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Abstract

Given a matrix of observed data, Principal Components Analysis (PCA) computes
a small number of orthogonal directions that contain most of its variability. Prov-
ably accurate solutions for PCA have been in use for a long time. However, to
the best of our knowledge, all existing theoretical guarantees for it assume that the
data and the corrupting noise are mutually independent, or at least uncorrelated.
This is valid in practice often, but not always. In this paper, we study the PCA
problem in the setting where the data and noise can be correlated. Such noise is
often also referred to as “data-dependent noise”. We obtain a correctness result
for the standard eigenvalue decomposition (EVD) based solution to PCA under
simple assumptions on the data-noise correlation. We also develop and analyze a
generalization of EVD, cluster-EVD, that improves upon EVD in certain regimes.

1 Introduction
Principal Components Analysis (PCA) is among the most frequently used tools for dimension re-
duction. Given a matrix of data, it computes a small number of orthogonal directions that contain all
(or most) of the variability of the data. The subspace spanned by these directions is the “principal
subspace”. To use PCA for dimension reduction, one projects the observed data onto this subspace.
The standard solution to PCA is to compute the reduced singular value decomposition (SVD) of
the data matrix, or, equivalently, to compute the reduced eigenvalue decomposition (EVD) of the
empirical covariance matrix of the data. If all eigenvalues are nonzero, a threshold is used and all
eigenvectors with eigenvalues above the threshold are retained. This solution, which we henceforth
refer to as simple EVD, or just EVD, has been used for many decades and is well-studied in litera-
ture, e.g., see [1] and references therein. However, to the best of our knowledge, all existing results
for it assume that the true data and the corrupting noise in the observed data are independent, or, at
least, uncorrelated. This is valid in practice often, but not always. Here, we study the PCA problem
in the setting where the data and noise vectors may be correlated (correlated-PCA). Such noise is
sometimes called “data-dependent” noise.

Contributions. (1) Under a boundedness assumption on the true data vectors, and some other as-
sumptions, for a fixed desired subspace error level, we show that the sample complexity of simple-
EVD for correlated-PCA scales as f2r2 log n where n is the data vector length, f is the condition
number of the true data covariance matrix and r is its rank. Here “sample complexity” refers to
the number of samples needed to get a small enough subspace recovery error with high probability
(whp). The dependence on f2 is problematic for datasets with large condition numbers, and, es-
pecially in the high dimensional setting where n is large. (2) To address this, we also develop and
analyze a generalization of simple-EVD, called cluster-EVD. Under an eigenvalues’ “clustering”
assumption, cluster-EVD weakens the dependence on f .

To our best knowledge, the correlated-PCA problem has not been explicitly studied. We first en-
countered it while solving the dynamic robust PCA problem in the Recursive Projected Compressive
Sensing (ReProCS) framework [2, 3, 4, 5]. The version of correlated-PCA studied here is motivated
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by these works. Some other somewhat related recent works include [6, 7] that study stochastic
optimization based techniques for PCA; and [8, 9, 10, 11] that study online PCA.

Notation. We use the interval notation [a, b] to mean all of the integers between a and b, inclusive,
and similarly for [a, b) etc. We use ‖ · ‖ to denote the l2 norm of a vector or the induced l2 norm of
a matrix. For other lp norms, we use ‖ · ‖p. For a set T , IT refers to an n× |T | matrix of columns
of the identity matrix indexed by entries in T . For a matrix A, AT := AIT . A tall matrix with
orthonormal columns is referred to as a basis matrix. For basis matrices P̂ and P , we quantify the
subspace error (SE) between their range spaces using

SE(P̂ ,P ) := ‖(I − P̂ P̂ ′)P ‖. (1)

1.1 Correlated-PCA: Problem Definition
We are given a time sequence of data vectors, yt, that satisfy

yt = `t +wt, with wt = Mt`t and `t = Pat (2)

where P is an n × r basis matrix with r � n. Here `t is the true data vector that lies in a low
dimensional subspace of Rn, range(P ); at is its projection into this r-dimensional subspace; and
wt is the data-dependent noise. We refer to Mt as the correlation / data-dependency matrix. The
goal is to estimate range(P ). We make the following assumptions on `t and Mt.
Assumption 1.1. The subspace projection coefficients, at, are zero mean, mutually independent
and bounded random vectors (r.v.), with a diagonal covariance matrix Λ. Define λ− := λmin(Λ),
λ+ := λmax(Λ) and f := λ+

λ− . Since the at’s are bounded, we can also define a finite constant

η := maxj=1,2,...rmaxt
(at)

2
j

λj
. Thus, (at)2j ≤ ηλj .

