
A Proofs of major results

Before proving our results, we provide a few technical lemmas to which we refer in the sequel, and
we also give a few definitions. The first is the standard definition of sub-Gaussian random variables.

Definition 1. A random variable X is σ2-sub-Gaussian if

E [exp(λ(X − E[X]))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R.

We enumerate a few standard consequences of sub-Gaussianity [5]. If Xi are independent and
σ2-sub-Gaussian, then

∑n
i=1Xi is nσ2-sub-Gaussian. Moreover, we have the standard concentration

guarantee

max{P(X ≥ E[X] + t),P(X ≤ E[X]− t)} ≤ 2 exp

(
− t2

2σ2

)
for all t ≥ 0 if X is σ2-sub-Gaussian, and if there are bounds a ≤ X ≤ b, then X is (b−a)2

4 -sub-
Gaussian. Moreover, if X is mean-zero and σ2-sub-Gaussian, then

E
[
exp(λX2)

]
≤ 1

[1− 2λσ2]
1
2
+

= exp

(
−1

2
log
[
1− 2λσ2

]
+

)
. (10)

Throughout our proofs, for a given k ∈ [1,∞], we use k∗ = k
k−1 , so that 1/k + 1/k∗ = 1, to denote

the conjugate to k.

The technical lemmas that we shall need follow. The first is an essentially standard duality result.

Lemma 4 (Ben-Tal et al. [3]). Let f be any closed convex function with domain dom f ⊂ [0,∞),
and let f∗(s) = supt≥0{ts− f(t)} be its conjugate. Then for any distribution P and any function
g :W → R we have

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w) = inf

λ≥0,η

{
λ

∫
f∗
(
g(w)− η

λ

)
dP (w) + ρλ+ η

}
.

See Section B.1 for a proof of this lemma. Note that as an immediate consequence of this result, we
have an expectation upper bound on empirical versions of supQ:Df (Q||P )≤ρ

∫
g(w)dQ(w). Indeed,

let Z1, . . . , ZNw be drawn i.i.d. from a base distribution P0. To simplify algebra, we work with a
scaled version of the f -divergence: f(t) = 1

k (tk − 1), so the population and empirical constraint sets
we consider are defined by

P =
{
Q : Df (Q||P0) ≤ ρ

k

}
and PNw :=

{
q : Df (q||1/Nw) ≤ ρ

k

}
.

Then by Lemma 4, we obtain

E

[
sup

Q∈PNw
EQ[Z]

]
= EP0

[
inf
λ≥0,η

1

N

N∑
i=1

λf∗
(
Zi − η
λ

)
+ η +

ρ

k
λ

]

≤ inf
λ≥0,η

EP0

[
1

N

N∑
i=1

λf∗
(
Zi − η
λ

)
+ η +

ρ

k
λ

]

= inf
λ≥0,η

{
EP0

[
λf∗

(
Z − η
λ

)]
+
ρ

k
λ+ η

}
= sup
Q∈P

EQ[Z]. (11)

The second lemma provides a lower bound on the expectation of certain robust quantities, and we
provide a proof of the lemma in Section B.2.
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Lemma 5. Let Z = (Z1, . . . , ZNw) be a random vector of independent random variables Zi
iid∼ P0,

where |Zi| ≤M with probability 1. Let k ∈ [2,∞] and define Cρ,k = 2(1+ρ)

(1+ρ)
1
k∗ −1

≤ Cρ = 2(ρ+1)√
1+ρ−1

.

Let f(t) = 1
k (tk − 1). Then

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup
Q∈P

EQ[Z]− 4CρM

√
log(2Nw)

Nw

and

E

[
sup

Q∈PNw
EQ[Z]

]
≤ sup
Q∈P

EQ[Z].

A.1 Proof of Lemma 1

The result follows from a dual formulation of the expression on the left hand side as well as standard
concentration results for sub-Gaussian random variables. Define

ên(w) :=
1

n(n− 1)

∑
i 6=j

Sijφ(xi, w)φ(xj , w)− E[S(X,X ′)φ(X,w)φ(X ′, w)] (12)

to be the error in the kernel estimate at the kernel parameter w. We give our argument by duality,
noting that the lemma is equivalent to proving

P
(

sup
Q∈P

∣∣∣∣∫ ên(w)dQ(w)

∣∣∣∣ ≥ t) ≤ √2 exp

(
− nt2

16(ρ+ 1)

)
.

