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Abstract

We introduce the study of fairness in multi-armed bandit problems. Our fairness
definition demands that, given a pool of applicants, a worse applicant is never
favored over a better one, despite a learning algorithm’s uncertainty over the true
payoffs. In the classic stochastic bandits problem we provide a provably fair
algorithm based on “chained” confidence intervals, and prove a cumulative regret
bound with a cubic dependence on the number of arms. We further show that
any fair algorithm must have such a dependence, providing a strong separation
between fair and unfair learning that extends to the general contextual case. In
the general contextual case, we prove a tight connection between fairness and the
KWIK (Knows What It Knows) learning model: a KWIK algorithm for a class of
functions can be transformed into a provably fair contextual bandit algorithm and
vice versa. This tight connection allows us to provide a provably fair algorithm
for the linear contextual bandit problem with a polynomial dependence on the
dimension, and to show (for a different class of functions) a worst-case exponential
gap in regret between fair and non-fair learning algorithms.

1 Introduction

Automated techniques from statistics and machine learning are increasingly being used to make
decisions that have important consequences on people’s lives, including hiring [24], lending [10],
policing [25], and even criminal sentencing [7]. These high stakes uses of machine learning have led
to increasing concern in law and policy circles about the potential for (often opaque) machine learning
techniques to be discriminatory or unfair [13, 6]. At the same time, despite the recognized importance
of this problem, very little is known about technical solutions to the problem of “unfairness”, or the
extent to which “fairness” is in conflict with the goals of learning.

In this paper, we consider the extent to which a natural fairness notion is compatible with learning in
a bandit setting, which models many of the applications of machine learning mentioned above. In
this setting, the learner is a sequential decision maker, which must choose at each time step t which
decision to make from a finite set of k “arms". The learner then observes a stochastic reward from
(only) the arm chosen, and is tasked with maximizing total earned reward (equivalently, minimizing
total regret) by learning the relationships between arms and rewards over time. This models, for
example, the problem of learning the association between loan applicants and repayment rates over
time by repeatedly granting loans and observing repayment.

We analyze two variants of the setting: in the classic case, the learner’s only source of information
comes from choices made in previous rounds. In the contextual case, before each round the learner
additionally observes some potentially informative context for each arm (for example representing
the content of an individual’s loan application), and the expected reward is some unknown function of
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the context. The difficulty in this task stems from the unknown relationships between arms, rewards,
and (in the contextual case) contexts: these relationships must be learned.

We introduce fairness into the bandit learning framework by saying that it is unfair to preferentially
choose one arm over another if the chosen arm has lower expected quality than the unchosen arm.
In the loan application example, this means that it is unfair to preferentially choose a less-qualified
applicant (in terms of repayment probability) over a more-qualified applicant.

It is worth noting that this definition of fairness (formalized in the preliminaries) is entirely consistent
with the optimal policy, which can simply choose at each round to play uniformly at random from
the arms maximizing the expected reward. This is because – it seems – this definition of fairness
is entirely consistent with the goal of maximizing expected reward. Indeed, the fairness constraint
exactly states that the algorithm cannot favor low reward arms!

Our main conceptual result is that this intuition is incorrect in the face of unknown reward functions.
Although fairness is consistent with implementing the optimal policy, it may not be consistent with
learning the optimal policy. We show that fairness always has a cost, in terms of the achievable
learning rate of the algorithm. For some problems, the cost is mild, but for others, the cost is large.

1.1 Our Results

We divide our results into two parts. First, in Section 3 we study the classic stochastic multi-armed
bandit problem [20, 19]. In this case, there are no contexts, and each arm i has a fixed but unknown
average reward µi. In Section 3.1 we give a fair algorithm, FAIRBANDITS, and show that it guarantees
nontrivial regret after T = O(k3) rounds. We then show in Section 3.2 that it is not possible to do
better – any fair learning algorithm can be forced to endure constant per-round regret for T = Ω(k3)
rounds, thus tightly characterizing the optimal regret attainable by fair algorithms in this setting, and
formally separating it from the regret attainable by algorithms absent a fairness constraint.