For most bounded distributions, η will be a small constant more than one, e.g., if the distribution of
all entries of at is iid zero mean uniform, then η = 3. From Assumption 1.1, clearly, the `t’s are also
zero mean, bounded, and mutually independent r.v.’s with a rank r covariance matrix Σ

EVD
= PΛP ′.

In the model, for simplicity, we assume Λ to be fixed. However, even if we replace Λ by Λt and
define λ− = mint λmin(Λt) and λ+ = λmax(Λt), all our results will still hold.
Assumption 1.2. Decompose Mt as Mt = M2,tM1,t. Assume that

‖M1,tP ‖ ≤ q < 1, ‖M2,t‖ ≤ 1, (3)

and, for any sequence of positive semi-definite Hermitian matrices, At, the following holds

for a β < α,

∥∥∥∥∥ 1α
α∑
t=1

M2,tAtM2,t
′

∥∥∥∥∥ ≤ β

α
max
t∈[1,α]

‖At‖. (4)

We will need the above to hold for all α ≥ α0 and for all β ≤ c0α with a c0 � 1. We set α0 and c0
in Theorems 2.1 and 3.3; both will depend on q. Observe that, using (3), ‖wt‖

‖`t‖ ≤ q, and so q is an
upper bound on the signal-to-noise ratio (SNR).

To understand the assumption on M2,t, notice that, if we allow β = α, then (4) always holds and
is not an assumption. Let B denote the matrix on the LHS of (4). One example situation when (4)
holds with a β � α is if B is block-diagonal with blocks At. In this case, it holds with β = 1. In
fact, it also holds with β = 1 if B is permutation-similar to a block diagonal matrix. The matrix
B will be of this form if M2,t = ITt with all the sets Tt being mutually disjoint. More generally,
if B is permutation-similar to a block-diagonal matrix with blocks given by the summation of At’s
over at most β0 < α time instants, then (4) holds with β = β0. This will happen if M2,t = ITt
with Tt = T [k] for at most β0 time instants and if sets T [k] are mutually disjoint for different
k. Finally, the T [k]’s need not even be mutually disjoint. As long as they are such that B is a
matrix with nonzero blocks on only the main diagonal and on a few diagonals near it, e.g., if it is
block tri-diagonal, it can be shown that the above assumption holds. This example is generalized in
Assumption 1.3 given below.
1.2 Examples of correlated-PCA problems
One key example of correlated-PCA is the PCA with missing data (PCA-missing) problem. Let Tt
denote the set of missing entries at time t. Suppose, we set the missing entries of yt to zero. Then,

yt = `t − ITtITt
′`t. (5)
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In this case M2,t = ITt and M1,t = −ITt ′. Thus, q is an upper bound on ‖ITt ′P ‖. Clearly, it
will be small if the columns of P are dense vectors. For the reader familiar with low-rank matrix
completion (MC), e.g., [12, 13], PCA-missing can also be solved by first solving the low-rank matrix
completion problem to recover L, followed by PCA on the completed matrix. This would, of course,
be much more expensive than directly solving PCA-missing and would need more assumptions.

Another example where correlated-PCA occurs is that of robust PCA (low-rank + sparse formula-
tion) [14, 15, 16] when the sparse component’s magnitude is correlated with `t. Let Tt denote the
support set of wt and let xt be the |Tt|-length vector of its nonzero entries. If we assume linear
dependency of xt on `t, we can write out yt as