Before continuing, we note the following useful result, whose proof we provide in Section B.3.
Lemma 6. For each fixed w, the random variable ên(w) is mean-zero and 4

n -sub-Gaussian.

To simplify the algebra, we work with a scaled version of the f -divergence: f(t) = 1
k (tk − 1), so the

equivalent constraint sets are P :=
{
Q : Df (Q||P0) ≤ ρ

k

}
and PNw := {q : Df (q||1/Nw) ≤ ρ

k}.
In this rescaled form, the convex conjugate of f(t) is f∗(s) = 1

k∗
[s]
k∗
+ + 1

k , where we recall the
definition that 1

k + 1
k∗

= 1.

Using Lemma 4, we obtain

sup
Q∈P

∣∣∣∣∫ ên(w)dQ(w)

∣∣∣∣ ≤ sup
Q∈P

∫
|ên(w)| dQ(w)

≤ inf
λ≥0

{
1

k∗
EP0 [|ên(W )|k∗ ]λ1−k∗ +

ρ+ 1

k
λ

}
= (ρ+ 1)

1
kEP0

[|ên(W )|k∗ ]1/k∗

≤
√
ρ+ 1EP0

[ên(W )2]
1
2 ,

where the second inequality follows by using η = 0 in Lemma 4 and the last inequality follows from
the fact that k ≥ 2 and k∗ ≤ 2. The expectation EP0 is with respect to the variable W for a fixed ên.
We now see that to prove the theorem, it suffices to show that

P
(∫

ên(w)2dP0(w) ≥ t2

ρ+ 1

)
≤
√

2 exp

(
− nt2

16(ρ+ 1)

)
.

By Lemma 6, ên is 4/n-sub-Gaussian, whence E
[
exp

(
λên(w)2

)]
≤ exp

(
− 1

2 log
(
1− 8λ

n

))
for

λ ≤ n
8 (recall inequality (10) above). Integrating over w, we find that for any distribution P0 we have

by the Chernoff bound technique that for λ ≤ n
8 ,

P
(∫

ên(w)2dP0(w) ≥ t2

ρ+ 1

)
≤ E

[
exp

(
λ

∫
ên(w)2dP (w)

)]
exp

(
−λ t2

ρ+ 1

)
≤
∫

E
[
exp

(
λên(w)2

)]
dP (w) exp

(
−λ t2

ρ+ 1

)
≤ exp

(
−1

2
log

(
1− 8λ

n

))
exp

(
−λ t2

ρ+ 1

)
.

Note that − log(1− t) ≤ t log 4 for t ≤ 1
2 , and take λ = n/16 to get the result.
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A.2 Proof of Lemma 2

Let F :W → [−‖F‖∞ , ‖F‖∞] be a function of the random W . In our setting, this map is equal to

F (w) =
1

n(n− 1)

∑
i 6=j

Sijφ(xi, w)φ(xj , w),

where we treat the Sij and xi as fixed and work conditionally; that is, only W is random. We consider
the convergence of

sup
Q∈PNw

EQ[F (W )] to sup
Q∈P

EQ[F (W )].

In the sequel, we suppress dependence on W for notational convenience, and for a sample
W1, . . . ,WNw of random vectors Wk, we let

Fk =
1

n(n− 1)

∑
i 6=j

Sijφ(xi,Wk)φ(xj ,Wk)

for shorthand, so that the Fk are bounded indepenent random variables.

Treating F = (F1, . . . , FNw) as a vector, the mapping F 7→ supQ∈PNw EQ[F ] is a Lipschitz convex
function of independent bounded random variables. Indeed, letting q ∈ RNw+ be the empirical
probability mass function associated with Q ∈ PNw and recalling that ‖x‖2 ≤ n

k−2
2k ‖x‖k for

x ∈ Rn and k ≥ 2, we have 1
Nw

∑Nw
i=1(Nwqi)

k ≤ ρ+ 1, which is equivalent to

‖q‖2 ≤ Nw
k−2
2k ‖q‖k ≤ Nw

k−2
2k (ρ+ 1)

1
kNw

1/k−1 = (ρ+ 1)
1
kNw

− 1
2 . (13)

That is, the function (F1, . . . , FNw) 7→ supQ∈PNw EQ[F ] is an LNw =
√
ρ+ 1/

√
Nw-Lipschitz

and convex function of bounded random variables. Using Samson’s sub-Gaussian concentration
inequality [26] for Lipschitz convex functions of bounded random variables, we have with probability
at least 1− δ that

sup
Q∈PNw

EQ[F ] ∈ E

[
sup

Q∈PNw
EQ[F ]

]
± 2
√

2 ‖F‖∞

√
(1 + ρ) log 2

δ

Nw
. (14)

By the containment (14), we need consider only the convergence of the expectation

E

[
sup

Q∈PNw
EQ[F ]

]
to sup

Q∈P
EQ[F ].