We then move on to the general contextual bandit setting in Section 4 and prove a broad characteriza-
tion result, relating fair contextual bandit learning to KWIK (“Knows What It Knows") learning [22].
Informally, a KWIK leaarning algorithm receives a series of unlabeled examples and must either
predict a label or announce “I Don’t Know". The KWIK requirement then stipulates that any predicted
must be label close to its true label. The quality of a KWIK learning algorithm is characterized by
its “KWIK bound”, which provides an upper bound on the maximum number of times the algorithm
can be forced to announce “I Don’t Know”. For any contextual bandit problem (defined by the
set of functions C from which the payoff functions may be selected), we show that the optimal
learning rate of any fair algorithm is determined by the best KWIK bound for the class C. We prove
this constructively via a reduction showing how to convert a KWIK learning algorithm into a fair
contextual bandit algorithm in Section 4.1, and vice versa in Section 4.2.

This general connection immediately allows us to import known results for KWIK learning [22]. It
implies that some fair contextual bandit problems are easy and achieve non-trivial regret guarantees
in only polynomial many rounds. Conversely, it also implies that some contextual bandit problems
which are easy without the fairness constraint become hard once we impose the fairness constraint, in
that any fair algorithm must suffer constant per-round regret for exponentially many rounds. By way
of example, we will show in Section 4.1 that real contexts with linear reward functions are easy, and
we will show in Section 4.3 that boolean context vectors and conjunction reward functions are hard.

1.2 Other Related Work

Many papers study the problem of fairness in machine learning. One line of work studies algorithms
for batch classification which achieve group fairness otherwise known as equality of outcomes,
statistical parity – or algorithms that avoid disparate impact (see e.g. [11, 23, 18, 15, 16] and [2] for
a study of auditing existing algorithms for disparate impact). While statistical parity is sometimes
a desirable or legally required goal, as observed by Dwork et al. [14] and others, it suffers from a
number of drawbacks. First, if different populations indeed have different statistical properties, then it
can be at odds with accurate classification. Second, even in cases when statistical parity is attainable
with an optimal classifier, it does not prevent discrimination at an individual level. This led Dwork
et al. [14] to encourage the study of individual fairness, which we focus on here.
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Dwork et al. [14] also proposed and explored a technical definition of individual fairness formalizing
the idea that “similar individuals should be treated similarly” by presupposing a task-specific quality
metric on individuals and proposing that fair algorithms should satisfy a Lipschitz condition on this
metric. Our definition of fairness is similar, in that the expected reward of each arm is a natural metric
through which we define fairness. However, where Dwork et al. [14] presupposes the existence of a
“fair" metric on individuals – thus encoding much of the relevant challenge, as studied Zemel et al.
[27] – our notion of fairness is entirely aligned with the goal of the algorithm designer and is satisfied
by the optimal policy. Nevertheless, it affects the space of feasible learning algorithms, because it
interferes with learning an optimal policy, which depends on the unknown reward functions.

At a technical level, our work is related to Amin et al. [4] and Abernethy et al. [1], which also relate
KWIK learning to bandit learning in a different context unrelated to fairness.

2 Preliminaries

We study the contextual bandit setting, defined by a domain X , a set of “arms” [k] := {1, . . . , k} and
a class C of functions of the form f : X → [0, 1]. For each arm j there is some function fj ∈ C,
unknown to the learner. In rounds t = 1, . . . , T , an adversary reveals to the algorithm a context xtj
for each arm2. An algorithm A then chooses an arm it, and observes stochastic reward rtit for the
arm it chose. We assume rtj ∼ Dtj , E[rtj ] = fj(x

t
j), for some distribution Dtj over [0, 1].

Let Π be the set of policies mapping contexts to distributions over arms Xk → ∆k, and π∗ the
optimal policy which selects a distribution over arms as a function of contexts to maximize the
expected reward of those arms. The pseudo-regret of an algorithm A on contexts x1, . . . , xT is
defined as follows, where πt represents A’s distribution on arms at round t:∑

t

Eit∗∼π∗(xt)[fit∗(x
t
it∗

)]− Eit∼πt [
∑
t

fit(x
t
it)] = Regret(x1, . . . , xT ),

shorthanded as A’s regret. Optimal policy π∗ pulls arms with highest expectation at each round, so:

Regret(x1, . . . , xT ) =
∑
t

max
j

(
fj(x

t
j)
)
− Eit∼πt [

∑
t

fit(x
t
it)].

We say that A satisfies regret bound R(T ) if maxx1,...,xT Regret(x1, . . . , xt) ≤ R(T ).

Let the history ht ∈
(
X k × [k]× [0, 1]

)t−1
be a record of t − 1 rounds experienced by A, t − 1

3-tuples encoding the realization of the contexts, arm chosen, and reward observed. πtj|ht denotes the
probability that A chooses arm j after observing contexts xt, given ht. For simplicity, we will often
drop the superscript t on the history when referring to the distribution over arms: πtj|h := πtj|ht .

