
Supplementary materials for “Computational and Statistical
Tradeoffs in Learning to Rank”

A Proof of Remark 2.1

Recall that Pθ(B(e) ≺ T (e)) is the probability that an agent ranks the collection of items T (e)
above B(e) when offered S = B(e) ∪ T (e). We want to show that Pθ(B(e) ≺ T (e)) is log-concave
under the PL model. We prove a slightly general result which works for a family of RUMs in the
location family. Random Utility Models (RUM) are defined as a probabilistic model where there
is a real-valued utility parameter θi associated with each items i ∈ S, and an agent independently
samples random utilities {Ui}i∈S for each item i with conditional distribution µi(·|θi). Then the
ranking is obtained by sorting the items in decreasing order as per the observed random utilities Ui’s.
Location family is a subset of RUMs where the shapes of µi’s are fixed and the only parameters are the
means of the distributions. For location family, the noisy utilities can be written as Ui = θi + Zi for
i.i.d. random variable Zi’s. In particular, it is PL model when Zi’s follow the independent standard
Gumbel distribution. We will show that for the location family if the probability density function for
each Zi’s is log-concave then logPθ(B(e) ≺ T (e)) is concave. The desired claim follows as the pdf
of standard Gumbel distribution is log-concave. We use the following Theorem from [20]. A similar
technique was used to prove concavity when |T (e)| = 1 in [5].
Lemma A.1 (Theorem 9 in [20]). Suppose g(θ, Z) is a concave function in R2r, where θ ∈ Rr is
fixed and Z is a r−component random vector whose probability distribution is logarithmic concave
in Rr, then the function

h(θ) = P[g(θ, Z) ≥ 0], for θ ∈ Rr (14)

is logarithmic concave on Rr.

To apply the above lemma to get our result, let r = |S|, g(θ, Z) = mini∈T (e){θi + Zi} −
maxi′∈B(e){θi′ + Zi′}, and observe that Pθ(B(e) ≺ T (e)) = P(g(θ, Z) ≥ 0) and g(θ, Z) is
concave.

B Proof of Remark 2.2

Define event E(e) ≡ {T (e)∪B(e) items are ranked in bottom r positions when the offer set is [d]}.
Define Pθ,[d](B(e) ≺ T (e)|E(e)) be the conditional probability of T (e) items being ranked higher
than B(e) items when the offer set is [d], conditioned on the event E(e). Observe that Pθ,[d](B(e) ≺
T (e)|E(e)) is the probability of observing the event B(e) ≺ T (e) under the proposed rank-breaking.
First we show that Pθ(e) = Pθ,[d](B(e) ≺ T (e)|E(e)), where Pθ(e) is the probability that T (e) ≺
B(e) when the offer set is {T (e) ∪B(e)} as defined in (2). This follows from the fact that under PL
model for any disjoint set of items {Ci}i∈[`] such that ∪`i=1Ci = [d],

P
(
C` ≺ C`−1 ≺ · · · ≺ C1

)
= P

(
C` ≺ C`−1

)
P
(
{C`, C`−1} ≺ C`−2

)
· · ·P

(
{C`, C`−1, · · · , C2} ≺ C1

)
,

(15)

where P(Ci1 ≺ Ci2) is the probability that Ci2 items are ranked higher than Ci1 items when the offer
set is S = {Ci1 ∪ Ci2}. Under the given sampling scenario, the comparison graph H([d], E) as
defined in section 3 is connected and hence the estimate θ̂, (3) is unique. Therefore, it follows that
maximum likelihood estimate θ̂ is consistent. Further, for a general sampling scenario, Theorem 4.1
proves that the estimator is consistent as the error goes to zero in the limit as n increases.

C Proof of Theorem 4.1

We define few additional notations. p ≡ (1/n)
∑n
j=1 pj . V (ej,a) ≡ T (ej,a)∪B(ej,a) for all j ∈ [n]

and a ∈ [`j ]. Note that by definition of rank-breaking edge ej,a, V (ej,a) is a random set of items that
are ranked in bottom rj,a positions in a set of Sj items by the user j.