But of course, this convergence is described precisely by Lemma 5. Thus, combining Lemma 5 with
containment (14) gives∣∣∣∣ sup

Q∈PNw
EQ[F ]− sup

Q∈P
EQ[F ]

∣∣∣∣ ≤ 4Cρ ‖F‖∞

√
log(2Nw)

Nw
+ 2
√

2 ‖F‖∞

√
(1 + ρ) log 2

δ

Nw

Now, since ‖F‖∞ = 1 we can simplify this to get the result.

A.3 Proof of Theorem 1

We can write∣∣∣∣T (Q̂w)− sup
Q∈P

T (Q)

∣∣∣∣ ≤ ∣∣∣∣ sup
Q∈P

T (Q)− sup
Q∈P

T̂ (Q)

∣∣∣∣+

∣∣∣∣ sup
Q∈P

T̂ (Q)− T̂ (Q̂w)

∣∣∣∣+

∣∣∣∣T̂ (Q̂w)− T (Q̂w)

∣∣∣∣
≤ sup
Q∈P

∣∣∣∣T (Q)− T̂ (Q)

∣∣∣∣+

∣∣∣∣ sup
Q∈P

T̂ (Q)− T̂ (Q̂w)

∣∣∣∣+ sup
Q∈PNw

∣∣∣∣T̂ (Q)− T (Q)

∣∣∣∣
Now apply Lemma 1 to the first and third terms, apply Lemma 2 to the second term, and use a union
bound to get the result.
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A.4 Proof of Lemma 3

We define define the “dual” representation of the feature matrix: let Ψ = ΦT = [ψ1 · · · ψNw ], with
columns given by ψm := [φ(x1, wm) · · · φ(xn, wm)]T ∈ Rn. Mimicking the proof of Proposition
1 of [8], we have

Rn(FNw) =
B

n
E

 sup
q∈PNw

√√√√σT

(
Nw∑
k=1

qkψk(ψk)T

)
σ

 , (15)

where σi ∈ {−1, 1} are iid. Rademacher variables. By the bound (13), the containment q ∈ PNw
implies the bound ‖q‖2 ≤

√
(1 + ρ)/Nw, so

Rn(FNw) ≤ B

n
E


√√√√√√1 + ρ

Nw

Nw∑
k=1

(σTψk)4√∑Nw
a=1(σTψa)4


=
B

n
E

(1 + ρ

Nw

Nw∑
k=1

(σTψk)4

) 1
4


≤ B

n

(
E

[
1 + ρ

Nw

Nw∑
k=1

(σTψk)4

]) 1
4

,

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality is
Jensen’s inequality. As ψi ∈ [−1, 1], we have

E
[
(σTψ)4

]
≤ E

( n∑
i=1

σi

)4


= 3n2 − 2n ≤ 3n2.

Then

Rn(FNw) ≤ B

n

(
3(1 + ρ)n2

) 1
4 ≤ B

√
2(1 + ρ)

n
as desired.

B Technical lemmas

B.1 Proof of Lemma 4

Let L ≥ 0 satisfy L(w) = dQ(w)/dP (w), so that L is the likelihood ratio between Q and P . Then
we have

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w) = sup∫

f(L)dP≤ρ,EP [L]=1

∫
g(w)L(w)dP (w)

= sup
L≥0

inf
λ≥0,η

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)
− η

(∫
L(w)dP (w)− 1

)}
= inf
λ≥0,η

sup
L≥0

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)
− η

(∫
L(w)dP (w)− 1

)}
,

where we have used that strong duality obtains because the problem is strictly feasible in its non-linear
constraints (take L ≡ 1), so that the extended Slater condition holds [22, Theorem 8.6.1 and Problem
8.7]. Noting that L is simply a positive (but otherwise arbitrary) function, we obtain

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w) = inf

λ≥0,η

∫
sup
`≥0
{(g(w)− η)`− λf(`)} dP (w) + λρ+ η

= inf
λ≥0,η

∫
λf∗

(
g(w)− η

λ

)
dP (w) + η + ρλ.
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Here we have used that f∗(s) = supt≥0{st− f(t)} is the conjugate of f and that λ ≥ 0, so that we
may take divide and multiply by λ in the supremum calculation.