We now define what it means for a contextual bandit algorithm to be δ-fair with respect to its arms.
Informally, this will mean that A will play arm i with higher probability than arm j in round t only if
i has higher mean than j in round t, for all i, j ∈ [k], and in all rounds t.
Definition 1 (δ-fair). A is δ-fair if, for all sequences of contexts x1, . . . , xt and all payoff distribu-
tions Dt1, . . . ,Dtk, with probability at least 1− δ over the realization of the history h, for all rounds
t ∈ [T ] and all pairs of arms j, j′ ∈ [k],

πtj|h > πtj′|h only if fj(xtj) > fj′(x
t
j′).

KWIK learning Let B be an algorithm which takes as input a sequence of examples x1, . . . , xT ,
and when given some xt ∈ X , outputs either a prediction ŷt ∈ [0, 1] or else outputs ŷt = ⊥,
representing “I don’t know”. When ŷt = ⊥, B receives feedback yt such that E[yt] = f(xt). B is an
(ε, δ)-KWIK learning algorithm for C : X → [0, 1], with KWIK bound m(ε, δ) if for any sequence
of examples x1, x2, . . . and any target f ∈ C, with probability at least 1− δ, both:

1. Its numerical predictions are accurate: for all t, ŷt ∈ {⊥} ∪ [f(xt)− ε, f(xt) + ε], and
2. B rarely outputs “I Don’t Know”:

∑∞
t=1 I [ŷt = ⊥] ≤ m(ε, δ).

2Often, the contextual bandit problem is defined such that there is a single context xt every day. Our model
is equivalent – we could take xt

j := xt for each j.
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2.1 Specializing to Classic Stochastic Bandits

In Sections 3.1 and 3.2, we study the classic stochastic bandit problem, an important special case
of the contextual bandit setting described above. Here we specialize our notation to this setting, in
which there are no contexts. For each arm j ∈ [k], there is an unknown distribution Dj over [0, 1]
with unknown mean µj . A learning algorithm A chooses an arm it in round t, and observes the
reward rtit ∼ Dit for the arm that it chose. Let i∗ ∈ [k] be the arm with highest expected reward:
i∗ ∈ arg maxi∈[k] µi. The pseudo-regret of an algorithm A on D1, . . . ,Dk is now just:

T · µi∗ − Eit∼πt [
∑

0≤t≤T

µit ] = Regret(T,D1, . . . ,Dk)

Let ht ∈ ([k]× [0, 1])
t−1 denote a record of the t− 1 rounds experienced by the algorithm so far,

represented by t− 1 2-tuples encoding the previous arms chosen and rewards observed. We write
πtj|ht to denote the probability that A chooses arm j given history ht. Again, we will often drop the
superscript t on the history when referring to the distribution over arms: πtj|h := πtj|ht . δ-fairness in
the classic bandit setting then specializes as follows:
Definition 2 (δ-fairness in the classic bandits setting). A is δ-fair if, for all distributions D1, . . . ,Dk,
with probability at least 1− δ over the history h, for all t ∈ [T ] and all j, j′ ∈ [k]:

πtj|h > πtj′|h only if µj > µj′ .

3 Classic Bandits Setting

3.1 Fair Classic Stochastic Bandits: An Algorithm

In this section, we describe a simple and intuitive modification of the standard UCB algorithm [5],
called FAIRBANDITS, prove that it is fair, and analyze its regret bound. The algorithm and its analysis
highlight a key idea that is important to the design of fair algorithms in this setting: that of chaining
confidence intervals. Intuitively, as a δ-fair algorithm explores different arms it must play two arms j1
and j2 with equal probability until it has sufficient data to deduce, with confidence 1− δ, either that
µj1 > µj2 or vice versa. FAIRBANDITS does this by maintaining empirical estimates of the means of
both arms, together with confidence intervals around those means. To be safe, the algorithm must
play the arms with equal probability while their confidence intervals overlap. The same reasoning
applies simultaneously to every pair of arms. Thus, if the confidence intervals of each pair of arms ji
and ji+1 overlap for each i ∈ [k], the algorithm is forced to play all arms j with equal probability.
This is the case even if the confidence intervals around arm jk and arm j1 are far from overlapping –
i.e. when the algorithm can be confident that µj1 > µjk .

