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Abstract

Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively
samples variables from their conditional distributions. There are two common scan
orders for the variables: random scan and systematic scan. Due to the benefits
of locality in hardware, systematic scan is commonly used, even though most
statistical guarantees are only for random scan. While it has been conjectured that
the mixing times of random scan and systematic scan do not differ by more than a
logarithmic factor, we show by counterexample that this is not the case, and we
prove that that the mixing times do not differ by more than a polynomial factor
under mild conditions. To prove these relative bounds, we introduce a method of
augmenting the state space to study systematic scan using conductance.

1 Introduction

Gibbs sampling, or Glauber dynamics, is a Markov chain Monte Carlo method that draws approximate
samples from multivariate distributions that are difficult to sample directly [9; 15, p. 40]. A major use
of Gibbs sampling is marginal inference: the estimation of the marginal distributions of some variables
of interest [8]. Some applications include various computer vision tasks [9, 23, 24], information
extraction [7], and latent Dirichlet allocation for topic modeling [11]. Gibbs sampling is simple to
implement and quickly produces accurate samples for many models, so it is widely used and available
in popular libraries such as OpenBUGS [16], FACTORIE [17], JAGS [18], and MADlib [14].

Gibbs sampling (Algorithm 1) iteratively selects a single variable and resamples it from its conditional
distribution, given the other variables in the model. The method that selects the variable index to
sample (s in Algorithm 1) is called the scan order. Two scan orders are commonly used: random scan
and systematic scan (also known as deterministic or sequential scan). In random scan, the variable to
sample is selected uniformly and independently at random at each iteration. In systematic scan, a
fixed permutation is selected, and the variables are repeatedly selected in that order. The existence of
these two distinct options raises an obvious question—which scan order produces accurate samples
more quickly? This question has two components: hardware efficiency (how long does each iteration
take?) and statistical efficiency (how many iterations are needed to produce an accurate sample?).

From the hardware efficiency perspective, systematic scans are clearly superior [21, 22]. Systematic
scans have good spatial locality because they access the variables in linear order, which makes their
iterations run faster on hardware. As a result, systematic scans are commonly used in practice.

Comparing the two scan orders is much more interesting from the perspective of statistical efficiency,
which we focus on for the rest of this paper. Statistical efficiency is measured by the mixing
time, which is the number of iterations needed to obtain an accurate sample [15, p. 55]. The
mixing times of random scan and systematic scan have been studied, and there is a longstanding
conjecture [3; 15, p. 300] that systematic scan (1) never mixes more than a constant factor slower
than random scan and (2) never mixes more than a logarithmic factor faster than random scan. This
conjecture implies that the choice of scan order does not have a large effect on performance.
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Algorithm 1 Gibbs sampler

input Variables xi for 1 ≤ i ≤ n, and target distribution π
Initialize x1, . . . , xn
loop

Select variable index s from {1, . . . , n}
Sample xs from the conditional distribution Pπ

(
Xs | X{1,...,n}\{s}

)
end loop

Recently, Roberts and Rosenthal [20] described a model in which systematic scan mixes more
slowly than random scan by a polynomial factor; this disproves direction (1) of this conjecture.
Independently, we constructed other models for which the scan order has a significant effect on
mixing time. This raises the question: what are the true bounds on the difference between these
mixing times? In this paper, we address this question and make the following contributions.

• In Section 3, we study the effect of the variable permutation chosen for systematic scan on
the mixing time. In particular, in Section 3.1, we construct a model for which a systematic
scan mixes a polynomial factor faster than random scan, disproving direction (2) of the
conjecture, and in Section 3.2, we construct a model for which the systematic scan with the
worst-case permutation results in a mixing time that is slower by a polynomial factor than
both the best-case systematic scan permutation and random scan.

• In Section 4, we empirically verify the mixing times of the models we construct, and we
analyze how the mixing time changes as a function of the permutation.

• In Section 5, we prove a weaker version of the conjecture described above, providing
relative bounds on the mixing times of random and systematic scan. Specifically, under
mild conditions, different scan orders can only change the mixing time by a polynomial
factor. To obtain these bounds, we introduce a method of augmenting the state space of
Gibbs sampling so that the method of conductance can be applied to analyze its dynamics.

2 Related Work

Recent work has made progress on analyzing the mixing time of Gibbs sampling, but there are still
major limitations to our understanding. In particular, most results are only for specific models or for
random scan. For example, mixing times are known for Mallow’s model [1, 4], and colorings of a
graph [5] for both random and systematic scan, but these are not applicable to general models. On the
other hand, random scan has been shown to mix in polynomial time for models that satisfy structural
conditions – such as having close-to-modular energy functions [10] or having bounded hierarchy
width and factor weights [2] – but corresponding results for for systematic scan are not known.
The major exception to these limitations is Dobrushin’s condition, which guarantees O(n log n)
mixing for both random scan and systematic scan [6, 13]. However, many models of interest with
close-to-modular energy functions or bounded hierarchy width do not satisfy Dobrushin’s condition.

A similar choice of scan order appears in stochastic gradient descent (SGD), where the standard SGD
algorithm uses random scan, and the incremental gradient method (IGM) uses systematic scan. In
contrast to Gibbs sampling, avoiding “bad permutations” in the IGM is known to be important to
ensure fast convergence [12, 19]. In this paper, we bring some intuition about the existence of bad
permutations from SGD to Gibbs sampling.

3 Models in Which Scan Order Matters

Despite a lack of theoretical results regarding the effect of scan order on mixing times, it is generally
believed that scan order only has a small effect on mixing time. In this section, we first define
relevant terms and state some common conjectures regarding scan order. Afterwards, we give several
counterexamples showing that the scan order can have asymptotic effects on the mixing time.