yt = `t + ITtxt = `t + ITtMs,t`t. (6)
Thus M2,t = ITt and M1,t = Ms,t and so q is an upper bound on ‖Ms,tP ‖. In the rest of the
paper, we refer to this problem is “PCA with sparse data-dependent corruptions (PCA-SDDC)”.
One key application where it occurs is in foreground-background separation for videos consisting
of a slow changing background sequence (modeled as lying close to a low-dimensional subspace)
and a sparse foreground image sequence consisting typically of one or more moving objects [14].
The PCA-SDDC problem is to estimate the background sequence’s subspace. In this case, `t is
the background image at time t, Tt is the support set of the foreground image at t, and xt is the
difference between foreground and background intensities on Tt. An alternative solution approach
for PCA-SDDC is to use an RPCA solution such as principal components’ pursuit (PCP) [14, 15] or
Alternating-Minimization (Alt-Min-RPCA) [17] to first recover the matrix L followed by PCA on
L. However, as shown in Sec. 5, Table 1, this approach will be much slower; and it will work only
if its required incoherence assumptions hold. For example, if the columns of P are sparse, it fails.

For both problems above, a solution for PCA will work only when the corrupting noise wt is small
compared to `t. A sufficient condition for this is that q is small.

A third example where correlated-PCA and its generalization, correlated-PCA with partial subspace
knowledge, occurs is in the subspace update step of Recursive Projected Compressive Sensing (Re-
ProCS) for dynamic robust PCA [3, 5].

In all three of the above applications, the assumptions on the data-noise correlation matrix given in
Assumption 1.2 hold if there are enough changes of a certain type in the set of missing or corrupted
entries, Tt. One example where this is true is in case of a 1D object of length s or less that remains
static for at most β frames at a time. When it moves, it moves by at least a certain fraction of s
pixels. The following assumption is inspired by the object’s support.
Assumption 1.3. Let l denote the number of times the set Tt changes in the interval [1, α] (or in any
given interval of length α in case of dynamic robust PCA). So 0 ≤ l ≤ α − 1. Let t0 := 1; let tk,
with tk < tk+1, denote the time instants in this interval at which Tt changes; and let T [k] denote the
distinct sets. In other words, Tt = T [k] for t ∈ [tk, tk+1), for each k = 1, 2, . . . , l. Assume that the
following hold with a β < α:

1. (tk+1 − tk) ≤ β̃ and |T [k]| ≤ s;

2. ρ2β̃ ≤ β where ρ is the smallest positive integer so that, for any 0 ≤ k ≤ l, T [k] and
T [k+ρ] are disjoint;

3. for any k1, k2 satisfying 0 ≤ k1 < k2 ≤ l, the sets (T [k1] \ T [k1+1]) and (T [k2] \ T [k2+1])
are disjoint.

An implicit assumption for condition 3 to hold is that
∑l
k=0 |T [k] \ T [k+1]| ≤ n. Observe that

conditions 2 and 3 enforce an upper bound on the maximum support size s.

To connect Assumption 1.3 with the moving object example given above, condition 1 holds if the
object’s size is at most s and if it moves at least once every β̃ frames. Condition 2 holds, if, every
time it moves, it moves in the same direction and by at least sρ pixels. Condition 3 holds if, every
time it moves, it moves in the same direction and by at most d0 ≥ s

ρ pixels, with d0α ≤ n (or, more
generally, the motion is such that, if the object were to move at each frame, and if it started at the
top of the frame, it does not reach the bottom of the frame in a time interval of length α).

The following lemma [4] shows that, with Assumption 1.3 on Tt, M2,t = ITt satisfies the assump-
tion on M2,t given in Assumption 1.2. Its proof generalizes the discussion below Assumption 1.2.
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Lemma 1.4. [[4], Lemmas 5.2 and 5.3] Assume that Assumption 1.3 holds. For any sequence of
|Tt| × |Tt| symmetric positive-semi-definite matrices At,

‖
α∑
t=1

ITtAtITt
′‖ ≤ (ρ2β̃) max

t∈[1,α]
‖At‖ ≤ β max

t∈[1,α]
‖At‖

Thus, if ‖ITt ′P ‖ ≤ q < 1, then the PCA-missing problem satisfies Assumption 1.2. If ‖Ms,tP ‖ ≤
q < 1, then the PCA-SDDC problem satisfies Assumption 1.2.

Assumption 1.3 is one model on Tt that ensures that, if M2,t = ITt , the assumption on M2,t given
in Assumption 1.2 holds. For its many generalizations, see Supplementary Material, Sec. 7, or [4].

As explained in [18], data-dependent noise also often occurs in molecular biology applications when
the noise affects the measurement levels through the very same process as the interesting signal.