The proof sketch is inspired from [15]. The main difference and technical challenge is in showing the
strict concavity of LRB(θ) when restricted to Ωb. We want to prove an upper bound on ∆ = θ̂ − θ∗,
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where θ̂ is the sample dependent solution of the optimization (3) and θ∗ is the true utility parameter
from which the samples are drawn. Since θ̂, θ∗ ∈ Ωb, it follows that ∆1 = 0. Since θ̂ is the
maximizer of LRB(θ), we have the following inequality,

LRB(θ̂)− LRB(θ∗)− 〈∇LRB(θ∗),∆〉 ≥ −〈∇LRB(θ∗),∆〉 ≥ −‖∇LRB(θ∗)‖2‖∆‖2, (16)

where the last inequality uses the Cauchy-Schwartz inequality. By the mean value theorem, there
exists a θ = cθ̂ + (1− c)θ∗ for some c ∈ [0, 1] such that θ ∈ Ωb and

LRB(θ̂)− LRB(θ∗)− 〈∇LRB(θ∗),∆〉 =
1

2
∆>H(θ)∆ ≤ −1

2
λ2(−H(θ))‖∆‖22, (17)

where λ2(−H(θ)) is the second smallest eigen value of −H(θ). We will show in Lemma C.3 that
−H(θ) is positive semi definite with one eigen value at zero with a corresponding eigen vector
1 = [1, . . . , 1]>. The last inequality follows since ∆>1 = 0. Combining Equations (16) and (17),

‖∆‖2 ≤
2‖∇LRB(θ∗)‖2
λ2(−H(θ))

, (18)

where we used the fact that λ2(−H(θ)) > 0 from Lemma C.3. The following technical lemmas
prove that the norm of the gradient is upper bounded by γ−1/2

2 eb
√

6np log d with high probability
and the second smallest eigen value is lower bounded by (1/8) e−6bαγ1γ2γ3(np/(d − 1)). This
finishes the proof of Theorem 4.1.

The (random) gradient of the log likelihood in (3) can be written as the following, where the
randomness is in which items ended up in the top set T (ej,a) and the bottom set B(ej,a):

∇iLRB(θ) =
n∑

j=1

`j∑

a=1

∑

C⊆Sj ,
|C|=rj,a−1

I
{
V (ej,a) = {C, i}

}∂ logPθ(ej,a)

∂θi
. (19)

Note that we are intentionally decomposing each summand as a summation over all C of size rj,a− 1,
such that we can separate the analysis of the expectation in the following lemma. The random variable
I{{C, i} = V (ej,a)} indicates that we only include one term for any given instance of the sample.
Note that the event I{{C, i} = V (ej,a)} is equivalent to the event that the {C, i} items are ranked in
bottom rj,a positions in the set Sj , that is V (ej,a) items are ranked in bottom rj,a positions in the set
Sj .
Lemma C.1. If the j-th poset is drawn from the PL model with weights θ∗ then for any given C′ ⊆ Sj
with |C′| = rj,a,

E
[
I
{
C′ = V (ej,a)

}∂ logPθ∗(ej,a)

∂θ∗i

∣∣∣∣{ej,a′}a′<a
]

= 0 . (20)

First, this lemma implies that E
[
I
{
C′ = V (ej,a)

}∂ log Pθ∗ (ej,a)
∂θ∗i

]
= 0. Secondly, the above lemma

allows us to construct a vector-valued martingale and apply a generalization of Azuma-Hoeffding’s
tail bound on the norm to prove the following concentration of measure. This proves the desired
bound on the gradient.
Lemma C.2. If n posets are independently drawn over d items from the PL model with weights θ∗
then with probability at least 1− 2e3d−3,

‖∇LRB(θ∗)‖ ≤ γ−1/2
2 eb

√
6np log d , (21)

where γ2 depend on the choice of the rank-breaking and are defined in Section 3.

We will prove in (29) that the Hessian matrix H(θ) ∈ Sd with Hii′(θ) = ∂2LRB(θ)
∂θi∂θi′

can be expressed
as

−H(θ) =

n∑

j=1

`j∑

a=1

∑

i<i′∈Sj
I{(i, i′) ⊆ V (ej,a)}

(
∂2 logPθ(ej,a)

∂θi∂θi′
(ei − ei′)(ei − ei′)>

)
. (22)

It is easy to see that H(θ)1 = 0. The following lemma proves a lower bound on the second smallest
eigenvalue λ2(−H(θ)) in terms of re-scaled spectral gap α of the comparison graph H defined in
Section 3.
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Lemma C.3. Under the hypothesis of Theorem 4.1, if the assumptions in Equation (9) are satisfied
then with probability at least 1− d−3, the following holds for any θ ∈ Ωb:

λ2(−H(θ)) ≥ e−6bαγ1γ2γ3

8

np

(d− 1)
, (23)

and λ1(−H(θ)) = 0 with corresponding eigen vector 1.

This finishes the proof of the desired claim.