B.2 Proof of Lemma 5

We remark that the upper bound in the lemma is immediate from the argument for inequality (11).
Thus we focus only on the lower bound claimed in the lemma.

Before beginning the proof proper, we state a useful lemma lower bounding expectations of various
moments of random variables. (See Section B.4 for a proof.)
Lemma 7. Let Z ≥ 0, Z 6≡ 0 be a random variable with finite 2p-th moment for 1 ≤ p ≤ ∞. Then
we have the following inequalities:

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]

≥ ‖Z‖p −


p−1
p

√
2
n

√
Var(Zp/E[Zp])‖Z‖2, if p ≤ 2

2 min

(
p−1
p

√
1
n

√
Var(Zp/E[Zp])‖Z‖p, 1

n

(
p−1
p

)2
Var(Zp)

‖Z‖2p−1
p

)
if p ≥ 2.

(16a)

and if ‖Z‖∞ ≤ C, then

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

 C p−1
p

√
2
n , if p ≤ 2

2C
(

1
n

) 1
p if p > 2

(16b)

For convenience in the proof to follow, we define the shorthand

SNw(η) := (1 + ρ)
1/k

(
1

Nw

Nw∑
i=1

[Zi − η]
k∗
+

) 1
k∗

+ η.

We also rescale ρ to ρ/k for algebraic convenience. For the function f(t) = 1
k (tk − 1), we have

f∗(s) = 1
k∗

[s]
k∗
+ + 1

k , so that the duality result in Lemma 4 shows that (after taking an infimum over
λ ≥ 0)

sup
Q∈PNw

EQ[Z] = inf
η

{
(1 + ρ)

1/k

(
1

Nw

Nw∑
i=1

[Zi − η]
k∗
+

) 1
k∗

+ η

}
.

Because |Zi| ≤M for all i, we claim that any η minimizing the preceding expression must satisfy

η ∈

[
−1 + (1 + ρ)

1
k∗

(1 + ρ)
1
k∗ − 1

, 1

]
·M. (17)

Indeed, it is clear that η ≤M , because otherwise we would have SNw(η) > M ≥ infη SNw(η). The
lower bound on η is somewhat less trivial. Let η = −cM for some c > 1. Taking derivatives of the
objective SNw(η) with respect to η, we have

S′Nw(η) = 1− (1 + ρ)1/k
1
Nw

∑Nw
i=1 [Zi − η]

k∗−1
+(

1
Nw

∑Nw
i=1 [Zi − η]

k∗
+

)1− 1
k∗
≤ 1− (1 + ρ)1/k

(
(c− 1)M

(c+ 1)M

)k∗−1

= 1− (1 + ρ)1/k

(
c− 1

c+ 1

)k∗−1

.

Defining the constant cρ,k := (1+ρ)
1
k∗ +1

(1+ρ)
1
k∗ −1

, we see that for any c > cρ,k, the preceding display is

negative, so we must have η ≥ −cρ,kM (since the derivative is 0 at optimality). For the remainder of
the proof, we thus define the interval

U := [−Mcρ,k,M ] , cρ,k =
(1 + ρ)

1
k∗ + 1

(1 + ρ)
1
k∗ − 1

,
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and we assume w.l.o.g. that η ∈ U .

Again applying the duality result of Lemma 4, we have that

E

[
sup

Q∈PNw
EQ[Z]

]
= E

[
inf
η∈U

SNw(η)

]
= E

[
inf
η∈U
{SNw(η)− E[SNw(η)] + E[SNw(η)]}

]
≥ inf
η∈U

E[SNw(η)]− E
[

sup
η∈U
|SNw(η)− E[SNw(η)]|

]
. (18)

To bound the first term in expression (18), note that [Z − η]+ ∈ [0, 1 + cρ,k]M and (1 + ρ)1/k(1 +
cρ,k) = Cρ,k. Thus, by Lemma 7 we obtain that

E[SNw(η)] ≥ (1 + ρ)1/kE
[
[Z − η]

k∗
+

]1/k∗
+ η − Cρ,kM

k∗ − 1

k∗

√
2

Nw
.

Using that k∗−1
k∗

= 1
k , taking the infimum over η on the right hand side and using duality yields

inf
η
E[SNw(η)] ≥ sup

Q∈P
EQ[Z]− Cρ,k

M

k

√
2

Nw
.