2 Simple EVD
Simple EVD computes the top eigenvectors of the empirical covariance matrix, 1

α

∑α
t=1 ytyt

′, of
the observed data. The following can be shown.

Theorem 2.1 (simple-EVD result). Let P̂ denote the matrix containing all the eigenvectors of
1
α

∑α
t=1 ytyt

′ with eigenvalues above a threshold, λthresh, as its columns. Pick a ζ so that
rζ ≤ 0.01. Suppose that yt’s satisfy (2) and the following hold.

1. Assumption 1.1 on `t holds. Define

α0 := Cη2
r211 log n

(rζ)2
max(f, qf, q2f)2, C :=

32

0.012
.

2. Assumption 1.2 on Mt holds for any α ≥ α0 and for any β satisfying

β

α
≤
(
1− rζ

2

)2

min

(
(rζ)2

4.1(qf)2
,
(rζ)

q2f

)
3. Set algorithm parameters λthresh = 0.95λ− and α ≥ α0.

Then, with probability at least 1− 6n−10, SE(P̂ ,P ) ≤ rζ.

Proof: The proof involves a careful application of the sin θ theorem [19] to bound the subspace
error, followed by using matrix Hoeffding [20] to obtain high probability bounds on each of the
terms in the sin θ bound. It is given in the Supplementary Material, Section 8.

Consider the lower bound on α. We refer to this as the “sample complexity”. Since q < 1, and η is a
small constant (e.g., for the uniform distribution, η = 3), for a fixed error level, rζ, α0 simplifies to
cf2r2 log n. Notice that the dependence on n is logarithmic. It is possible to show that the sample
complexity scales as log n because we assume that the `t’s are bounded r.v.s. As a result we can
apply the matrix Hoeffding inequality [20] to bound the perturbation between the observed data’s
empirical covariance matrix and that of the true data. The bounded r.v. assumption is actually a
more practical one than the usual Gaussian assumption since most sources of data have finite power.

By replacing matrix Hoeffding by Theorem 5.39 of [21] in places where one can apply a concentra-
tion of measure result to

∑
t atat

′/α (which is at r × r matrix), and by matrix Bernstein [20] else-
where, it should be possible to further reduce the sample complexity to cmax((qf)2r log n, f2(r+
log n)). It should also be possible remove the boundedness assumption and replace it by a Gaussian
(or a sub-Gaussian) assumption, but, that would increase the sample complexity to c(qf)2n.

Consider the upper bound on β/α. Clearly, the smaller term is the first one. This depends on
1/(qf)2. Thus, when f is large and q is not small enough, the bound required may be impractically
small. As will be evident from the proof (see Remark 8.3 in Supplementary Material), we get this
bound because wt is correlated with `t and this results in E[`twt

′] 6= 0.

If wt and `t were uncorrelated, qf would get replaced by λmax(Cov(wt))
λ− in the upper bound on β/α

as well as in the sample complexity.

Application to PCA-missing and PCA-SDDC. By Lemma 1.4, the following is immediate.
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Figure 1: Eigenvalue clusters of the three low-rankified videos.

Corollary 2.2. Consider the PCA-missing model, (5), and assume that maxt ‖ITt ′P ‖ ≤ q < 1;
or consider the PCA-SDDC model, (6), and assume that maxt ‖Ms,tP ‖ ≤ q < 1. Assume that
everything in Theorem 2.1 holds except that we replace Assumption 1.2 by Assumption 1.3. Then,
with probability at least 1− 6n−10, SE(P̂ ,P ) ≤ rζ.

3 Cluster-EVD
To try to relax the strong dependence on f2 of the result above, we develop a generalization of
simple-EVD that we call cluster-EVD. This requires the clustering assumption.

3.1 Clustering assumption
To state the assumption, define the following partition of the index set {1, 2, . . . r} based on the
eigenvalues of Σ. Let λi denote its i-th largest eigenvalue.

Definition 3.1 (g-condition-number partition of {1, 2, . . . r}). Define G1 = {1, 2, . . . r1} where r1
is the index for which λ1

λr1
≤ g and λ1

λr1+1
> g. In words, to define G1, start with the index of the first

(largest) eigenvalue and keep adding indices of the smaller eigenvalues to the set until the ratio of
the maximum to the minimum eigenvalue first exceeds g.