The total variation distance between two probability distributions µ and ν on Ω is [15, p. 47]
‖µ− ν‖TV = max

A⊆Ω
|µ(A)− ν(A)|.
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Table 1: Models and Approximate Mixing Times

Model tmix(R) min
α
tmix(Sα) max

α
tmix(Sα)

Sequence of Dependencies n2 n n2

Two Islands 2n 2n n2n

Discrete Pyramid [20] n n3 n3

Memorize and Repeat n3 n2 n2

Soft Dependencies n3/2 n n2

The mixing time is the minimum number of steps needed to guarantee that the total variation distance
between the true and estimated distributions is below a given threshold ε from any starting distribution.
Formally, the mixing time of a stochastic process P with transition matrix P (t) after t steps and
stationary distribution π is [15, p. 55]

tmix(P, ε) = min

{
t : max

µ
‖P (t)µ− π‖TV ≤ ε

}
,

where the maximum is taken over the distribution µ of the initial state of the process. When comparing
the statistical efficiency of systematic scan and random scan, it would be useful to establish, for any
systematic scan process S and random scan process R on the same n-variable model, a relative bound
of the form

F1(ε, n, tmix(R, ε)) ≤ tmix(S, ε) ≤ F2(ε, n, tmix(R, ε)) (1)

for some functions F1 and F2. Similarly, to bound the effect that the choice of permutation can have
on the mixing time, it would be useful to know, for any two systematic scan processes Sα and Sβ
with different permutations on the same model, that for some function F3,

tmix(Sα, ε) ≤ F3(ε, n, tmix(Sβ , ε)). (2)

Diaconis [3] and Levin et al. [15, p. 300] conjecture that systematic scan is never more than a
constant factor slower or a logarithmic factor faster than random scan. This is equivalent to choosing
F1(ε, n, t) = C1(ε)·t·(log n)−1 and F2(ε, n, t) = C2(ε)·t in the inequality in (1), for some functions
C1 and C2. It is also commonly believed that all systematic scans mix at the same asymptotic rate,
which is equivalent to choosing F3(ε, n, t) = C3(ε) · t in (2).

These conjectures imply that using systematic scan instead of random scan will not result in significant
consequences, at least asymptotically, and that the particular permutation used for systematic scan is
not important. However, we show that neither conjecture is true by constructing models (listed in
Table 1) in which the scan order has substantial asymptotic effects on mixing time.

In the rest of this section, we go through two models in detail to highlight the diversity of behaviors
that different scan orders can have. First, we construct the sequence of dependencies model, for
which a single “good permutation” of systematic scan mixes faster, by a polynomial factor, than both
random scan and systematic scans using most other permutations. This serves as a counterexample
to the conjectured lower bounds (i.e. the choice of F1 and F3) on the mixing time of systematic
scan. Second, we construct the two islands model, for which a small set of “bad permutations” mix
very slowly in comparison to random scan and most other systematic scans. This contradicts the
conjectured upper bounds (i.e. the choice of F2 and F3). For completeness, we also discuss the
discrete pyramid model introduced by Roberts and Rosenthal [20], which contradicts the conjectured
choice of F2. Table 1 lists several additional models we constructed: these models further explore the
space of asymptotic comparisons among scan orders, but for brevity we defer them to the appendix.

3.1 Sequence of Dependencies

The first model we describe is the sequence of dependencies model (Figure 1a), where we explore
how fast systematic scan can be by allowing a specific good permutation to mix rapidly. The sequence
of dependencies model achieves this by having the property that, at any time, progress towards mixing
is only made if a particular variable is sampled; this variable is always the one that is chosen by the
good permutation. As a result, while a systematic scan using the good permutation makes progress at
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Figure 1: State space of the models.

every step, both random scan and other systematic scans often fail to progress, which leads to a gap
between their mixing times. Thus, this model exhibits two surprising behaviors: (1) one systematic
scan is polynomially better than random scan and (2) systematic scans using different permutations
have polynomial differences in mixing times. We now describe this model in detail.

Variables There are n binary variables x1, . . . , xn. Independently, each variable has a very strong
prior of being true. However, variable xi is never true unless xi−1 is also true. The unnormalized
probability distribution is the following, where M is a very large constant.1

P (x) ∝

{
0 if xi is true and xi−1 is false for some i ∈ {2, . . . , n}
M

∑n
i=1 xi otherwise

State Space There are n + 1 states with non-zero probability: s0, . . . , sn, where si is the state
where the first i variables are true and the remaining n − i variables are false. In the stationary
distribution, sn has almost all of the mass due to the strong priors on the variables, so reaching sn is
essentially equivalent to mixing because the total variation distance from the stationary distribution is
equal to the mass not on sn. Notice that sampling xi will almost always move the state from si−1 to
si, very rarely move it from si to si−1, and can have no other effect. The worst-case starting state is
s0, where the variables must be sampled in the order x1, . . . , xn for this model to mix.

Random Scan The number of steps needed to transition from s0 to s1 is distributed as a geometric
random variable with mean n (variables are randomly selected, and specifically x1 must be selected).
Similarly, the number of steps needed to transition from si−1 to si is distributed as a geometric
random variable with mean n. In total, there are n transitions, so O(n2) steps are needed to mix.

Best Systematic Scan The best systematic scan uses the order x1, x2, . . . , xn. For this scan, one
sweep will reach sn no matter what the starting state is, so the mixing time is n.

Worst Systematic Scan The worst systematic scan uses the order xn, xn−1, . . . , x1. The first
sweep only uses x1, the second sweep only uses x2, and in general, any sweep only makes progress
using one transition. Finally, in the n-th sweep, xn is used in the first step. Thus, this process mixes
in n(n− 1) + 1 steps, which is O(n2).

3.2 Two Islands

With the sequence of dependencies model, we showed that a single good permutation can mix much
faster than other scan orders. Next, we describe the two islands model (Figure 1b), which has the

1We discuss the necessary magnitude of M in Appendix B
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opposite behavior: it has bad permutations that yield much slower mixing times. The two islands
model achieves this by having two disjoint blocks of variables such that consecutively sampling two
variables from the same block accomplishes very little. As a result, a systematic scan that uses a
permutation that frequently consecutively samples from the same block mixes a polynomial factor
slower than both random scan and most other systematic scans. We now describe this model in detail.

Variables There are 2n binary variables grouped into two blocks: x1, . . . , xn and y1, . . . , yn.
Conditioned on all other variables being false, each variable is equally likely to be true or false.
However, the x variables and the y variables contradict each other. As a result, if any of the x’s are
true, then all of the y’s must be false, and if any of the y’s are true, then all of the x’s must be false.
The unnormalized probability distribution for this model is the following.