C.1 Proof of Lemma C.1

Recall that ej,a is a random event where randomness is in which items ended up in the top-set
T (ej,a) and the bottom-set B(ej,a), and Pθ∗(ej,a) = Pθ∗ [B(ej,a) ≺ T (ej,a)] that is the probability
of observing B(ej,a) ≺ T (ej,a) when the offer set is B(ej,a) ∪ T (ej,a) as defined in (2). Define,
Pθ∗,Sj [ej,a|V (ej,a) = C′] to be the conditional probability of observing B(ej,a) ≺ T (ej,a), when
the offer set is Sj , conditioned on the event that V (ej,a) = C′. Note that we have put subscript Sj in
Pθ∗ to specify that the offer set is Sj . Observe that for any set C′ ⊆ Sj , the event {C′ = V (ej,a)} is
equivalent to C′ items being ranked in bottom rj,a positions when the offer set is Sj . In other words,
it is conditioned on the event that the subset V (ej,a) items are ranked in bottom rj,a positions when
the offer set is Sj . It is easy to check that under PL model

Pθ∗,Sj [ej,a|V (ej,a) = C′] = Pθ∗ [ej,a],

(see Remark 2.2). Also, by conditioning on any outcome of {ej,a′}a′<a it can be checked that

Pθ∗,Sj [ej,a|V (ej,a) = C′, {ej,a′}a′<a] = Pθ∗,Sj [ej,a|V (ej,a) = C′].
Therefore, we have

E
[
∂ logPθ∗

[
ej,a
]

∂θ∗i

∣∣∣∣V (ej,a) = C′, {ej,a′}a′<a
]

= E
[
∂ logPθ∗,Sj

[
ej,a|V (ej,a) = C′, {ej,a′}a′<a

]

∂θ∗i

∣∣∣∣V (ej,a) = C′, {ej,a′}a′<a
]

=
∑

ej,a:V (ej,a)=C′
{ej,a′}a′<a

Pθ∗,Sj
[
ej,a
∣∣V (ej,a) = C′, {ej,a′}a′<a

] ∂

∂θ∗i
logPθ∗,Sj

[
ej,a
∣∣V (ej,a) = C′, {ej,a′}a′<a

]

=
∂

∂θ∗i

∑

ej,a:V (ej,a)=C′
Pθ∗,Sj

[
ej,a
∣∣V (ej,a) = C′

]
=

∂

∂θ∗i
1 = 0 ,

where we used {ej,a : V (ej,a) = C′} = {ej,a : V (ej,a) = C′, {ej,a′}a′<a} which follows from the
definition of rank-breaking edges ej,a. This proves the desired claim.

C.2 Proof of Lemma C.2

We view ∇LRB(θ∗) as the final value of a discrete time vector-valued martingale with values in Rd.
Define∇L(ej,a)

RB ∈ Rd as the gradient vector arising out of each rank-breaking edge {ej,a}j∈[n],a∈[`j ]

as

∇iL(ej,a)
RB (θ∗) ≡

∑

C⊆Sj
I
{
V (ej,a) = {C, i}

}
∇i logPθ∗(ej,a) , (24)

such that ∇LRB(θ∗) =
∑
j∈[n]

∑
a∈[`j ]

∇L(ej,a)
RB . We take ∇L(ej,a)

RB as the incremental random
vector in a martingale of

∑n
j=1 `j time steps. Let Hj,a denote (the sigma algebra of) the history up

to ej,a and define a sequence of random vectors in Rd:

Zj,a ≡ E[∇L(ej,a)
RB (θ∗)|Hj,a] ,

with the convention that Z1,1 = E[∇L(ej,a)
RB (θ∗)] = 0 as proved in Lemma C.1. It also follows from

Lemma C.1 that E[Zj,a+1|Zj,a] = Zj,a for a < `j . Also, from the independence of samples, it
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follows that E[Zj+1,1|Zj,`j ] = Zj,`j . Applying a generalized version of the vector Azuma-Hoeffding
inequality which readily follows from [Theorem 1.8, [13]], we have

P
[
‖∇LRB(θ∗)‖ ≥ δ

]
≤ 2e3 exp

(
− δ2

∑n
j=1

∑`j
a=1mj,a2γ−1

2 e2b

)
, (25)

where we used ‖∇L(ej,a)
RB ‖2 ≤ mj,a2γ−1

2 e2b. Choosing δ = γ−1
2 eb
√

6np log d gives the desired
bound.