For each k > 1, define Gk = {r∗+1, r∗+2, . . . , r∗+rk} where r∗ = (
∑k−1
i=1 ri), rk is the index for

which λr∗+1

λr∗+rk
≤ g and λr∗+1

λr∗+rk+1
> g. In words, to define Gk, start with the index of the (r∗ + 1)-th

eigenvalue, and repeat the above procedure.

Stop when λr∗+rk+1 = 0, i.e., when there are no more nonzero eigenvalues. Define ϑ = k as the
number of sets in the partition. Thus {G1,G2, . . . ,Gϑ} is the desired partition.

Define G0 = [.], Gk := (P )Gk , λ+k := maxi∈Gk λi (Λ), λ−k := mini∈Gk λi (Λ) and

χ := max
k=1,2,...,ϑ

λ+k+1

λ−k
.

χ quantifies the “distance” between consecutive sets of the above partition. Moreover, by definition,
λ+
k

λ−k
≤ g. Clearly, g ≥ 1 and χ ≤ 1 always. We assume the following.

Assumption 3.2. For a 1 ≤ g+ < f and a 0 ≤ χ+ < 1, assume that there exists a g satisfying
1 ≤ g ≤ g+ and a χ satisfying 0 ≤ χ ≤ χ+, for which we can define a g-condition-number
partition of {1, 2, . . . r} that satisfies χ ≤ χ+. The number of sets in the partition is ϑ. When g+
and χ+ are small, we say that the eigenvalues are “well-clustered” with “clusters”, Gk.

This assumption can be understood as a generalization of the eigen-gap condition needed by the
block power method, which is a fast algorithm for obtaining the k top eigenvectors of a matrix [22].
We expect it to hold for data that has variability across different scales. The large scale variations
would result in the first (largest eigenvalues’) cluster and the smaller scale variations would form the
later clusters. This would be true, for example, for video “textures” such as moving waters or waving
trees in a forest. We tested this assumption on some such videos. We describe our conclusions here
for three videos - “lake” (video of moving lake waters), “waving-tree” (video consisting of waving
trees), and “curtain” (video of window curtains moving due to the wind). For each video, we first
made it low-rank by keeping the eigenvectors corresponding to the smallest number of eigenvalues
that contain at least 90% of the total energy and projecting the video onto this subspace. For the
low-rankified lake video, f = 74 and Assumption 3.2 holds with ϑ = 6 clusters, g+ = 2.6 and
χ+ = 0.7. For the waving-tree video, f = 180 and Assumption 3.2 holds with ϑ = 6, g+ = 9.4
and χ+ = 0.72. For the curtain video, f = 107 and the assumption holds ϑ = 3, g+ = 16.1 and
χ+ = 0.5. We show the clusters of eigenvalues in Fig. 1.
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Algorithm 1 Cluster-EVD
Parameters: α, ĝ, λthresh.
Set Ĝ0 ← [.]. Set the flag Stop← 0. Set k ← 1.
Repeat

1. Let Ĝdet,k := [Ĝ0, Ĝ1, . . . Ĝk−1] and let Ψk := (I − Ĝdet,kĜdet,k
′). Notice that Ψ1 =

I . Compute

D̂k = Ψk

 1

α

kα∑
t=(k−1)α+1

ytyt
′

Ψk

2. Find the k-th cluster, Ĝk: let λ̂i = λi(D̂k);

(a) find the index r̂k for which λ̂1

λ̂r̂k

≤ ĝ and either λ̂1

λ̂r̂k+1
> ĝ or λ̂r̂k+1 < λthresh;

(b) set Ĝk = {r̂∗ + 1, r̂∗ + 2, . . . , r̂∗ + r̂k} where r̂∗ :=
∑k−1
j=1 r̂j ;

(c) if λ̂r̂k+1 < λthresh, update the flag Stop← 1

3. Compute Ĝk ← eigenvectors(D̂k, r̂k); increment k
Until Stop == 1.

Set ϑ̂← k. Output P̂ ← [Ĝ1 · · · Ĝϑ̂].
eigenvectors(M, r) returns a basis matrix for the span of the top r eigenvectors of M.