To bound the second term in expression (18), we use concentration results for Lipschitz functions.
First, the function η 7→ SNw(η) is

√
1 + ρ-Lipschitz in η. To see this, note that for 1 ≤ k? ≤ 2 and

X ≥ 0, by Jensen’s inequality,

E[Xk?−1]

(E[Xk? ])1−1/k?
≤ E[X]k

?−1

(E[Xk? ])1−1/k?
≤ E[X]k

?−1

E[X]k?−1
= 1,

so S′Nw(η) ∈ [1 − (1 + ρ)
1
k , 1] and therefore SNw is (1 + ρ)1/k-Lipschitz in η. Furthermore, the

mapping T : z 7→ (1 + ρ)
1
k ( 1

Nw

∑Nw
i=1 [zi − η]

k∗
+ )

1
k∗ for z ∈ RNw is convex and (1 + ρ)

1
k /
√
Nw-

Lipschitz. This is verified by the following:

|T (z)− T (z′)| ≤ (1 + ρ)
1/k

∣∣∣∣∣
(

1

Nw

Nw∑
i=1

∣∣[zi − η]+ − [z′i − η]+
∣∣k∗ ) 1

k∗

∣∣∣∣∣
≤ (1 + ρ)

1/k

Nw
1/k∗

∣∣∣∣∣
( Nw∑
i=1

|zi − z′i|
k∗

) 1
k∗

∣∣∣∣∣
≤ (1 + ρ)

1/k

√
Nw

‖z − z′‖2,

where the first inequality is Minkowski’s inequality and the third inequality follows from the fact
that for any vector x ∈ Rn, we have ‖x‖p ≤ n

2−p
2p ‖x‖2 for p ∈ [1, 2], where these denote the

usual vector norms. Thus, the mapping Z 7→ SNw(η) is (1 + ρ)1/k/
√
Nw-Lipschitz continuous with

respect to the `2-norm on Z. Again applying Samson’s sub-Gaussian concentration result for convex
Lipschitz functions, we have

P (|SNw(η)− E[SNw(η)]| ≥ δ) ≤ 2 exp

(
− Nwδ

2

2C2
ρ,kM

2

)
for any fixed η ∈ R and any δ ≥ 0. Now, letN (U, ε) = {η1, . . . , ηN(U,ε)} be an ε cover of the set U ,
which we may take to have size at most N(U, ε) ≤M(1 + cρ,k) 1

ε . Then we have

sup
η∈U
|SNw(η)− E[SNw(η)] ≤ max

i∈N (U,ε)
|SNw(ηi)− E[SNw(ηi)]|+ ε(1 + ρ)1/k.

Using the fact that E[maxi≤n |Xi|] ≤
√

2σ2 log(2n) for Xi all σ2-sub-Gaussian, we have

E
[

max
i∈N (U,ε)

|SNw(ηi)− E[SNw(ηi)]|
]
≤ Cρ,k

√
2
M2

Nw
log 2N(U, ε).
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Taking ε = M(1 + cρ,k)/Nw gives that

E
[

sup
η∈U
|SNw(η)− E[SNw(η)]

]
≤
√

2MCρ,k

√
1

Nw
log(2Nw) +

Cρ,kM

Nw
.

Then, in total we have (using Cρ ≥ Cρ,k, k ≥ 2, and Nw ≥ 1),

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup
Q∈P

EQ[Z]− CρM
√

2√
Nw

(
1

k
+
√

log(2Nw) +
1√

2Nw

)

≥ sup
Q∈P

EQ[Z]− 4CρM

√
log(2Nw)

Nw
.

This gives the desired result of the lemma.

B.3 Proof of Lemma 6

The result follows from bounded differences. First, we let

ê′n(w) =
1

n(n− 1)

∑
i6=j

S′ijφ(x′i;w)φ(x′j ;w)− E[S(X,X ′)φ(X,w)φ(X ′, w)],

where we assume dham(x1:n, x
′
1:n) ≤ 1 and Sij = S′ij except for those pairs (i, j) such that x′i 6= xi

or xj 6= x′j . Assuming (without loss of generality by symmetry) that x2:n = x′2:n, we have

|ên(w)− ê′n(w)| ≤ 1

n(n− 1)

∑
j>1

∣∣S1jφ(x1;w)φ(xj ;w)− S′1jφ(x′1;w)φ(xj ;w)
∣∣

+
1

n(n− 1)

∑
i>1

|Si1φ(xi;w)φ(x1;w)− S′i1φ(x′i;w)φ(x′1;w)|

≤ 2(n− 1)

n(n− 1)
+

2(n− 1)

n(n− 1)
=

4

n
,

where in the last line we have used that max{‖φ‖∞ , ‖S‖∞} ≤ 1. In particular, ên(w) has bounded
differences and is mean zero, so that the usual construction with Doob martingales yields

E [exp(λên(w))] ≤ exp

(
16λ2

8n2

)n
= exp

(
2λ2

n

)
.