This chaining approach initially seems overly conservative when ruling out arms, as reflected in its
regret bound, which is only non-trivial after T � k3. In contrast, the UCB algorithm [5] achieves
non-trivial regret after T = O(k) rounds. However, our lower bound in Section 3.2 shows that any
fair algorithm must suffer constant per-round regret for T � k3 rounds on some instances.

We now give an overview of the behavior of FAIRBANDITS. At every round t, FAIRBANDITS
identifies the arm it∗ = arg maxi u

t
i that has the largest upper confidence interval amongst the active

arms. At each round t, we say i is linked to j if [`ti, u
t
i] ∩ [`tj , u

t
j ] 6= ∅, and i is chained to j if i and

j are in the same component of the transitive closure of the linked relation. FAIRBANDITS plays
uniformly at random among all active arms chained to arm it∗.

Initially, the active set contains all arms. The active set of arms at each subsequent round is defined to
be the set of arms that are chained to the arm with highest upper confidence bound at the previous
round. The algorithm can be confident that arms that have become unchained to the arm with the
highest upper confidence bound at any round have means that are lower than the means of any chained
arms, and hence such arms can be safely removed from the active set, never to be played again. This
has the useful property that the active set of arms can only shrink: at any round t, St ⊆ St−1.

We first observe that with probability 1− δ, all of the confidence intervals maintained by FAIRBAN-
DITS (δ) contain the true means of their respective arms over all rounds. We prove this claim, along
with all other claims in this paper, in the full technical version of this paper [17].
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1: procedure FAIRBANDITS(δ)
2: S0 ← {1, . . . , k} . Initialize the active set
3: for i = 1, . . . k do
4: µ̂0

i ← 1
2 , u0i ← 1, `0i ← 0, n0i ← 0 . Initialize each arm

5: for t = 1 to T do
6: it∗ ← arg maxi∈St−1 uti . Find arm with highest ucb
7: St ← {j | j chains to it∗, j ∈ St−1} . Update active set
8: j∗ ← (x ∈R St) . Select active arm at random
9: nt+1

j∗ ← ntj∗ + 1

10: µ̂t+1
j∗ ← 1

nt+1
j∗

(µ̂tj∗ · ntj∗ + rtj∗) . Pull arm j∗, update its mean estimate

11: B ←
√

ln((π·(t+1))2/3δ)

2nt+1
j∗

12:
[
`t+1
j∗ , ut+1

j∗

]
←
[
µ̂t+1
j∗ −B, µ̂

t+1
j∗ +B

]
. Update interval for pulled arm

13: for j ∈ St, j 6= j∗ do
14: µ̂t+1

j ← µ̂tj , n
t+1
j ← ntj , u

t+1
j ← utj , `

t+1
j ← `tj

Lemma 1. With probability at least 1− δ, for every arm i and round t `ti ≤ µi ≤ uti.

The fairness of FAIRBANDITS follows: with high probability the algorithm constructs good confidence
intervals, so it can confidently choose between arms without violating fairness.
Theorem 1. FAIRBANDITS (δ) is δ-fair.

Having proven that FAIRBANDITS is indeed fair, it remains to upper-bound its regret. We proceed by
a series of lemmas, first lower bounding the probability that any arm active in round t has been pulled
substantially fewer times than its expectation.

Lemma 2. With probability at least 1− δ
2t2 , nti ≥ t

k −
√

t
2 ln

(
2k·t2
δ

)
for all i ∈ St (for all active

arms in round t).

We now use this lower bound on the number of pulls of active arm i in round t to upper-bound η(t),
an upper bound on the confidence interval width FAIRBANDITS uses for any active arm i in round t.

Lemma 3. Consider any round t and any arm i ∈ St. Condition on nti ≥ t
k −

√
t ln( 2kt2

δ )

2 . Then,

uti − `ti ≤ 2

√√√√√ ln
(

(π · t)2 /3δ
)

2 · tk −
√

t ln( 2kt2

δ )

2

= η(t).

We stitch together these lemmas as follows: Lemma 2 upper bounds the probability that any arm i
active in round t has been pulled substantially fewer times than its expectation, and Lemma 3 upper
bounds the width of any confidence interval used by FAIRBANDITS in round t by η(t). Together,
these enable us to determine how both the number of arms in the active set, as well as the spread of
their confidence intervals, evolve over time. This translates into the following regret bound.

Theorem 2. If δ < 1/
√
T , then FAIRBANDITS has regret R(T ) = O

(√
k3T ln Tk

δ

)
.