3.2 Cluster-EVD algorithm
The cluster-EVD approach is summarized in Algorithm 1. I Its main idea is as follows. We start
by computing the empirical covariance matrix of the first set of α observed data points, D̂1 :=
1
α

∑α
t=1 ytyt

′. Let λ̂i denote its i-th largest eigenvalue. To estimate the first cluster, Ĝ1, we start
with the index of the first (largest) eigenvalue and keep adding indices of the smaller eigenvalues
to it until the ratio of the maximum to the minimum eigenvalue exceeds ĝ or until the minimum
eigenvalue goes below a “zero threshold”, λthresh. Then, we estimate the first cluster’s subspace,
range(G1) by computing the top r̂1 eigenvectors of D̂1. To get the second cluster and its subspace,
we project the next set of α yt’s orthogonal to Ĝ1 followed by repeating the above procedure. This
is repeated for each k > 1. The algorithm stops when λ̂r̂k+1 < λthresh.

Algorithm 1 is related to, but significantly different from, the ones introduced in [3, 5] for the
subspace deletion step of ReProCS. The one introduced in [3] assumed that the clusters were known
to the algorithm (which is unrealistic). The one studied in [5] has an automatic cluster estimation
approach, but, one that needs a larger lower bound on α compared to what Algorithm 1 needs.
3.3 Main result
We give the performance guarantee for Algorithm 1 here. Its parameters are set as follows. We set
ĝ to a value that is a little larger than g. This is needed to allow for the fact that λ̂i is not equal to
the i-th eigenvalue of Λ but is within a small margin of it. For the same reason, we need to also use
a nonzero “zeroing” threshold, λthresh, that is larger than zero but smaller than λ−. We set α large
enough to ensure that SE(P̂ ,P ) ≤ rζ holds with a high enough probability.
Theorem 3.3 (cluster-EVD result). Consider Algorithm 1. Pick a ζ so that r2ζ ≤
0.0001, and r2ζf ≤ 0.01. Suppose that yt’s satisfy (2) and the following hold.

1. Assumption 1.1 and Assumption 3.2 on `t hold with χ+ satisfying χ+ ≤ min(1 − rζ −
0.08
0.25 ,

g+−0.0001
1.01g++0.0001 − 0.0001). Define

α0 := Cη2
r2(11 log n+ log ϑ)

(rζ)2
max(g+, qg+,

q2f, q(rζ)f, (rζ)2f, q
√
fg+, (rζ)

√
fg+)2, C :=

32 · 16
0.012

.

2. Assumption 1.2 on Mt holds with α ≥ α0 and with β satisfying

β

α
≤
(
(1− rζ − χ+)

2

)2

min

(
(rkζ)

2

4.1(qg+)2
,
(rkζ)

q2f

)
.
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3. Set algorithm parameters ĝ = 1.01g+ + 0.0001, λthresh = 0.95λ− and α ≥ α0.

Then, with probability at least 1− 12n−10, SE(P̂ ,P ) ≤ rζ.

Proof: The proof is given in Section 9 in Supplementary Material.

We can also get corollaries for PCA-missing and PCA-SDDC for cluster-EVD. We have given one
specific value for ĝ and λthresh in Theorem 3.3 for simplicity. One can, in fact, set ĝ to be anything
that satisfies (12) given in Supplementary Material and one can set λthresh to be anything satisfying
5rζλ− ≤ λthresh ≤ 0.95λ−. Also, it should be possible to reduce the sample complexity of cluster-
EVD to cmax(q2(g+)2r log n, (g+)2(r + log n)) using the approach explained in Sec. 2.

4 Discussion
Comparing simple-EVD and cluster-EVD. Consider the lower bounds on α. In the cluster-EVD
(c-EVD) result, Theorem 3.3, if q is small enough (e.g., if q ≤ 1/

√
f ), and if (r2ζ)f ≤ 0.01,

it is clear that the maximum in the max(., ., ., .) expression is achieved by (g+)2. Thus, in this
regime, c-EVD needs α ≥ C r2(11 logn+log ϑ)

(rζ)2 g2 and its sample complexity is ϑα. In the EVD result

(Theorem 2.1), g+ gets replaced by f and ϑ by 1, and so, its sample complexity, α ≥ C r211 logn
(rζ)2 f2.