P (x, y) ∝

{
0 if ∃xi true and ∃yj true
1 otherwise

(3)

This model can be interpreted as a machine learning inference problem in the following way. Each
variable represents whether the reasoning in some sentence is sound. The sentences corresponding
to x1, . . . , xn and the sentences corresponding to y1, . . . , yn reach contradicting conclusions. If any
variable is true, its conclusion is correct, so all of the sentences that reached the opposite conclusion
must be not be sound, and their corresponding variables must be false. However, this does not
guarantee that all other sentences that reached the same conclusion have sound reasoning, so it is
possible for some variables in a block to be true while others are false. Under these assumptions
alone, the natural way to model this system is with the two islands distribution in (3).

State Space The states are divided into three groups: states in island x (at least one x variable is
true), states in island y (at least one y variable is true), and a single bridge state b (all variables are
false). The islands are well-connected internally, so the islands mix rapidly. but it is impossible to
directly move from one island to the other – the only way to move from one island to the other is
through the bridge. To simplify the analysis, we assume that the bridge state has very low mass.2
This allows us to assume that the chains always move off of the bridge when a variable is sampled.

The bridge is the only way to move from one island to the other, so it acts as a bottleneck. As a result,
the efficiency of bridge usage is critical to the mixing time. We will use bridge efficiency to refer to
the probability that the chain moves to the other island when it reaches the bridge. Because mixing
within the islands is rapid in comparison to the time needed to move onto the bridge, the mixing time
is inversely proportional to the bridge efficiency of the chain.

Random Scan In random scan, the variable selected after getting on the bridge is independent of
the previous variable. As a result, with probability 1/2, the chain will move onto the other island,
and with probability 1/2, the chain will return to the same island, so the bridge efficiency is 1/2.

Best Systematic Scan Several different systematic scans achieve the fastest mixing time. One such
scan is x1, y1, x2, y2, . . . , xn, yn. Since the sampled variables alternate between the blocks, if the
chain moves onto the bridge (necessarily by sampling a variable from the island it was previously on),
it will always proceed to sample a variable from the other block, which will cause it to move onto
the other island. Thus, the bridge efficiency is 1. More generally, any systematic scan that alternates
between sampling from x variables and sampling from y variables will have a bridge efficiency of 1.

Worst Systematic Scan Several different systematic scans achieve the slowest mixing time. One
such scan is x1, . . . , xn, y1, . . . , yn. In this case, if the chain moves onto the bridge, it will almost
always proceed to sample a variable from the same block, and return to the same island. In fact,
the only way for this chain to move across islands is if it moves from island x to the bridge using
transition xn and then moves to island y using transition y1, or if it moves from island y to the bridge
using transition yn and then moves to island x using transition x1. Thus, only 2 of the 2n transitions
will cross the bridge, and the bridge efficiency is 1/n. More generally, any systematic scan that
consecutively samples all x variables and then all y variables will have a bridge efficiency of 1/n.

Comparison of Mixing Times The mixing times of the chains are inversely proportional to the
bridge efficiency. As a result, random scan takes twice as long to mix as the best systematic scan, and
mixes n/2 times faster than the worst systematic scan.

2We show that the same asymptotic result holds without this assumption in Appendix C.
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3.3 Discrete Pyramid

In the discrete pyramid model (Figure 1c) introduced by Roberts and Rosenthal [20], there are n
binary variables xi, and the mass is uniformly distributed over all states where at most one xi is true.
In this model, the mixing time of random scan, O(n), is asymptotically better than that of systematic
scan for any permutation, which all have the same mixing time, O(n3).

4 Experiments

In this section, we run several experiments to illustrate the effect of scan order on mixing times. First,
in Figure 2a, we plot the mixing times of the models from Section 3 as a function of the number of
variables. These experiments validate our results about the asymptotic scaling of the mixing time,
as well as show that the scan order can have a significant effect on the mixing time for even small
models. (Due to the exponential state space of the two islands model, we modify it slightly to make
the computation of mixing times feasible: we simplify the model by only considering the states that
are adjacent to the bridge, and assume that the states on each individual island mix instantly.)

In the following experiments, we consider a modified version of the two islands model, in which the
mass of the bridge state is set to 0.1 of the mass of the other states to allow the effect of scan order to
be clear even for a small number of variables. Figure 2b illustrates the rate at which different scan
orders explore this modified model. Due to symmetry, we know that half of the mass should be on
each island in the stationary distribution, so getting half of the mass onto the other island is necessary
for mixing. This experiment illustrates that random scan and a good systematic scan move to the
other island quickly, while a bad systematic scan requires many more iterations.

Figure 2c illustrates the effect that the permutation chosen for systematic scan can have on the mixing
time. In this experiment, the mixing time for each permutation was found and plotted in sorted order.
For the sequence of dependencies model, there are a small number of good permutations which mix
very quickly compared to the other permutations and random scan. However, no permutation is bad
compared to random scan. In the two islands model, as we would expect based on the analysis in
Section 3, there are a small number of bad permutations which mix very slowly compared to the
other permutations and random scan. Some permutations are slightly better than random scan, but
none of the scan orders are substantially better. In addition, the mixing times for systematic scan
approximately discretized due to the fact that mixing time depends so heavily on the bridge efficiency.

5 Relative Bounds on Mixing Times via Conductance

In Section 3, we described two models for which a systematic scan can mix a polynomial factor
faster or slower than random scan, thus invalidating conventional wisdom that the scan order does not
have an asymptotically significant effect on mixing times. This raises a question of how different the
mixing times of different scans can be. In this section, we derive the following weaker – but correct –
version of the conjecture stated by Diaconis [3] and Levin et al. [15].

One of the obstacles to proving this result is that the systematic scan chain is not reversible. A
standard method of handling non-reversible Markov chains is to study a lazy version of the Markov
chain instead [15, p. 9]. In the lazy version of a Markov chain, each step has a probability of 1/2 of
staying at the current state, and acts as a normal step otherwise. This is equivalent to stopping at a
random time that is distributed as a binomial random variable. Due to the fact that systematic scan is
not reversible, our bounds are on the lazy systematic scan, rather than the standard systematic scan.
Theorem 1. For any random scan Gibbs sampler R and lazy systematic scan sampler S with the
same stationary distribution π, their relative mixing times are bounded as follows.

(1/2− ε)2 tmix(R, ε) ≤ 2t2mix(S, ε) log

(
1

επmin

)
(1/2− ε)2 tmix(S, ε) ≤

8n2

(minx,i Pi(x, x))2 t
2
mix(R, ε) log

(
1

επmin

)
,

where Pi is the transition matrix corresponding to resampling just variable i, and πmin is the
probability of the least likely state in π.
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Figure 2: Empirical analysis of the models.