Now we are left to show that ‖∇L(ej,a)
RB ‖2 ≤ 2mj,aγ

−1
2 e2b for any θ ∈ Ωb. Recall that σ ∈ ΛT (ej,a)

is the set of all full rankings over T (ej,a) items. In rest of the proof, with a slight abuse of notations,
we extend each of these ranking σ over T (ej,a) ∪ B(ej,a) items in the following way. Consider
any full ranking σ̃ over B(ej,a) items. Then for each σ ∈ ΛT (ej,a), the extension is such that
σ(|T (ej,a)|+ c) = σ̃(c) for 1 ≤ c ≤ |B(ej,a)|. The choice of ranking σ̃ will have no impact on any
of the following mathematical expressions. From the definition of Pθ(ej,a) (2), we have, for any
i ∈ V (ej,a),

∂Pθ(ej,a)

∂θi
= I{i ∈ T (ej,a)}Pθ(ej,a) (26)

−
∑

σ∈ΛT (ej,a)

exp
(∑mj,a

c=1 θσ(c)

)
∏mj,a
u=1

(∑rj,a
c′=u exp

(
θσ(c′)

))
︸ ︷︷ ︸

≡Aσ

(
mj,a∑

u′=1

I{σ−1(i) ≥ u′} exp(θi)∑rj,a
c′=u′ exp

(
θσ(c′)

)
)

︸ ︷︷ ︸
≡Bσ,i︸ ︷︷ ︸

≡Ei

.

Note that Aσ, Bσ,i and Ei depend on ej,a. Observe that for any 1 ≤ u′ ≤ mj,a and any σ ∈ ΛT (ej,a),

∑

i∈V (ej,a)

I{σ−1(i) ≥ u′} exp(θi) =

rj,a∑

c′=u′

exp
(
θσ(c′)

)
. (27)

Therefore,
∑
i∈V (ej,a)Bσ,i = mj,a. It follows that

∑

i∈V (ej,a)

Ei =
∑

σ∈ΛT (ej,a)

Aσ

( ∑

i∈V (ej,a)

Bσ,i

)
= mj,a

∑

σ∈ΛT (ej,a)

Aσ = mj,aPθ(ej,a) , (28)

where the last equality follows from the definition of Pθ(ej,a) (3). Also, since for any i, i′,
e(θi−θi′ ) ≤ e2b; for any i, Bσ,i ≤ e2b

∑rj,a
k=rj,a−mj,a+1(1/k) ≤ e2b(1 + log(rj,a/(rj,a − mj,a +

1))) ≤ γ−1
2 e2b, where the last inequality follows from the definition of γ2 (7) and the fact that

x ≤ √1 + log x for all x ≥ 1. Therefore, Ei ≤ γ−1
2 e2b

∑
σ∈ΛT (ej,a)

Aσ = γ−1
2 e2bPθ(ej,a). We

have ∂ logPθ(ej,a)/∂θi = (1/Pθ(ej,a))∂Pθ(ej,a)/∂θi = I{i ∈ T (ej,a)} − Ei/Pθ(ej,a). Since
|T (ej,a)| = mj,a, ‖∇L(ej,a)

RB ‖2 ≤ mj,a +
∑
i∈V (ej,a)(Ei/Pθ(ej,a))2 ≤ 2mj,aγ

−1
2 e2b, where we

used (28) and the fact that γ−1
2 ≥ 1.

C.2.1 Proof of Lemma C.3

First, we prove (22). For brevity, remove {j, a} from Pθ(ej,a). From Equations (26) and (28), and
|T (ej,a)| = mj,a, we have

∑
i∈V (ej,a)

∂
∂θi

Pθ(e) = mj,aPθ(e)−mj,aPθ(e) = 0. It follows that

∑

i∈V (ej,a)

(
∂2 logPθ(e)
∂θi′∂θi

)
=

1

Pθ(e)
∂

∂θi′

( ∑

i∈V (ej,a)

(
∂Pθ(e)
∂θi

))
− 1

(Pθ(e))2

∂Pθ(e)
∂θi′

( ∑

i∈V (ej,a)

(
∂Pθ(e)
∂θi

))
= 0 . (29)

Since by definition LRB(θ) =
∑n
j=1

∑`j
a=1 logPθ(ej,a), and Hii′(θ) = ∂2LRB(θ)

∂θi∂θi′
which is a sym-

metric matrix, Equation (29) implies that it can be expressed as given in Equation (22). It follows
that all-ones is an eigenvector of H(−θ) with the corresponding eigenvalue being zero.
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To get a lower bound on λ2(−H(θ)), we apply Weyl’s inequality

λ2(−H(θ)) ≥ λ2(E[−H(θ)])− ‖H(θ)− E[H(θ)]‖ . (30)

We will show in (33) that λ2(E[−H(θ)]) ≥ e−6bαγ1γ2γ3(np/(4(d− 1))) and in (50) that ‖H(θ)−
E[H(θ)]‖ ≤ 16e4bν

√
pmax

κmin

np
β(d−1) log d. Putting these together,

λ2(−H(θ)) ≥ e−6bαγ1γ2γ3
np

4(d− 1)
− 16e4bν

√
pmax

κmin

np

β(d− 1)
log d (31)

≥ e−6bαγ1γ2γ3

8

np

(d− 1)
, (32)

where the last inequality follows from the assumption on nκmin given in (9).