In situations where the condition number f is very large but g+ is much smaller and ϑ is small (the
clustering assumption holds well), the sample complexity of c-EVD will be much smaller than that
of simple-EVD. However, notice that, the lower bound on α for simple-EVD holds for any q < 1
and for any ζ with rζ < 0.01 while the c-EVD lower bound given above holds only when q is small
enough, e.g., q = O(1/

√
f), and ζ is small enough, e.g., rζ = O(1/f). This tighter bound on ζ

is needed because the error of the k-th step of c-EVD depends on the errors of the previous steps
times f . Secondly, the c-EVD result also needs χ+ and ϑ to be small (clustering assumption holds
well), whereas, for simple-EVD, by definition, χ+ = 0 and ϑ = 1. Another thing to note is that the
constants in both lower bounds are very large with the c-EVD one being even larger.

To compare the upper bounds on β, assume that the same α is used by both, i.e., α =
max(α0(EVD), α0(c-EVD)). As long as rk is large enough, χ+ is small enough, and g is small
enough, the upper bound on β needed by the c-EVD result is significantly looser. For example, if
χ+ = 0.2, ϑ = 2, rk = r/2, then c-EVD needs β ≤ (0.5 · 0.79 · 0.5)2 (rζ)2

4.1q2g2α while simple-EVD

needs β ≤ (0.5 · 0.99)2 (rζ)2

4.1q2f2α. If g = 3 but f = 100, clearly the c-EVD bound is looser.

Comparison with other results for PCA-SDDC and PCA-missing. To our knowledge, there is no
other result for correlated-PCA. Hence, we provide comparisons of the corollaries given above for
the PCA-missing and PCA-SDDC special cases with works that also study these or related problems.
An alternative solution for either PCA-missing or PCA-SDDC is to first recover the entire matrix L
and then compute its subspace via SVD on the estimated L. For the PCA-missing problem, this can
be done by using any of the low-rank matrix completion techniques, e.g., nuclear norm minimization
(NNM) [13] or alternating minimization (Alt-Min-MC) [23]. Similarly, for PCA-SDDC, this can be
done by solving any of the recent provably correct RPCA techniques such as principal components’
pursuit (PCP) [14, 15, 16] or alternating minimization (Alt-Min-RPCA) [17].

However, as explained earlier doing the above has two main disadvantages. The first is that it is
much slower (see Sec. 5). The difference in speed is most dramatic when solving the matrix-sized
convex programs such as NNM or PCP, but even the Alt-Min methods are slower. If we use the time
complexity from [17], then finding the span of the top k singular vectors of an n ×m matrix takes
O(nmk) time. Thus, if ϑ is a constant, both simple-EVD and c-EVD need O(nαr) time, whereas,
Alt-Min-RPCA needs O(nαr2) time per iteration [17]. The second disadvantage is that the above
methods for MC or RPCA need more assumptions to provably correctly recover L. All the above
methods need an incoherence assumption on both the left singular vectors, P , and the right singular
vectors, V , of L. Of course, it is possible that, if one studies these methods with the goal of only
recovering the column space of L correctly, the incoherence assumption on the right singular vectors
is not needed. From simulation experiments (see Sec. 5), the incoherence of the left singular vectors
is definitely needed. On the other hand, for the PCA-SDDC problem, simple-EVD or c-EVD do not
even need the incoherence assumption on P .

The disadvantage of both EVD and c-EVD, or in fact of any solution for the PCA problem, is that
they work only when q is small enough (the corrupting noise is small compared to `t).
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Mean Subspace Error (SE) Average Execution Time

c-EVD EVD PCP A-M-RPCA c-EVD EVD PCP A-M-RPCA

Expt 1 0.0908 0.0911 1.0000 1.0000 0.0549 0.0255 0.2361 0.0810
Expt 2 0.3626 0.3821 0.4970 0.4846 0.0613 0.0223 1.6784 5.5144

Table 1: Comparison of SE(P̂ ,P ) and execution time (in seconds). A-M-RPCA: Alt-Min-RPCA. Expt 1:
simulated data, Expt 2: lake video with simulated foreground.