This is the desired result.

B.4 Proof of Lemma 7

For a > 0, we have

inf
λ≥0

{
ap

pλp−1
+ λ

p− 1

p

}
= a,

(with λ = a attaining the infimum), and taking derivatives yields

ap

pλp−1
+ λ

p− 1

p
≥ ap

pλp−1
1

+ λ1
p− 1

p
+
p− 1

p

(
1− ap

λp1

)
(λ− λ1).

Using this in the moment expectation, by setting λn = p

√
1
n

∑n
i=1 Z

p
i , we have for any λ ≥ 0 that

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
= E

[∑n
i=1 Z

p
i

pnλp−1
n

+ λn
p− 1

p

]
≥ E

[∑n
i=1 Z

p
i

pnλp−1
+ λ

p− 1

p

]
+
p− 1

p
E
[(

1−
∑n
i=1 Z

p
i

nλp

)
(λn − λ)

]
.
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Now we take λ = ‖Z‖p, and we apply the Cauchy-Schwarz inequality to obtain

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p
E

[(
1−

1
n

∑n
i=1 Z

p
i

‖Z‖pp

)2
] 1

2

E

(( 1

n

n∑
i=1

Zpi

) 1
p

− ‖Z‖p

)2
 1

2

= ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

(( 1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 1

2

(19)

≥ ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

[(
1

n

n∑
i=1

Zpi

) 2
p

+ E[Zp]
2
p

] 1
2

.

Now, for p ≤ 2, we have

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p

√
2

n

√
Var(Zp/E[Zp])‖Z‖2,

by Jensen, or equivalently, the fact that the norm is non-decreasing in p. For p ≥ 2, we have by
the triangle inequality applied to expression (19), followed by an application of Jensen’s inequality
(using that E[Y 2/p] ≤ E[Y ]2/p for p ≥ 2),

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − 2

p− 1

p

√
1

n

√
Var(Zp/E[Zp])‖Z‖p,

Now, we can make this tighter (for p ≥ 2):

E

(( 1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 = E

[(
1

n

n∑
i=1

Zpi

) 2
p

]
+ ‖Z‖2p − 2‖Z‖pE

[(
1

n

n∑
i=1

Zpi

) 1
p

]

≤ 2‖Z‖2p − 2‖Z‖pE

[(
1

n

n∑
i=1

Zpi

) 1
p

]

≤ 2
p− 1

p

2√
n

√
Var(Zp/E[Zp])‖Z‖2p.

Further, we can recurse this argument. Let

Y := E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
A := ‖Z‖p

B :=
p− 1

p

√
1

n

√
Var(Zp/E[Zp]),

C := E

(( 1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 .

Then, we have three primary relationships r : Y ≥ A − BC
1
2 , s0 : C ≤ 2A2 − 2AY , and

t0 : Y ≥ A − 2AB. Recursion works as follows: for i ≥ 0, we plug ti into s0 to yield a tighter
inequality si+1 for C, which in turn plugs in to r to yield a tighter inequality ti+1 for Y . In this way,
we have the relations si : C ≤ 4A2Bai−1 for i ≥ 1, and ti : Y ≥ A − 2ABai for i ≥ 0, where
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ai = 2− 2−i. Taking i→∞, we have Y ≥ A− 2AB2, or

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − 2‖Z‖p

(
p− 1

p

)2
Var(Zp/E[Zp])

n

= ‖Z‖p −
2

n

(
p− 1

p

)2
Var(Zp)

‖Z‖2p−1
p

Thus, we have

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p−


p−1
p

√
2
n

√
Var(Zp/E[Zp])‖Z‖2, if p ≤ 2

2 min

(
p−1
p

√
1
n

√
Var(Zp/E[Zp])‖Z‖p, 1

n

(
p−1
p

)2
Var(Zp)

‖Z‖2p−1
p

)
if p ≥ 2

In the case that we have the unifom bound ‖Z‖∞ ≤ C, we can get tighter guarantees. To that end,
we state a simple lemma.
Lemma 8. For any random variable X ≥ 0 and a ∈ [1, 2], we have

E[Xak] ≤ E[Xk]2−aE[X2k]a−1

Proof For c ∈ [0, 1], 1/p+ 1/q = 1 and A ≥ 0, we have by Holder’s inequality,

E[A] = E[AcA1−c] ≤ E[Apc]1/pE[Aq(1−c)]1/q

Now take A := Xak, 1/p = 2− a, 1/q = a− 1, and c = 2
a − 1.