Two points are worth highlighting in Theorem 2. First, this bound becomes non-trivial (i.e. the
average per-round regret is� 1) for T = Ω(k3). As we show in the next section, it is not possible to
improve on this. Second, the bound may appear to have suboptimal dependence on T when compared
to unconstrained regret bounds (where the dependence on T is often described as logarithmic).
However, it is known that Ω

(√
kT
)

regret is necessary even in the unrestricted setting (without
fairness) if one does not make data-specific assumptions on an instance [9] It would be possible to
state a logarithmic dependence on T in our setting as well while making assumptions on the gaps
between arms, but since our fairness constraint manifests itself as a cost that depends on k, we choose
for clarity to avoid such assumptions; without them, our dependence on T is also optimal.
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3.2 Fair Classic Stochastic Bandits: A Lower Bound

We now show that the regret bound for FAIRBANDITS has an optimal dependence on k: no fair
algorithm has diminishing regret before T = Ω(k3) rounds. At a high level, we construct our lower
bound example to embody the “worst of both worlds" for fair algorithms: the arm payoff means are
just close enough together that the chain takes a long time to break, and the arm payoff means are just
far enough apart that the algorithm incurs high regret while the chain remains unbroken. This lets
us prove the formal statement below. The full proof, which proceeds via Bayesian reasoning using
priors for the arm means, may be found in our technical companion paper [17].
Theorem 3. There is a distribution P over k-arm instances of the stochastic multi-armed bandit
problem such that any fair algorithm run on P experiences constant per-round regret for at least
T = Ω

(
k3 ln 1

δ

)
rounds.

Thus, we tightly characterize the optimal regret attainable by fair algorithms in the classic bandits
setting, and formally separate it from the regret attainable by algorithms absent a fairness constraint.
Note that this already shows a separation between the best possible learning rates for contextual
bandit learning with and without the fairness constraint – the classic multi-armed bandit problem is a
special case of every contextual bandit problem, and for general contextual bandit problems, it is also
known how to get non-trivial regret after only T = O(k) many rounds [3, 8, 12].

4 Contextual Bandits Setting

4.1 KWIK Learnability Implies Fair Bandit Learnability

In this section, we show if a class of functions is KWIK learnable, then there is a fair algorithm for
learning the same class of functions in the contextual bandit setting, with a regret bound polynomially
related to the function class’ KWIK bound. Intuitively, KWIK-learnability of a class of functions
guarantees we can learn the function’s behavior to a high degree of accuracy with a high degree
of confidence. As fairness constrains an algorithm most before the algorithm has determined the
payoff functions’ behavior accurately, this guarantee enables us to learn fairly without incurring much
additional regret. Formally, we prove the following polynomial relationship.
Theorem 4. For an instance of the contextual multi-armed bandit problem where fj ∈ C for all
j ∈ [k], if C is (ε, δ)-KWIK learnable with bound m(ε, δ), KWIKTOFAIR (δ, T ) is δ-fair and
achieves regret bound:

R(T ) = O

(
max

(
k2 ·m

(
ε∗,

min (δ, 1/T )

T 2k

)
, k3 ln

k

δ

))
for δ ≤ 1√

T
where ε∗ = arg minε(max(ε · T, k ·m(ε, min(δ,1/T )

kT 2 ))).

First, we construct an algorithm KWIKTOFAIR(δ, T ) that uses the KWIK learning algorithm as a
subroutine, and prove that it is δ-fair. A call to KWIKTOFAIR(δ, T ) will initialize a KWIK learner
for each arm, and in each of the T rounds will implicitly construct a confidence interval around the
prediction of each learner. If a learner makes a numeric valued prediction, we will interpret this as
a confidence interval centered at the prediction with width ε∗. If a learner outputs ⊥, we interpret
this as a trivial confidence interval (covering all of [0, 1]). We then use the same chaining technique
used in the classic setting to choose an arm from the set of arms chained to the predicted top arm.
Whenever all learners output predictions, they need no feedback. When a learner for j outputs ⊥, if j
is selected then we have feedback rtj to give it; on the other hand, if j isn’t selected, we “roll back”
the learning algorithm for j to before this round by not updating the algorithm’s state.