Under mild conditions, namely ε being fixed and the quantities log(π−1
min) and (minx,i Pi(x, x))−1

being at most polynomial in n, this theorem implies that the choice of scan order can only affect the
mixing time by up to polynomial factors in n and tmix. We now outline the proof of this theorem and
include full proofs in Appendix D.

In the two islands models, the mixing time of a scan order was determined by its ability to move
through a single bridge state that restricted flow. This suggests that a technique with the ability to
model the behavior of this bridge state is needed to bound the relative mixing times of different scans.
Conductance, also known as the bottleneck ratio, is a topological property of Markov chains used to
bound mixing times by considering the flow of mass around the model [15, p. 88]. This ability to
model bottlenecks in a Markov chain makes conductance a natural technique both for studying the
two islands model and bounding mixing times in general.

More formally, consider a Markov chain on state space Ω with transition matrix P and stationary
distribution π. The conductance of a set S and of the whole chain are respectively defined as

Φ(S) =

∑
x∈S,y/∈S π(x)P (x, y)

π(S)
Φ? = min

S:π(S)≤ 1
2

Φ(S).

Conductance can be directly applied to analyze random scan. Let Pi be the transition matrix
corresponding to sampling variable i. The state space Ω is used without modification, and the
transition matrix is P = 1

n

∑n
i=1 Pi. The stationary distribution is the expected target distribution π.

On the other hand, conductance cannot be directly applied to systematic scan. Systematic scan is not
a homogeneous Markov chain because it uses a sequence of transition matrices rather than a single
transition matrix. One standard method of converting systematic scan into a homogeneous Markov
chain is to consider each full scan as one step of a Markov chain. However, this makes it difficult
to compare with random scan because it completely changes which states are connected by single
steps of the transition matrix. To allow systematic and random scan to be compared more easily,
we introduce an alternative way of converting systematic scan to a homogeneous Markov chain by
augmenting the state space. The augmented state space is Ψ = Ω× [n], which represents an ordered
pair of the normal state and the index of the variable to be sampled. The transition probability is
P ((x, i), (y, j)) = Pi(x, y)s(i, j), where s(i, j) = I[i+ 1 ≡ j (mod n)] is an indicator that shows
if the correct variable will be sampled next.
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Additionally, augmenting the state space for random scan allows easier comparison with systematic
scan in some cases. For augmented random scan, the state space is also Ψ = Ω × [n], the same
as for systematic scan. The transition probability is P ((x, i), (y, j)) = 1

nPi(x, y), which means
that the next variable to sample is selected uniformly. The stationary distributions of the augmented
random scan and systematic scan chains are both π ((x, i)) = n−1π(x). Because the state space and
stationary distribution are the same, augmented random scan and augmented systematic scan can be
compared directly, which lets us prove the following lemma.
Lemma 1. For any random scan Gibbs sampler and systematic scan sampler with the same stationary
distribution π, let ΦRS denote the conductance of the random scan process, let ΦRS-A denote the
conductance of the augmented random scan process, and let ΦSS-A denote the conductance of the
augmented systematic scan process. Then,

1

2n
·min
x,i

Pi(x, x) · ΦRS-A ≤ ΦSS-A ≤ ΦRS.

In Lemma 1, the upper bound states that the conductance of systematic scan is no larger than the
conductance of random scan. We use this result in the proof of Theorem 1 to show that systematic
scan cannot mix too much more quickly than random scan. To prove this upper bound, we show
that for any set S under random scan, the set Ŝ containing the corresponding augmented states for
systematic scan will have the same conductance under systematic scan as S had under random scan.

The lower bound in Lemma 1 states that the conductance of systematic scan is no smaller than a
function of the conductance of augmented random scan. This function depends on the number of
variables n and minx,i Pi(x, x), which is the minimum holding probability of any state. To prove
this lower bound, we show that for any set S under augmented systematic scan, we can bound its
conductance under augmented random scan.

There are well-known bounds on the mixing time of a Markov chain in terms of its conductance,
which we state in Theorem 2 [15, pp. 89, 235].
Theorem 2. For any lazy or reversible Markov chain,

1/2− ε
Φ?

≤ tmix(ε) ≤
2

Φ2
?

log

(
1

επmin

)
.

It is straightforward to prove the result of Theorem 1 by combining the bounds from Theorem 2 with
the conductance bounds from Lemma 1.

6 Conclusion

We studied the effect of scan order on mixing times of Gibbs samplers, and found that for particular
models, the scan order can have an asymptotic effect on the mixing times. These models invalidate
conventional wisdom about scan order and show that we cannot freely change scan orders without
considering the resulting changes in mixing times. In addition, we found bounds on the mixing times
of different scan orders, which replaces a common conjecture about the mixing times of random scan
and systematic scan.
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A Additional Models in Which Scan Order Matters

Table 2: Models Classified by Relative Mixing Times
minα tmix(Sα) versus tmix(R)

� ≈ �
maxα tmix(Sα) � Memorize and Repeat × ×

versus ≈ Sequence of Dependencies Known Cases ×
tmix(R) � Soft Dependencies Two Islands Discrete Pyramid [20]

Table 2 classifies the models based on the mixing times of the best systematic scan and worst
systematic scan relative to random scan. For models in the first column, the best systematic scan
mixes asymptotically faster than random scan. For models in the second column, they differ only up
to logarithmic factors. For models in the third column, the best systematic scan mixes asymptotically
slower than random scan. The rows are classified in the same way based on the worst systematic scan
instead of the best systematic scan.

The models in Section 3 display possible problems that can occur when changing scan orders.
However, two behaviors were not shown by the models in Section 3: a case where random scan
is asymptotically worse than all systematic scans, and a case where random scan is asymptotically
better than a systematic scan and asymptotically worse than another systematic scan. This section
gives two additional models that exhibit these behaviors, along with a more detailed explanation of
the discrete pyramid model. These two models are more complicated than the models in Section 3
due to the fact that they require the number of states for each variable to grow with n. Combined with
the models in Section 3, these models show that all logically consistent asymptotic behaviors (that is,
behaviors where the worst systematic scan is no better than the best systematic scan) are possible.