To prove a lower bound on λ2(E[−H(θ)]), we claim that for θ ∈ Ωb,

E
[
−H(θ)

]
� e−6bγ1γ2γ3

n∑

j=1

pj
4κj(κj − 1)

∑

i<i′∈Sj
(ei − ei′)(ei − ei′)> (33)

=
e−6bγ1γ2γ3

4
L ,

where L ∈ Sd is defined in (5). Using λ2(L) = npα/(d − 1) from (6), we have λ2(−H(θ)) ≥
e−6bαγ1γ2γ3(np/(4(d− 1))). To prove (33), notice that

E[−H(θ)ii′ ] = E
[ ∑

j∈[n]

∑

a∈[`j ]

I
{

(i, i′) ⊆ V (ej,a)
} ∂2 logPθ(ej,a)

∂θi∂θi′

]
, (34)

when i 6= i′. We will show that for any i 6= i′ ∈ V (ej,a),

∂2 logPθ(ej,a)

∂θi∂θi′
≥





e−2bmj,a
r2
j,a

if i, i′ ∈ B(ej,a)

− e4bm2
j,a

(rj,a−mj,a+1)2 otherwise .
(35)

We need to bound the probability of two items appearing in the bottom-set B(ej,a) and in the top-set
T (ej,a).
Lemma C.4. Consider a ranking σ over a set S ⊆ [d] such that |S| = κ. For any two items i, i′ ∈ S,
θ ∈ Ωb, and 1 ≤ `, `1, `2 ≤ κ− 1,

Pθ
[
σ−1(i), σ−1(i′) > `

]
≥ e−4b(κ− `)(κ− `− 1)

κ(κ− 1)

(
1− `

κ

)2e2b−2

, (36)

Pθ
[
σ−1(i) = `

]
≤ e6b

κ− ` , (37)

Pθ
[
σ−1(i) = `1, σ

−1(i′) = `2
]
≤ e10b

(κ− `1 − 1)(κ− `2)
. (38)

where the probability Pθ is with respect to the sampled ranking resulting from PL weights θ ∈ Ωb.

Substituting ` = κj − rj,a +mj,a in (36), and `, `1, `2 ≤ κj − rj,a +mj,a in (37) and (38), we have,

Pθ
[
(i, i′) ⊆ B(ej,a)

]
≥ e−4b(rj,a −mj,a)2

4κj(κj − 1)

(rj,a −mj,a

κj

)2e2b−2

, (39)

Pθ
[
i ∈ T (ej,a), i′ ∈ B(ej,a)

]
≤ mj,a max

`∈[κj−rj,a+mj,a]
P(σ−1(i) = `)

≤ e6bmj,a

rj,a −mj,a
, (40)

Pθ
[
(i, i′) ⊆ T (ej,a)

]
≤ m2

j,a max
`1,`2∈[κj−rj,a+mj,a]

P(σ−1(i) = `1, σ
−1(i′) = `2)

≤
e10bm2

j,a

2 (rj,a −mj,a − 1)(rj,a −mj,a)
, (41)
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where (39) uses rj,a−mj,a−1 ≥ (rj,a−mj,a)/4, (40) uses Pθ[i ∈ T (ej,a), i′ ∈ B(ej,a)] ≤ Pθ[i ∈
T (ej,a)], and (40)-(41) uses counting on the possible choices. The bound in (41) is smaller than the
one in (40) as per our assumption that γ3 > 0.