First, note that E[Z2p] ≤ CpE[Zp]. For 1 ≤ p ≤ 2, we can take a = 2/p in Lemma 8, so that we
have

E[Z2] ≤ E[Zp]2−
2
pE[Z2p]

2
p−1 ≤ ‖Z‖ppC2−p.

Now, we can plug these into the expression above (using VarZp ≤ E[Z2p] ≤ Cp‖Z‖pp):

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p−


C p−1

p

√
2
n , if p ≤ 2

2 min

(
p−1
p

√
1
n

√
Var(Zp/E[Zp])‖Z‖p, 1

n

(
p−1
p

)2
Var(Zp)

‖Z‖2p−1
p

)
if p ≥ 2

In fact, we can give a somewhat sharper result by noting that E[( 1
n

∑n
i=1 Z

p
i )1/p] ≥ 0, and

similarly, ‖Z‖p ≥ 0. For shorthand, let D = (p−1
p )2Cp. Then using that Var(Zp/E[Zp]) =

Var(Zp)/ ‖Z‖2pp ≤ E[Z2p]/ ‖Z‖2pp ≤ Cp/ ‖Z‖pp, the preceding inequality, in the case that p ≥ 2,
implies

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − 2 min

{√
D/n ‖Z‖1−p/2p , (D/n) ‖Z‖1−pp , ‖Z‖p /2

}
≥ ‖Z‖p − 2 min

{√
D/n ‖Z‖1−p/2p , (D/n) ‖Z‖1−pp , ‖Z‖p

}
.

But now, we note that

min
t≥0

{√
D

n
t1−p/2,

D

n
t1−p, t

}
=

{
t, if t ≤ (D/n)1/p

D
n t

1−p, if t > (D/n)1/p

≤ (D/n)1/p.

In particular, we have for p ≥ 2 that

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − 2

(
1

n

(
p− 1

p

)2

Cp

)1/p

≥ ‖Z‖p − 2C

(
1

n

) 1
p

.

Finally, we note that the bound for p ≤ 2 is tighter than the above expression for p = 2.
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C More experiments

We present further details of the experiments shown in Section 4 as well as experiments on more
datasets and kernel-learning methods. Specifically, we also show experiments with the ads5, farm6,
mnist7, and weight8 datasets. When training/test splits do not already exist, we split the dataset
into 75% training and 25% test sets.

Table 3 shows parameters used in our method for each dataset. The last column indicates the size of
the subset of the training data used to solve problem (4). We use subsets to increase the efficiency of
our approach. Furthermore, we show ρ/Nw simply because it is easier to work with this quantity
rather than ρ: the value is chosen to balance fit with efficiency via cross validation. Very large ρ
yields extremely sparse q̂ and poor fit, whereas very small ρ yields dense q̂ and long training times.
We note that all values of ρ are less than 1000. Finally, for ridge regression models, we choose the l2
penalty term such that we may absorb the

√
q̂i factors into θ.

Table 4 compares the accuracy of our approach (OK) with other methods: random features with 2
values for D, and two standard multiple-kernel-learning algorithms from [14]. Table 5 shows the
(training + test) times of the same methods. Algorithm ABMKSVM(ratio) is a heuristic alignment-
based kernel derived in problem (2) in [14] followed by an SVM. Algorithm MKSVM jointly
optimizes kernel composition with empirical risk via problem (9) in [14]. For both of these methods,
we consider optimizing the combination of a linear, second-order polynomial, and Gaussian kernel.

The two multiple-kernel-learning approaches require an extremely large amount of memory to build
Gram matrices, so we train on subsets of data when necessary to avoid latencies introduced by
swapping data from memory. For ABMKSVM(ratio) we train on n = 17500 for adult and weight,
and n = 10000 for reuters. Similarly, we break up the test data for reuters into ntest = 1000
chunks, which accounts for the large amount of time taken for this dataset (training time was roughly
400s). For MKSVM, we use a subset of size n = 7500 for all applicable datasets, and we use the
same testing scheme as ABMKSVM(ratio) for reuters (training time for MKSVM was roughly
1000s).