A.1 Discrete Pyramid

The discrete pyramid model (Figure 1c) was first described by Roberts and Rosenthal [20] and is
included for completeness to show that it is possible for random scan to mix asymptotically faster
than all systematic scans.

Variables There are n binary variables x1, . . . , xn. Conditioned on all other variables being false,
each variable is equally likely to be true or false. However, the variables are all contradictory, and at
most one variable can be true. This model can also be interpreted as an n islands model, where there
are n well-connected regions (which consist of a single state) connected by a single bridge state.

State Space There are n+ 1 states s0, s1, . . . , sn with nonzero probability. s0 is the state where all
variables are false, and for all other i, si is the state where variable xi is true and all other variables
are false.

Random Scan The worst-case total variation occurs when the starting state is not x0. Suppose
that the starting state is sk. xk will be selected with probability 1/n, and in this case, the state will
change to x0 with probability 1/2. Thus, the number of samples needed to leave xk is distributed
as a Geometric random variable with a mean of 2n. This means that within O(n) steps, the chain
will have left the initial state with high probability. Once the chain has reached x0, each step has a
probability of 1/2 of leaving x0 and uniformly going to another state. Thus, O(1) steps are sufficient
for the chain to mix after it reaches x0. In total, the chain mixes in O(n) updates.

All Systematic Scans Once again, the worst-case total variation occurs when the starting state is
not x0. Suppose that the starting state is sk. A systematic scan step will change nothing until xk is
reached. Then, with probability 1/2, the state will remain sk, and with probability 1/2 the state will
change to x0. If it does move to x0, the scan will continue, and move away from x0 with probability
1/2 at each step. Thus, each time the scan reaches the current state, the state will advance Z steps,
where Z is a Geometric random variable with rate 1/2. This corresponds to a weighted random walk
on a circle, which is known to have a mixing time of O(n2). Notice that each step of the random
walk actually requires one full sweep, so O(n3) steps are needed for any systematic scan to mix.
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Figure 3: Memorize and Repeat Model

A.2 Memorize and Repeat

We introduce the memorize and repeat model to show that it is possible for all systematic scans to be
asymptotically better than random scan.

Description In this example (Figure 3), there are two types of states: states memorizing a permuta-
tion, and states requiring the memorized permutation to be repeated. In the stationary distribution,
almost all of the mass is on the state where a permutation has been memorized and repeated, and the
probability of the states increase exponentially from left to right. There are n variables x1, . . . , xn. In
the memorize phase, sampling a variable will allow the state to change as long as the variable has not
been sampled before. In the repeat phase, a sampling a variable will only allow the state to change if
it is the next variable in the memorized permutation. The repeat phase is similar to the sequence of
dependencies example, with the variables rearranged to match the memorized permutation.

In the worst-case starting distribution, the wrong permutation can already be memorized, which
results in no asymptotic gap between mixing times. To allow the difference in mixing time to appear
even in the worst-case analysis, we repeat the memorize and repeat process n times.

Random Scan Random scan encounters the coupon collector problem to get through the memorize
phase, so O(n log n) steps are needed. Afterwards, the repeat phase is equivalent to a sequence of
dependencies, which requires O(n2) steps. Thus, to get through one memorize and repeat chain,
O(n2) steps are needed. This mechanism is repeated n times, so O(n3) steps are needed.

All Systematic Scans If a systematic scan starts at the beginning of a memorize sequence, 2n steps
are sufficient to move through the memorize and repeat chain (n steps to memorize, n steps to repeat).
However, when analyzing the worst-case total variation, we must consider the case where the wrong
permutation has already been memorized, which requires O(n2) steps to move through. However,
this can only happen once, so in the worst case O(n2) steps are needed to move through the one
incorrect permutation, and O(n) steps are needed for the remaining n − 1 memorize and repeat
chains. Thus, O(n2) steps are needed in total.

State Space To simplify the explanation of the state space and formulation as a Gibbs sampler, this
explanation is for only one memorize and repeat cycle. In the memorize phase, the states are labeled
by the part of the permutation that has already been memorized. In the repeat phase, the states are
labeled by the remainder of the permutation that still has to be repeated.

Formulation as a Gibbs Sampler There are n integer-valued variables x1, . . . , xn with values
ranging from 0 to n+ 1. In the initial state that does not have anything memorized, all variables have
a value of 0. In the memorize phase, any variable that has not yet been memorized has a value of 0,
and any variable that has been memorized stores its index within the permutation. This means that for
states in the memorize phase with i variables memorized, exactly one variable will have a value of j,
for each integer j from 1 to i, and the remaining n− i variables that have not been memorized have
a value of 0. As more variables are memorized, the states become exponentially more likely. Next,
in the repeat phase, when a variable is used, its value changes to n+ 1. This means that for states
in the repeat phase with i variables repeated, the i variables that have been repeated have a value of
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n + 1, and the remaining n − i variables that still have to be repeated have a unique integer from
i + 1 to n. As more variables are repeated, the states become exponentially more likely. The log
probability distribution is the following, where x denotes (x1, . . . , xn), M is a very large constant, Z
is the normalizing constant, and σ(a1, . . . , an) denotes the set of all permutations of (a1, · · · , an).

logM P (x) = − logM Z +


max(x) if x ∈ σ(0, . . . , 0, 1, . . . , i)

n+
∑n
i=1 I[xi = n+ 1] if x ∈ σ(i+ 1, . . . , n, n+ 1, . . . , n+ 1)

−∞ otherwise

= − logM Z +


(Number of Memorized Variables) if valid memorize state
n+ (Number of Repeated Variables) if valid repeat state
−∞ otherwise

First, for states in the memorize phase, if a variable that has not yet been memorized is sampled, then
its value will almost always change to i+ 1, where i is the number of variables already memorized,
due to the large value of M . However, sampling a variable that has already been memorized will not
change its value because all other values will either result in an invalid state (and have a probability of
0) or be significantly less likely due to the large value of M . Next, for states in the repeat phase, if the
correct variable is sampled, then its value will almost always change to n+ 1. However, sampling the
wrong variable will not change its value because all other values result in an invalid state or decrease
the probability of the state.

A.3 Soft Dependencies

In the soft dependencies model, some systematic scans mix asymptotically faster than random scan,
and some systematic scans mix asymptotically slower.

Description This example resembles the memorize portion of the previous example. However, no
repeat phase is included, and only some permutations are accepted. In particular, a permutation is
accepted only if each element of the permutation is followed by an element that is in the next

√
n

unused variables that come after it (mod n).