1: procedure KWIKTOFAIR(δ, T )
2: δ∗ ← min(δ, 1T )

kT 2 , ε∗ ← arg minε(max(ε · T, k ·m(ε, δ∗)))
3: Initialize KWIK(ε∗, δ∗)-learner Li, hi ← [ ] ∀i ∈ [k]
4: for 1 ≤ t ≤ T do
5: S← ∅ . Initialize set of predictions S
6: for i = 1, . . . , k do
7: sti ← Li(x

t
i, hi)

8: S ← S ∪ sti . Store prediction sti
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9: if ⊥∈ S then
10: Pull j∗ ← (x ∈R [k]), receive reward rtj∗ . Pick arm at random from all arms
11: else
12: it∗ ← arg maxi s

t
i

13: St ← {j | (stj − ε∗, stj + ε∗) chains to (stit∗
− ε∗, stit∗ + ε∗)}

14: Pull j∗ ← (x ∈R St), receive reward rtj∗ . Pick arm at random from active set sti∗
15: hj∗ ← hj∗ :: (xtj∗ , r

t
j∗) . Update the history for Lj∗

We begin by bounding the probability of certain failures of KWIKTOFAIR in Lemma 4.

Lemma 4. With probability at least 1−min(δ, 1
T ), for all rounds t and all arms i, (a) if sti ∈ R then

|sti − fi(xti)| ≤ ε∗ and (b)
∑
t I [sti = ⊥ and i is pulled] ≤ m(ε∗, δ∗).

This in turn lets us prove the fairness of KWIKTOFAIR in Theorem 5. Intuitively, the KWIK
algorithm’s confidence about predictions translates into confidence about expected rewards, which
lets us choose between arms without violating fairness.

Theorem 5. KWIKTOFAIR(δ, T ) is δ-fair.

We now use the KWIK bounds of the KWIK learners to upper-bound the regret of KWIKTO-
FAIR(δ, T ). We proceed by bounding the regret incurred in those rounds when all KWIK algorithms
make a prediction (i.e., when we have a nontrivial confidence interval for each arm’s expected reward)
and then bounding the number of rounds for which some learner outputs ⊥ (i.e., when we choose
randomly from all arms and thus incur constant regret). These results combine to produce Lemma 5.

Lemma 5. KWIKTOFAIR(δ, T ) achieves regret O(max(k2 ·m(ε∗, δ∗), k3 ln Tk
δ )).

Our presentation of KWIKTOFAIR(δ, T ) has a known time horizon T . Its guarantees extend to the
case in which T is unknown via the standard “doubling trick” to prove Theorem 4.

An important instance of the contextual bandit problem is the linear case, where C consists of the
set of all linear functions of bounded norm in d dimensions, i.e. when the rewards of each arm are
governed by an underlying linear regression model on contexts. Known KWIK algorithms [26] for
the set of linear functions C then allow us, via our reduction, to give a fair contextual bandit algorithm
for this setting with a polynomial regret bound.

Lemma 6 ([26]). Let C = {fθ|fθ(x) = 〈θ, x〉, θ ∈ Rd, ||θ|| ≤ 1} and X = {x ∈ Rd : ||x|| ≤ 1}.
C is KWIK learnable with KWIK bound m(ε, δ) = Õ(d3/ε4).

Then, an application of Theorem 4 implies that KWIKTOFAIR has a polynomial regret guarantee for
the class of linear functions.

Corollary 1. Let C and X be as in Lemma 6, and fj ∈ C for each j ∈ [k]. Then, KWIKTO-
FAIR(T, δ) using the learner from [26] has regret R(T ) = Õ

(
max

(
T 4/5k6/5d3/5, k3 ln k

δ

))
.

4.2 Fair Bandit Learnability Implies KWIK Learnability

In this section, we show how to use a fair, no-regret contextual bandit algorithm to construct a KWIK
learning algorithm whose KWIK bound has logarithmic dependence on the number of rounds T .
Intuitively, any fair algorithm which achieves low regret must both be able to find and exploit an
optimal arm (since the algorithm is no-regret) and can only exploit that arm once it has a tight
understanding of the qualities of all arms (since the algorithm is fair). Thus, any fair no-regret
algorithm will ultimately have tight (1− δ)-confidence about each arm’s reward function.

Theorem 6. Suppose A is a δ-fair algorithm for the contextual bandit problem over the class of
functions C, with regret bound R(T, δ). Suppose also there exists f ∈ C, x(`) ∈ X such that for
every ` ∈ [d 1ε e], f(x(`)) = ` · ε. Then, FAIRTOKWIK is an (ε, δ)-KWIK algorithm for C with KWIK
bound m(ε, δ), with m(ε, δ) the solution to m(ε,δ)ε

4 = R(m(ε, δ), εδ2T ).