Using Equations (34)-(35) and (39)-(41), and the definitions of γ1, γ2, γ3 from Section 3, we get
E[−H(θ)ii′ ] ≥
∑

j∈[n]

∑

a∈[`j ]

{(rj,a −mj,a

κj

)2e2b−2

︸ ︷︷ ︸
≥γ1

(rj,a −mj,a

rj,a

)2

︸ ︷︷ ︸
≥γ2

e−6bmj,a

4κj(κj − 1)
− e6bmj,a

rj,a −mj,a

e4bm2
j,a

(rj,a −mj,a + 1)2

}

≥
∑

j,a

γ1γ2e
−6bmj,a

4κj(κj − 1)

(
1 − 4e16b

γ1

m2
j,ar

2
j,aκ

2
j

(rj,a −mj,a)5

)

︸ ︷︷ ︸
≥γ3

. (42)

This combined with (22) proves the desired claim (33). Further, in Appendix E, we show that
if mj,a ≤ 3 for all {j, a} then ∂2 log Pθ(ej,a)

∂θi∂θi′
is non-negative even for i 6= i′ ∈ T (ej,a), and i ∈

T (ej,a), i′ ∈ B(ej,a) as opposed to a negative lower-bound given in (35). Therefore, bound on
E[−H(θ)] in (33) can be tightened by a factor of γ3.

To prove claim (35), define the following for σ ∈ ΛT (ej,a),

Aσ ≡
exp

(∑mj,a
c=1 θσ(c)

)
∏mj,a
u=1

(∑rj,a
c′=u exp

(
θσ(c′)

)) , Bσ ≡
mj,a∑

u′=1

1∑rj,a
c′=u′ exp

(
θσ(c′)

) ,

Bσ,i ≡
mj,a∑

u′=1

I{σ−1(i) ≥ u′}∑rj,a
c′=u′ exp

(
θσ(c′)

) , Cσ ≡
mj,a∑

u′=1

1
(∑rj,a

c′=u′ exp
(
θσ(c′)

))2 ,

Cσ,i ≡
mj,a∑

u′=1

I{σ−1(i) ≥ u′}
(∑rj,a

c′=u′ exp
(
θσ(c′)

))2 , Cσ,i,i′ ≡
mj,a∑

u′=1

I{σ−1(i), σ−1(i′) ≥ u′}
(∑rj,a

c′=u′ exp
(
θσ(c′)

))2 . (43)

First, a few observations about the expression of Aσ. For any σ ∈ ΛT (ej,a) and any i ∈ V (ej,a),
θi is in the numerator if and only if i ∈ T (ej,a), since in all the rankings that are consistent with
the observation ej,a, T (ej,a) items are ranked in top mj,a positions. For any σ ∈ ΛT (ej,a) and any
i ∈ B(ej,a), θi is in all the product terms

∏mj,a
u=1 (·) of the denominator, since in all the consistent

rankings these items are ranked below mj,a position. For any i ∈ T (ej,a), θi appears in product term
corresponding to index u if and only if item i is ranked at position u or lower than u in the ranking
σ ∈ ΛT (ej,a). Now, observe that Bσ is defined such that the partial derivative of Aσ with respect to
any i ∈ B(ej,a) is −AσBσeθi , and Bσ,i is defined such that the partial derivative of Aσ with respect
to any i ∈ T (ej,a) is Aσ − AσBσeθi . Further, observe that −Cσeθi is the partial derivative of Bσ
with respect to i ∈ B(ej,a), −Cσ,ieθi is the partial derivative of Bσ,i with respect to i ∈ T (ej,a),
and −Cσ,ieθi′ is the partial derivative of Bσ,i with respect to i′ ∈ B(ej,a). −Cσ,i,i′eθi′ is the partial
derivative of Bσ,i with respect to i′ 6= i ∈ T (ej,a).

For ease of notation, we omit subscript (j, a) whenever it is clear from the context. Also, we use∑
σ to denote

∑
σ∈ΛT (ej,a)

. With the above defined notations, from (3), we have, Pθ(e) =
∑
σ Aσ.

With the above given observations for the notations in (43), first partial derivative of Pθ(e) can be
expressed as following:

∂Pθ(e)
∂θi

=

{∑
σ

(
Aσ −AσBσ,ieθi

)
if i ∈ T (ej,a)∑

σ

(
−AσBσeθi

)
if i ∈ B(ej,a) .

(44)

It follows that for i 6= i′ ∈ V (ej,a),
∂2Pθ(e)
∂θi∂θi′

=





∑
σ

(
(Aσ(Bσ)2 +AσCσ)e(θi+θi′ )

)
if i, i′ ∈ B(ej,a)∑

σ

(
Aσ −AσBσ,i′eθi′ + (AσBσ,iBσ,i′ +AσCσ,i,i′)e

(θi+θi′ ) −AσBσ,ieθi
)

if i, i′ ∈ T (ej,a)∑
σ

(
(AσBσBσ,i +AσCσ,i)e

(θi+θi′ ) −AσBσeθi′
)

otherwise .
(45)
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Using ∂2 log Pθ(e)
∂θi∂θi′