More formally, consider a permutation (a1, . . . , an) of (1, . . . , n). The permutation is accepted only
if the following holds for all i ∈ {1, . . . , n− 1}.

√
n ≥ |{ j ∈ {1, . . . , n} | j > i+ 1 and aj − ai (mod n) < ai+1 − ai (mod n) }|

In this condition, the requirement that j > i + 1 means that aj is an unused element, and the
requirement that aj − ai (mod n) < ai+1 − ai (mod n) means that starting from ai, aj is reached
before ai+1. These two requirements imply that ai+1 is within the next

√
n unused variables

following ai. This condition is equivalent to the following.

√
n ≥

{∑n
j=i+2 I[ai < aj < ai+1] if ai < ai+1∑n
j=i+2 I[ai < aj or aj < ai+1] if ai > ai+1

Random Scan First, consider when there are at least
√
n remaining transitions. The first n−

√
n =

O(n) transitions will have this property. During this period, random scan advances to the next state
with probability n/

√
n =
√
n. Thus, O(n

√
n) steps are needed to get until there are fewer than

√
n

remaining transitions. Once there are fewer than
√
n remaining transitions, random scan needs O(n)

steps to make each transition, so O(n
√
n) more steps are needed. In total, O(n

√
n) steps are needed.

Best Systematic Scan The best systematic scan uses the order x1, . . . , xn. This uses n steps to
give a valid permutation, and thus mixes in n steps.

Worst Systematic Scan The worst systematic scan uses the order xn, xn−1, . . . , x1. After a
transition is taken, nearly a full scan is needed until the next valid transition will be reached, so O(n2)
steps are needed.

State Space The state space has a similar form to the memorize portion of the previous example.
The states are labeled by the portion of the permutation that has already been given, but only prefixes
to valid permutations are accepted.
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Formulation as a Gibbs Sampler There are n integer-valued variables x1, . . . , xn with values
ranging from 0 to n. In the initial state that does not have anything memorized, all variables have a
value of 0. Then, as the permutation is memorized, the variables that have not been used yet have a
value of 0, and any variable that has been used stores its index within the permutation.

In addition, to merge the permutations together into one state, all variables need to be sampled one
more time (note that this does not require the variables to be sampled in a particular order). This extra
sampling process only adds lower order terms and constant factors to the mixing time. Once each
variable is sampled again, its value is changed to n.

The log probability distribution is the following, where x denotes (x1, . . . , xn), M is a very large
constant, Z is the normalizing constant, and σ(a1, . . . , an) denotes the set of all permutations of
(a1, . . . , an).

logM P (x) = − logM Z +


max(x) if x ∈ σ(0, . . . , 0, 1, . . . , i) and is valid
n− 1 +

∑n
i=1 I[xi = n] if at least two of (x1, . . . , xn) have a value of n

−∞ otherwise

= − logM Z +


(Number of Memorized Variables) if valid memorize state
n− 1 + (Number of Merged Variables) if valid merge state
−∞ otherwise

First, in the memorize phase, sampling a valid unused variable will almost always change its value to
i+ 1, where i is the number of variables already memorized, due to the large value of M . However,
sampling a variable that has already been memorized or sampling a variable that least to an invalid
permutation will not change its value. Then, when the last variable in the permutation is sampled, its
value changes to n. Afterwards, sampling any variable will also change its value to n.

B Priors in the Sequence of Dependencies

To simplify the analysis of the sequence of dependencies, we assumed that the priors on the variables
were strong enough such sampling the correct variable essentially always caused the state to advance.
We now analyze how large M (the strength of the priors) needs to be in order to allow the best
systematic scan to mix in O(n) time. In this section, we show that if M = Ω(n), then the best
systematic scan mixes in O(n) time, and if M = o(n), then the best systematic scan cannot mix
O(n2) time.

First, suppose that M = Ω(n). This means that M ≥ cn for some c > 0 and sufficiently large n.
The probability of transitioning from si−1 to si when variable xi is sampled is

M

1 +M
≥ cn

1 + cn
= 1− 1

1 + cn
> 1− 1

cn
.

The probability of transitioning from s0 to sn after sampling the sequence x1, . . . , xn is at least
(1− 1/cn)n, which limits to e−1/c for large n. In other words, if M = Ω(n), then a single sweep of
the best systematic scan will reach sn with a probability that does not approach 0. Thus, a constant
number of sweeps is sufficient to reach sn with high probability, which is equivalent to mixing.

On the other hand, suppose that M = o(n). Then, for any c > 0, M < cn for sufficiently large n.
This means that as n increases, the probability that a single sweep of the best systematic scan will
reach sn will go to 0, so no constant number of sweeps will be sufficient to mix.

C Bridge Efficiency with Normal Mass on Bridge

In the analysis of the two islands model, we assumed that the bridge has negligible mass. We now
analyze the mixing times without the assumption that the bridge has small mass. The same asymptotic
behavior still results.

Even when the bridge has the same mass as the other states, it still acts as a bottleneck to the model.
For sufficiently large n, the islands will mix rapidly in comparison reaching the bridge, so the mixing
time is still inversely proportional to the bridge efficiency. However, when the bridge has the same
mass as the other states, sampling a variable while on the bridge will only have a 1/2 chance of
moving off of the bridge.
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Random Scan In random scan, the variables that are sampled are completely independent, so the
bridge efficiency is still 1/2.

Best Systematic Scan Consider the scan x1, y1, x2, y2, . . .. Suppose the sampling x1 changes the
state to the bridge state – a similar analysis will apply for any other variable. The next variable is
y1, which will change the state to the other island with probability 1/2. Afterwards, x2 is sampled,
which will change the state to the same island with probability 1/4. Then, y2 is sampled, which will
change the state to the other island with probability 1/8. Thus, the probability of moving to the other
island is 1/2 + 1/8 + 1/32 + . . . = 2/3.

Worst Systematic Scan Consider the scan x1, . . . , xn, y1, . . . , yn. Suppose that sampling xn
changes the state to the bridge state. For large n, the probability of leaving the bridge state onto island
y approaches 1. Next, suppose that sampling xn−1 changes the state to the bridge state. There is a
probability of 1/2 of moving back to island x via xn, but the chain will move onto island y otherwise.
In general, moving onto the bridge via xi or yi will result in moving to the island with probability
2−n+i. The average probability of moving onto the other island is then 2/n.