Remark 1. The condition that C should contain a function that can take on values that are multiples
of ε is for technical convenience; C can always be augmented by adding a single such function.
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Our aim is to construct a KWIK algorithm B to predict labels for a sequence of examples labeled
with some unknown function f∗ ∈ C. We provide a sketch of the algorithm, FAIRTOKWIK, below,
and refer interested readers to our full technical paper [17] for a complete and formal description.

We use our fair algorithm to construct a KWIK algorithm as follows: we will run our fair contextual
bandit algorithm A on an instance that we construct online as examples xt arrive for B. The idea is
to simulate a two arm instance, in which one arm’s rewards are governed by f∗ (the function to be
KWIK learned), and the other arm’s rewards are governed by a function f that we can set to take
any value in {0, ε, 2ε, . . . , 1}. For each input xt, we perform a thought experiment and consider A’s
probability distribution over arms when facing a context which forces arm 2’s payoff to take each of
the values 0, ε∗, 2ε∗, . . . , 1. Since A is fair, A will play arm 1 with weakly higher probability than
arm 2 for those ` : `ε∗ ≤ f(xt); analogously, A will play arm 1 with weakly lower probability than
arm 2 for those ` : `ε∗ ≥ f(xt). If there are at least 2 values of ` for which arm 1 and arm 2 are
played with equal probability, one of those contexts will force A to suffer ε∗ regret, so we continue
the simulation of A on one of those instances selected at random, forcing at least ε∗/2 regret in
expectation, and at the same time have B return ⊥. B receives f∗(xt) on such a round, which is used
to construct feedback for A. Otherwise, A must transition from playing arm 1 with strictly higher
probability to playing 2 with strictly higher probability as ` increases: the point at which that occurs
will “sandwich” the value of f(xt), since A’s fairness implies this transition must occur when the
expected payoff of arm 2 exceeds that of arm 1. B uses this value to output a numeric prediction.

An important fact we exploit is that we can query A’s behavior on (xt, x(`)), for any xt and
` ∈

[
d 1
ε∗ e
]

without providing it feedback (and instead “roll back” its history to ht not including the
query (xt, x(`))). We update A’s history by providing it feedback only in rounds where B outputs
⊥. Finally, we note that, as in KWIKTOFAIR, the claims of FAIRTOKWIK extend to the infinite
horizon case via the doubling trick.
4.3 An Exponential Separation Between Fair and Unfair Learning

In this section, we use this Fair-KWIK equivalence to give a simple contextual bandit problem for
which fairness imposes an exponential cost in its regret bound, unlike the polynomial cost proven
in the linear case in Section 4.1. In this problem, the context domain is the d-dimensional boolean
hypercube: X = {0, 1}d – i.e. the context each round for each individual consists of d boolean
attributes. Our class of functions C is the class of boolean conjunctions: C = {f | f(x) =
xi1 ∧ xi2 ∧ . . . ∧ xik where 0 ≤ k ≤ d and i1, . . . , ik ∈ [d]}.
We first note that there exists a simple but unfair algorithm for this problem which obtains regret
R(T ) = O(k2d). A full description of this algorithm, called CONJUNCTIONBANDIT, may be
found in our technical companion paper [17]. We now show that, in contrast, fair algorithms cannot
guarantee subexponential regret in d. This relies upon a known lower bound for KWIK learning
conjunctions [21]:

Lemma 7. There exists a sequence of examples (x1, . . . , x2
d−1) such that for ε, δ ≤ 1/2, every

(ε, δ)-KWIK learning algorithm B for the class C of conjunctions on d variables must output ⊥ for
xt for each t ∈ [2d − 1]. Thus, B has a KWIK bound of at least m(ε, δ) = Ω(2d).

We then use the equivalence between fair algorithms and KWIK learning to translate this lower bound
on m(ε, δ) into a minimum worst case regret bound for fair algorithms on conjunctions. We modify
Theorem 6 to yield the following lemma.

Lemma 8. Suppose A is a δ-fair algorithm for the contextual bandit problem over the class C of
conjunctions on d variables. If A has regret bound R(T, δ) then for δ′ = 2Tδ, FAIRTOKWIK is an
(0, δ′)-KWIK algorithm for C with KWIK bound m(0, δ′) = 4R(m(0, δ′), δ).

Lemma 7 then lets us lower-bound the worst case regret of fair learning algorithms on conjunctions.

Corollary 2. For δ < 1
2T , any δ-fair algorithm for the contextual bandit problem over the class C of

conjunctions on d boolean variables has a worst case regret bound of R(T ) = Ω(2d).