= 1
Pθ(e)

∂2Pθ(e)
∂θi∂θi′

− 1
(Pθ(e))2

∂Pθ(e)
∂θi

∂Pθ(e)
∂θi′

, with above derived first and second deriva-
tives, and after following some algebra, we have

(Pθ(e))2

e(θi+θi′ )

∂2 logPθ(e)
∂θi∂θi′

=





(
∑
σ Aσ)(

∑
σ Aσ(Bσ)2)− (

∑
σ AσBσ)2 + (

∑
σ Aσ)(

∑
σ AσCσ) if i, i′ ∈ B(ej,a)

(
∑
σ Aσ)(

∑
σ AσBσ,iBσ,i′ +AσCσ,i,i′)− (

∑
σ AσBσ,i)(

∑
σ AσBσ,i′) if i, i′ ∈ T (ej,a)

(
∑
σ Aσ)(

∑
σ AσBσBσ,i +AσCσ,i)− (

∑
σ AσBσ)(

∑
σ AσBσ,i) otherwise .

(46)

Observe that from Cauchy-Schwartz inequality (
∑
σ Aσ)(

∑
σ Aσ(Bσ)2) − (

∑
σ AσBσ)2 ≥ 0.

Also, we have e(θi+θi′ )Cσ ≥ e−2b(m/r2) and eθiBσ,i ≤ eθiBσ ≤ e2b(m/(r −m + 1)) for any
i ∈ V (ej,a). This proves the desired claim (35).

Next we need to upper bound deviation of −H(θ) from its expectation. From (46), we have,∣∣∂2 log Pθ(ej,a)
∂θi∂θi′

∣∣ ≤ 3e4bm2
j,a/(rj,a−mj,a+1)2 ≤ 3e4bνmj,a/(κj(κj−1)), where the last inequality

follows from the definition of ν (8). Therefore,

−H(θ) � 3e4bν
n∑

j=1

`j∑

a=1

∑

i<i′∈Sj
I{(i, i′) ⊆ V (ej,a)} mj,a

κj(κj − 1)
(ei − ei′)(ei − ei′)> (47)

� 3e4bν

n∑

j=1

∑

i<i′∈Sj

∑`j
a=1mj,a

κj(κj − 1)
(ei − ei′)(ei − ei′)> ≡

n∑

j=1

yjLj , (48)

where yj = (3e4bνpj)/(κj(κj−1)) andLj =
∑
i<i′∈Sj (ei−ei′)(ei−ei′)> = κjdiag(eSj )−eSje>Sj

for eSj =
∑
i∈Sj ei. Observe that ‖yjLj‖ ≤ (3e4bνpmax)/κmin. Moreover, L2

j � κjLj , and it
follows that

n∑

j=1

y2
jL

2
j � 9e8bν2

n∑

j=1

p2
j

κ2
j (κj − 1)2

κjLj �
9e8bν2pmax

κmin
L , (49)

where we used the fact that L = (pj/(κj(κj − 1)))
∑n
j=1 Lj , for L defined in (5). Using λd(L) =

np/(β(d − 1)) from (6), it follows that ‖∑n
j=1 Eθ[y2

jY
2
j ]‖ ≤ 9e8bν2pmax

κmin

np
β(d−1) . By the matrix

Bernstien inequality, with probability at least 1− d−3,

‖H(θ)− E[H(θ)]‖ ≤ 12e4bν

√
pmax

κmin

np

β(d− 1)
log d+

8e4bνpmax log d

κmin

≤ 16e4bν

√
pmax

κmin

np

β(d− 1)
log d , (50)

where the last inequality follows from the assumption on nκmin given in (9).

C.3 Proof of Lemma C.4

Claim (36): Since providing a lower bound on Pθ
[
σ−1(i), σ−1(i′) > `

]
for arbitrary θ is challenging,

we construct a new set of parameters {θ̃j}j∈[d] from the original θ. These new parameters are
constructed such that it is both easy to compute the probability and also provides a lower bound on
the original distribution. Define α̃i,i′,`,θ as

α̃i,i′,`,θ ≡ max
`′∈[`]

max
Ω⊆S\{i,i′}
:|Ω|=κ−`′

{
exp(θi) + exp(θi′)(∑

j∈Ω exp(θj)
)
/|Ω|

}
, (51)

and αi,i′,`,θ = dα̃i,i′,`,θe. For ease of notation we remove the subscript from α and α̃. We denote the
sum of the weights by W ≡∑j∈S exp(θj). We define a new set of parameters {θ̃j}j∈S :