D Proofs for Section 5

In this section, we prove our relative bounds on mixing times (Theorem 1), along with related claims
and lemmas.
Claim 1. The stationary distribution of augmented random and systematic scan is

π ((x, i)) =
1

n
π(x)

Proof. We prove this claim by showing that applying the transition matrix for augmented random
scan or augmented systematic scan does not change this distribution.

For augmented random scan,∑
x,i

π((x, i))P ((x, i), (y, j)) =
∑
x,i

π(x)

n
· P ((x, i), (y, j)) =

1

n

∑
x,i

π(x) · 1

n
Pi(x, y)

=
1

n

n∑
i=1

[∑
x∈Ω

(π(x)Pi(x, y)) · 1

n

]

=
1

n

n∑
i=1

[
π(y) · 1

n

]
=

1

n
π(y)

= π((y, j))

For augmented systematic scan,∑
x,i

π((x, i))P ((x, i), (y, j)) =
∑
x,i

π(x)

n
· P ((x, i), (y, j)) =

1

n

∑
x,i

π(x) · Pi(x, y)s(i, j)

=
1

n

n∑
i=1

[∑
x∈Ω

(π(x)Pi(x, y)) s(i, j)

]

=
1

n

n∑
i=1

[π(y)s(i, j)] =
1

n
π(y)

= π((y, j))

Lemma 1. For any random scan Gibbs sampler and systematic scan sampler with the same stationary
distribution π, let ΦRS denote the conductance of the random scan process, let ΦRS-A denote the
conductance of the augmented random scan process, and let ΦSS-A denote the conductance of the
augmented systematic scan process. Then,

1

2n
·min
x,i

Pi(x, x) · ΦRS-A ≤ ΦSS-A ≤ ΦRS.
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Proof.

Upper Bound: The conductance of the whole chain is the smallest conductance of any set with
mass no larger than 1

2 . Then, to prove that this inequality holds, we will show that for any set
S ∈ Ω with mass no larger than 1

2 , there exists a set T ∈ Ψ with mass no larger than 1
2 such that

the conductance of S under random scan is the same as the conductance of T under augmented
systematic scan.

From the standpoint of random scan, consider a set S ∈ Ω with mass no larger than 1
2 . The

conductance is

ΦRS(S) =

∑
x∈S

∑
y∈Sc π(x)P (x, y)

π(S)

=
1
n

∑n
i=1

∑
x∈S

∑
y∈Sc π(x)Pi(x, y)

π(S)

Then, for augmented systematic scan, consider the set T = { (x, i) : x ∈ S, i ∈ [n] }. First, notice
that π(T ) = π(S) ≤ 1

2 . The conductance is

ΦSS-A(T ) =

∑
(x,i)∈T

∑
(y,j)∈T c π ((x, i))P ((x, i), (y, j))

π(T )

=

∑n
i=1

∑n
j=1

∑
x∈S

∑
y∈Sc π ((x, i))P ((x, i), (y, j))

π(S)

=
1

n

∑n
i=1

∑n
j=1

∑
x∈S

∑
y∈Sc π(x)Pi(x, y)s(i, j)

π(S)

=
1

n

∑n
i=1

∑
x∈S

∑
y∈Sc π(x)Pi(x, y)

π(S)

= ΦRS(S)

This implies that for any S ∈ Ω with π(S) ≤ 1
2 , there exists T ∈ Ψ with π(T ) ≤ 1

2 such that
ΦRS(S) = ΦSS(T ). Therefore, ΦSS-A ≤ ΦRS.

Lower Bound: In this proof, we will work with the flow between two sets

Q(A,B) =
∑

x∈A,y∈B
π(x)P (x, y).

Notice that the conductance of a set can then be defined as

Φ(S) =
Q(S, Sc)

π(S)
.

To prove that this inequality holds for the whole chain, we will show that the same inequality holds
for any set S ∈ Ψ. Consider some arbitrary state x ∈ Ω. Flow can leave from the corresponding
augmented states in two ways: flowing from some (x, i) ∈ S to (x, j) ∈ Sc or flowing from
(x, i) ∈ S to (y, j) ∈ Sc, where y 6= x (x and y differ in only variable i). Let Sx = { (x, i) ∈ S }, and
let Scx = { (x, i) ∈ Sc }. These two components can be written as Q(Sx, S

c
x) and

∑
y 6=xQ(Sx, S

c
y).

Now, we will find upper bounds for the random scan flows and lower bounds for the systematic scan
flows. In the following statements, it is implicit that y 6= x, and γ = minx,i Pi(x, x) will denote the
minimum holding probability.
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First, we bound the amount of flow from (x, i) ∈ S to (x, j) ∈ Sc. For augmented random scan, the
following upper bound holds.

QRS(Sx, S
c
x) =

∑
(x,i)∈Sx,(x,j)∈Sc

x

π((x, i))P ((x, i), (x, j))

=
∑

(x,i)∈Sx,(x,j)∈Sc
x

1

n
π(x) · 1

n
Pi(x, x)

≤
∑

(x,i)∈Sx,(x,j)∈Sc
x

1

n
π(x) · 1

n

=
|Sx|
n
π(x)

n− |Sx|
n

≤
{

1
4π(x) if |Sx| 6= 0, n

0 if |Sx| = 0, n

For augmented systematic scan, the following lower bound holds.

QSS(Sx, S
c
x) =

∑
(x,i)∈Sx,(x,j)∈Sc

x

π((x, i))P ((x, i), (x, j))

=
∑

(x,i)∈Sx,(x,j)∈Sc
x

1

n
π(x) · Pi(x, x)s(i, j)

≥
∑

(x,i)∈Sx,(x,j)∈Sc
x

1

n
π(x) · γ · s(i, j)

≥
{

1
nπ(x)γ if |Sx| 6= 0, n

0 if |Sx| = 0, n

Similarly,

QSS(Sy, S
c
y) ≥

{
1
nπ(y)γ if |Sy| 6= 0, n

0 if |Sy| = 0, n

Now, we bound the amount of flow from x to y for y 6= x. Note that Pi(x, y) = 0 for all i if x and y
differ in more than one variable. As a result, we will assume that x and y differ in only variable i for
the next two bounds. For augmented random scan, the following upper bound holds.