Together with the analysis of CONJUNCTIONBANDIT, this demonstrates a strong separation between
fair and unfair contextual bandit algorithms: when the underlying functions mapping contexts to
payoffs are conjunctions on d variables, there exist a sequence of contexts on which fair algorithms
must incur regret exponential in d while unfair algorithms can achieve regret linear in d.

8



References
[1] Jacob D. Abernethy, Kareem Amin, , Moez Draief, and Michael Kearns. Large-scale bandit problems and

kwik learning. In Proceedings of (ICML-13), pages 588–596, 2013.
[2] Philip Adler, Casey Falk, Sorelle A. Friedler, Gabriel Rybeck, Carlos Scheidegger, Brandon Smith, and

Suresh Venkatasubramanian. Auditing black-box models by obscuring features. CoRR, abs/1602.07043,
2016. URL http://arxiv.org/abs/1602.07043.

[3] Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire. Taming
the monster: A fast and simple algorithm for contextual bandits. In Proceedings of ICML 2014, Beijing,
China, 21-26 June 2014, pages 1638–1646, 2014.

[4] Kareem Amin, Michael Kearns, and Umar Syed. Graphical models for bandit problems. arXiv preprint
arXiv:1202.3782, 2012.

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

[6] Solon Barocas and Andrew D. Selbst. Big data’s disparate impact. California Law Review, 104, 2016.
Available at SSRN: http://ssrn.com/abstract=2477899.

[7] Anna Maria Barry-Jester, Ben Casselman, and Dana Goldstein. The new science of sentencing. The
Marshall Project, August 8 2015. URL https://www.themarshallproject.org/2015/08/04/
the-new-science-of-sentencing. Retrieved 4/28/2016.

[8] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandit
algorithms with supervised learning guarantees. In Proceedings of AISTATS 2011, Fort Lauderdale, USA,
April 11-13, 2011, pages 19–26, 2011.

[9] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Machine Learning, 5(1):1–122, 2012.

[10] Nanette Byrnes. Artificial intolerance. MIT Technology Review, March 28 2016.
[11] Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification. Data

Mining and Knowledge Discovery, 21(2):277–292, 2010.
[12] Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff functions.

In Proceedings of AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages 208–214, 2011.
[13] Cary Coglianese and David Lehr. Regulating by robot: Administrative decision-making in the machine-

learning era. Georgetown Law Journal, 2016. Forthcoming.
[14] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through

awareness. In Proceedings of ITCS 2012, pages 214–226. ACM, 2012.
[15] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.

Certifying and removing disparate impact. In Proceedings of ACM SIGKDD 2015, Sydney, NSW, Australia,
August 10-13, 2015, pages 259–268, 2015.

[16] Benjamin Fish, Jeremy Kun, and Ádám D Lelkes. A confidence-based approach for balancing fairness and
accuracy. SIAM International Symposium on Data Mining, 2016.

[17] Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. Fairness in learning: Classic and
contextual bandits. CoRR, abs/1605.07139, 2016. URL http://arxiv.org/abs/1605.07139.

[18] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regularization
approach. In Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on, pages
643–650. IEEE, 2011.

[19] Michael N Katehakis and Herbert Robbins. Sequential choice from several populations. PROCEEDINGS-
NATIONAL ACADEMY OF SCIENCES USA, 92:8584–8584, 1995.

[20] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

[21] Lihong Li. A unifying framework for computational reinforcement learning theory. PhD thesis, Rutgers,
The State University of New Jersey, 2009.

[22] Lihong Li, Michael L Littman, Thomas J Walsh, and Alexander L Strehl. Knows what it knows: a
framework for self-aware learning. Machine learning, 82(3):399–443, 2011.

[23] Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. k-nn as an implementation of situation testing
for discrimination discovery and prevention. In Proceedings of ACM SIGKDD 2011, pages 502–510. ACM,
2011.

[24] Clair C Miller. Can an algorithm hire better than a human? The New York Times, June 25 2015.
[25] Cynthia Rudin. Predictive policing using machine learning to detect patterns of crime. Wired Magazine,

August 2013.
[26] Alexander L Strehl and Michael L Littman. Online linear regression and its application to model-based

reinforcement learning. In Advances in Neural Information Processing Systems, pages 1417–1424, 2008.
[27] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations. In

Proceedings of (ICML-13), pages 325–333, 2013.

9

http://arxiv.org/abs/1602.07043
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing
http://arxiv.org/abs/1605.07139

