ′)P ‖ = 2ζ∗

3. ‖P̂ ′Q‖ ≤ ζ∗

4.
√
1− ζ2∗ ≤ σi

(
(I − P̂ P̂ ′)Q

)
≤ 1

Use item 4 of Lemma 11.1 and the fact that Gdet
′Gcur = 0 and Gdet

′Gundet = 0 to get the second
claim.

For the third claim, notice that Ecur
′ΨGundet = R−1curGcur

′ΨGundet =

R−1curGcur
′ĜdetĜdet

′Gundet. since Ψ2 = Ψ and Gcur
′Gundet = 0. Using the second claim,

‖R−1cur‖ ≤ 1
σmin(Rcur)

≤ 1
1−(rζ)2 . Use item 3 of Lemma 11.1 and the facts that Gcur

′Gdet = 0 and

Gundet
′Gdet = 0 to bound ‖Gcur

′Ĝdet‖ and ‖Ĝdet
′Gundet‖ respectively.

The fourth claim just uses the definitions. The fifth claim uses the previous claims and the assump-
tions on Mt from Assumption 1.2. The sixth claim follows using Weyl’s inequality.

The second last claim: We show how to bound at,rest: ‖at,rest‖2 = ‖at,cur‖2 + ‖at,undet‖2 ≤∑
j∈Gcur

ηλj +
∑
j∈Gundet

ηλj ≤ rηλ+cur (since λj ≤ λ+cur for all the j’s being summed over). The
other bounds follow similarly.

Last claim:

σmin(Ecur,⊥
′ΨGundet)

2

= λmin(Gundet
′ΨEcur,⊥Ecur,⊥

′ΨGundet)

= λmin(Gundet
′Ψ(I −EcurEcur

′)ΨGundet)

≥ λmin(Gundet
′ΨΨGundet)−

λmax(Gundet
′ΨEcurEcur

′ΨGundet)

= σmin(ΨGundet)
2 − ‖Ecur

′ΨGundet‖

≥ 1− (rζ)2 − (rζ)2√
1− (rζ)2

.

The last inequality follows using the second and the third claim. �
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