The performance of our method on all datasets is consistent: we improve the performance for random
features at a given computational cost, and we are generally competitive with much costlier standard
multiple-kernel-learning techniques. The mnist and weight datasets are slightly peculiar: both
ABSVM(ratio) and MKSVM require many support vectors, indicating that the chosen kernels are
poor for the task; this hypothesis is corroborated by the slightly worse performance of both our
method and random features (the arc-cosine kernel is similar to polynomial and Guassian kernels).
A large number of support vectors roughly translates to large nnz(q̂), which can be achieved by
increasing Nw or decreasing ρ. We can also achieve better performance by increasing the subset
of training data used in problem (4). Doing the latter two options yields comparable results for our
method (Table 6). For the mnist models, we switch to ridge regression to enhance efficiency of the
larger problem. The upshot of this analysis is that our method is most effective in regimes where
standard multiple-kernel-learning techniques are intractable, that is, datasets with both large n and d.

5http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements. We use all but the first 3 features which are
sometimes missing in the data.

6https://archive.ics.uci.edu/ml/datasets/Farm+Ads
7http://yann.lecun.com/exdb/mnist/. We do pairwise classifications of digits 1 vs. 7, 4 vs. 9, and 5 vs. 6.
8http://archive.ics.uci.edu/ml/datasets/Weight+Lifting+Exercises+monitored+with+Inertial+Measurement+Units.

We neglect the first 4 features, and furthermore we only use remaining features that are not missing in any
datapoint. We consider classifying the datapoint as class A or not.
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Table 3: Dataset parameters

Dataset n, ntest d Model Base kernel ρ/Nw Nw %n in problem (4)
adult 32561, 16281 123 Logistic Gaussian 0.0120 20000 50

reuters 23149, 781265 47236 Ridge Linear 0.0123 47236 100
buzz 105530, 35177 77 Ridge Arc-cosine 0.0145 2000 6.67
ads 2459, 820 1554 Ridge Linear 0.1000 1554 100
farm 3107, 1036 54877 Ridge Linear 0.0050 54877 100

mnist17 13007, 2163 784 Logistic Arc-cosine 0.0300 20000 25
mnist49 11791, 1991 784 Logistic Arc-cosine 0.0300 20000 25
mnist56 11339, 1850 784 Logistic Arc-cosine 0.0300 20000 25
weight 29431, 9811 53 Ridge Gaussian 0.0020 20000 50

Table 4: Test misclassification error (%)
Dataset OK Random Random ABMKSVM(ratio) MKSVM

D = nnz(q̂) D = nnz(q̂) D = 10 nnz(q̂)
adult 15.54 17.51 16.08 15.44 16.79

reuters 9.27 46.49 23.69 9.09 10.13
buzz 4.92 8.68 4.16 3.48 3.54
ads 5.37 8.05 3.54 3.05 3.17
farm 11.58 23.36 14.58 10.81 10.23

mnist17 3.24 4.44 1.76 0.51 0.97
mnist49 6.53 21.55 4.02 1.10 1.26
mnist56 6.81 5.89 3.03 0.87 0.59
weight 13.08 15.68 2.89 0.78 1.49

Table 5: Time (s)
Dataset OK Random Random ABMKSVM(ratio) MKSVM

D = nnz(q̂) D = nnz(q̂) D = 10 nnz(q̂)
adult 3.6 4.6 86.9 87.3 740.9

reuters 0.8 0.2 1.0 31207.4 17490.7
buzz 2.0 1.9 60.2 92.7 1035.1
ads 0.017 0.013 0.014 56.7 92.3
farm 0.27 0.05 8.3 86.3 180.0

mnist17 3.4 4.0 53.1 38.0 702.6
mnist49 3.7 4.4 78.1 27.0 602.5
mnist56 2.9 3.6 56.4 24.3 623.9
weight 1.9 1.0 65.0 83.1 695.3

Table 6: Auxiliary experiments on mnist and weight with OK
Dataset Model Base kernel ρ/Nw %n in problem (4) Test error (%) Time (s)
mnist17 Ridge Arc-cosine 0.00100 50 1.06 9.1
mnist49 Ridge Arc-cosine 0.00100 50 1.91 9.4
mnist56 Ridge Arc-cosine 0.00100 50 1.68 8.3
weight Ridge Gaussian 0.00015 100 2.04 64.7
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