QRS(Sx, S
c
y) =

{
1
nπ(x)Pi(x, y)

n−|Sy|
n if (x, i) ∈ S

0 if (x, i) 6∈ S

≤
{

1
nπ(x)Pi(x, y) if (x, i) ∈ S and |Scy| 6= 0

0 if (x, i) 6∈ S or |Scy| = 0

In the derivation of the next bound, note that if |Scy| = n, then we are guaranteed that (y, i +
1(mod n)) ∈ Scy . For augmented systematic scan, the following lower bound holds.

QSS(Sx, S
c
y) =

{
1
nπ(x)Pi(x, y) if (x, i) ∈ S and (y, i+ 1) ∈ Sc
0 otherwise

≥
{

1
nπ(x)Pi(x, y) if (x, i) ∈ S and |Scy| = n

0 otherwise

Now, we can derive several inequalities between the augmented random scan flow and the augmented
systematic scan flow as direct consequences of the bounds we just found. First, we bound the relative
flows from Sx to Scx.

QSS(Sx, S
c
x) ≥ 4γ

n
QRS(Sx, S

c
x) ≥ γ

n
QRS(Sx, S

c
x)
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Next, we bound the relative flows from x to y, where x and y differ in exactly variable i.

QSS(Sx, S
c
y) +

1

n
Pi(y, x)QSS(Sy, S

c
y)

≥


1
nπ(x)Pi(x, y) if (x, i) ∈ S and |Scy| = n
1
nPi(y, x) · 1

nπ(y)γ if (x, i) ∈ S and |Scy| 6= 0, n

0 otherwise

=


1
nπ(x)Pi(x, y) if (x, i) ∈ S and |Scy| = n
1
n2π(x)Pi(x, y)γ if (x, i) ∈ S and |Scy| 6= 0, n

0 otherwise

≥
{

1
n2π(x)Pi(x, y)γ if (x, i) ∈ S and |Scy| 6= 0

0 otherwise

=
γ

n

{
1
nπ(x)Pi(x, y) if (x, i) ∈ S and |Scy| 6= 0

0 otherwise

≥ γ

n
ΦRS(Sx, S

c
y)

Finally, we bound the relative flows.

QSS(S, Sc) =
∑
x∈Ω

∑
y∈Ω

QSS(Sx, S
c
y) =

∑
x∈Ω

QSS(Sx, S
c
x) +

∑
y 6=x

QSS(Sx, S
c
y)


≥ 1

2

∑
x∈Ω

2QSS(Sx, S
c
x) +

∑
y 6=x

QSS(Sx, S
c
y)


1

2

∑
x∈Ω

QSS(Sx, S
c
x) +

∑
y∈Ω

n∑
i=1

1

n
Pi(y, x)QSS(Sy, S

c
y) +

∑
y 6=x

QSS(Sx, S
c
y)


≥ 1

2

∑
x∈Ω

QSS(Sx, S
c
x) +

∑
y 6=x

(
QSS(Sx, S

c
y) +

n∑
i=1

1

n
Pi(y, x)QSS(Sy, S

c
y)

)
≥ 1

2

∑
x∈Ω

γ
n
QRS(Sx, S

c
x) +

γ

n

∑
y 6=x

QRS(Sx, S
c
y)


≥ γ

2n

∑
x∈Ω

QRS(Sx, S
c
x) +

∑
y 6=x

QRS(Sx, S
c
y)


=

γ

2n
QSS(S, Sc)

The mass of S is the same for augmented random scan and augmented systematic scan, so the same
inequality holds for the conductances of the sets. Finally, because this inequality holds for any set S,
the inequality also holds for the conductance of the whole chain.

Theorem 2. For any lazy or reversible Markov chain,

1/2− ε
Φ?

≤ tmix(ε) ≤
2

Φ2
?

log

(
1

επmin

)
.

Proof. The lower bound of this inequality,

1/2− ε
Φ?

≤ tmix(ε)
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is is shown by Theorem 7.3 of [15] and holds for any Markov chain – that is, it does not actually
require the Markov chain to be lazy or reversible.

The upper bound of this inequality,

tmix(ε) ≤ 2

Φ2
?

log

(
1

επmin

)
,

is shown by Theorem 17.10 of [15].

Theorem 1. For any random scan Gibbs sampler R and lazy systematic scan sampler S with the
same stationary distribution π, their relative mixing times are bounded as follows.

(1/2− ε)2 tmix(R, ε) ≤ 2t2mix(S, ε) log

(
1

επmin

)
(1/2− ε)2 tmix(S, ε) ≤

8n2

(minx,i Pi(x, x))2 t
2
mix(R, ε) log

(
1

επmin

)
,

where Pi is the transition matrix corresponding to resampling just variable i, and πmin is the
probability of the least likely state in π.

Proof.

Upper Bound for Random Scan: First, we upper bound the mixing time of random scan.

tmix(R, ε) ≤ 2

Φ2
RS

log

(
1

επmin

)
Next, we lower bound the mixing time for systematic scan.

tmix(S, ε) ≥ 1/2− ε
ΦSS-A

≥ 1/2− ε
ΦRS

This theorem results from algebraic manipulation of the previous two inequalities.

t2mix(S, ε) ≥ (1/2− ε)2

Φ2
RS

(1/2− ε)2
tmix(R, ε) ≤ 2t2mix(S, ε) log

(
1

επmin

)
Upper Bound for Systematic Scan: First, we lower bound the mixing time for random scan.

tmix(R, ε) ≥ 1/2− ε
ΦRS-A

tmix(R, ε)2 ≥ (1/2− ε)2

Φ2
RS-A

Next, we manipulate the lower bound of Lemma 1.

ΦSS ≥
1

2n
·min
x,i

Pi(x, x) · ΦRS-A

1

Φ2
SS
≤ 4n2

(minx,i Pi(x, x))
2 ·

1

Φ2
RS-A

Using this result, we upper bound the mixing time for systematic scan.

tmix(S, ε) ≤ 2

Φ2
SS

log

(
1

επmin

)
≤ 8n2

(minx,i Pi(x, x))
2 ·

1

Φ2
RS

log

(
1

επmin

)
This theorem results from the previous inequalities.

(1/2− ε)2
tmix(S, ε) ≤ 8n2

(maxx,i Pi(x, x))
2 tmix(R, ε)2 log

(
1

επmin

)
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