5 Numerical Experiments
We use the PCA-SDDC problem as our case study example. We compare EVD and cluster-EVD
(c-EVD) with PCP [15], solved using [24], and with Alt-Min-RPCA [17] (implemented using code
from the authors’ webpage). For both PCP and Alt-Min-RPCA, P̂ is recovered as the top r eigenvec-
tors of of the estimated L. To show the advantage of EVD or c-EVD, we let `t = Pat with columns
of P being sparse. These were chosen as the first r = 5 columns of the identity matrix. We gen-
erate at’s iid uniformly with zero mean and covariance matrix Λ = diag(100, 100, 100, 0.1, 0.1).
Thus the condition number f = 1000. The clustering assumption holds with ϑ = 2, g+ = 1 and
χ+ = 0.001. The noise wt is generated as wt = ITtMs,t`t with Tt generated to satisfy Assumption
1.3 with s = 5, ρ = 2, and β̃ = 1; and the entries of Ms,t being iid N (0, q2) with q = 0.01. We
used n = 500. EVD and c-EVD (Algorithm 1) were implemented with α = 300, λthresh = 0.095,
ĝ = 3. 10000-time Monte Carlo averaged values of SE(P̂ ,P ) and execution time are shown in the
first row of Table 1. Since the columns of P are sparse, both PCP and Alt-Min-RPCA fail. Both
have average SE close to one whereas the average SE of c-EVD and EVD is 0.0908 and 0.0911
respectively. Also, both EVD and c-EVD are much faster than the other two. We also did an exper-
iment with the settings of this experiment, but with P dense. In this case, EVD and c-EVD errors
were similar, but PCP and Alt-Min-RPCA errors were less than 10−5.

For our second experiment, we used images of a low-rankified real video sequence as `t’s.
We chose the escalator sequence from http://perception.i2r.a-star.edu.sg/bk_
model/bk_index.html since the video changes are only in the region where the escalator
moves (and hence can be modeled as being sparse). We made it exactly low-rank by retaining
its top 5 eigenvectors and projecting onto their subspace. This resulted in a data matrix L of size
n × 2α with n = 20800 and α = 50, of rank r = 5. We overlaid a simulated moving foreground
block on it. The intensity of the moving block was controlled to ensure that q is small. We used
α = 50 for EVD and c-EVD. We let P be the eigenvectors of the low-rankified video with nonzero
eigenvalues and computed SE(P̂ ,P ). The errors and execution time are displayed in the second
row of Table 1. Since n is very large, the difference in speed is most apparent in this case.

Thus c-EVD outperforms PCP and AltMinRPCA when columns of P are sparse. It also outperforms
EVD but the advantage in mean error is not as much as our theorems predict. One reason is that the
constant in the required lower bounds on α is very large. It is hard to pick an α that is this large and
still only O(log n) unless n is very large. Secondly, both guarantees are only sufficient conditions.

6 Conclusions and Future Work
We studied the problem of PCA in noise that is correlated with the data (data-dependent noise). We
obtained sample complexity bounds for the most commonly used PCA solution, simple EVD. We
also developed and analyzed a generalization of EVD, called cluster-EVD, that has lower sample
complexity under extra assumptions. We provided a detailed comparison of our results with those
for other approaches to solving its example applications - PCA with missing data and PCA with
sparse data-dependent corruptions.

We used matrix Hoeffding [20] to obtain our results. As explained in Sec. 2, we can significantly
improve the sample complexity bounds if this is replaced by [21, Theorem 5.39] and matrix Bern-
stein at appropriate places. We have obtained such a result in ongoing work [25]. Moreover, as done
in [5] (for ReProCS), the mutual independence of `t’s can be easily replaced by a more practical as-
sumption of `t’s following autoregressive model with almost no change to our assumptions. Thirdly,
by generalizing the proof techniques developed here, we can also study the problem of correlated-
PCA with partial subspace knowledge. The solution to the latter problem helps to greatly simplify
the proof of correctness of ReProCS for online dynamic RPCA. The boundedness assumption on
`t’s can be replaced by a Gaussian or a well-behaved sub-Gaussian assumption but this will increase
the sample complexity to O(n). Finally, an open-ended question is how we relax Assumption 1.2
on Mt and still get results similar to Theorem 2.1 or Theorem 3.3.
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