θ̃j =

{
log(α̃/2) for j = i or i′ ,

0 otherwise . (52)
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Similarly define W̃ ≡∑j∈S exp(θ̃j) = κ− 2 + α̃. We have,

Pθ
[
σ−1(i), σ−1(i′) > `

]

=
∑

j1∈S
j1 6=i,i′

(
exp(θj1)

W

∑

j2∈S
j2 6=i,i′,j1

(
exp(θj2)

W − exp(θj1)
· · ·
( ∑

j`∈S
j` 6=i,i′,
j1,··· ,j`−1

exp(θj`)

W −∑j`−1

k=j1
exp(θk)

)
· · ·
))

=
∑

j1∈S
j1 6=i,i′

(
exp(θj1)

W − exp(θj1)
· · ·

∑

j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θj`−1

)

W −∑j`−1

k=j1
exp(θk)

∑

j`∈S
j` 6=i,i′,
j1,··· ,j`−1

(
exp(θj`)

W

)
· · ·
))

(53)

Consider the second-last summation term in the above equation and let Ω` = S \ {i, i′, j1, . . . , j`−2}.
Observe that, |Ω`| = κ− ` and from equation (51), exp(θi)+exp(θi′ )∑

j∈Ω`
exp(θj)

≤ α̃
κ−` . We have,

∑

j`−1∈Ω`

exp(θj`−1
)

W −∑j`−1

k=j1
exp(θk)

=
∑

j`−1∈Ω`

exp(θj`−1
)

W −∑j`−2

k=j1
exp(θk)− exp(θj`−1

)

≥
∑
j`−1∈Ω`

exp(θj`−1
)

W −∑j`−2

k=j1
exp(θk)−

(∑
j`−1∈Ω`

exp(θj`−1
)
)
/|Ω`|

(54)

=

∑
j`−1∈Ω`

exp(θj`−1
)

exp(θi) + exp(θi′) +
∑
j`−1∈Ω`

exp(θj`−1
)−

(∑
j`−1∈Ω`

exp(θj`−1
)
)
/|Ω`|

=

(
exp(θi) + exp(θi′)∑
j`−1∈Ω`

exp(θj`−1
)

+ 1− 1

κ− `

)−1

≥
(

α̃

κ− ` + 1− 1

κ− `

)−1

(55)

=
κ− `

α̃+ κ− `− 1
=

∑

j`−1∈Ω`

exp(θ̃j`−1
)

W̃ −∑j`−1

k=j1
exp(θ̃k)

, (56)

where (54) follows from the Jensen’s inequality and the fact that for any c > 0, 0 < x < c, x
c−x is

convex in x. Equation (55) follows from the definition of α̃i,i′,`,θ, (51), and the fact that |Ω`| = κ− `.
Equation (56) uses the definition of {θ̃j}j∈S .

Consider {Ω˜̀}2≤˜̀≤`−1, |Ω˜̀| = κ − ˜̀, corresponding to the subsequent summation terms in (53).

Observe that exp(θi)+exp(θi′ )∑
j∈Ω ˜̀

exp(θj)
≤ α/|Ω˜̀|. Therefore, each summation term in equation (53) can be
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lower bounded by the corresponding term where {θj}j∈S is replaced by {θ̃j}j∈S . Hence, we have

Pθ
[
σ−1(i), σ−1(i′) > `

]

≥
∑

j1∈S
j1 6=i,i′

(
exp(θ̃j1)

W̃ − exp(θ̃j1)
· · ·

∑

j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θ̃j`−1

)

W̃ −∑j`−1

k=j1
exp(θ̃k)

∑

j`∈S
j` 6=i,i′,
j1,··· ,j`−1

(
exp(θj`)

W

)
· · ·
))

≥ e−4b
∑

j1∈S
j1 6=i,i′

(
exp(θ̃j1)

W̃ − exp(θ̃j1)
· · ·

∑

j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θ̃j`−1

)

W̃ −∑j`−1

k=j1
exp(θ̃k)

∑

j`∈S
j` 6=i,i′,
j1,··· ,j`−1

(
exp(θ̃j`)

W̃

)
· · ·
))

=
(
e−4b

)
Pθ̃
[
σ−1(i), σ−1(i′) > `

]
. (57)

The second inequality uses exp(θi)
W ≥ e−2b/κ and exp(θ̃i)

W̃
≤ e2b/κ. Observe that exp(θ̃j) = 1 for all

j 6= i, i′ and exp(θ̃i) + exp(θ̃i′) = α̃ ≤ dα̃e = α ≥ 1. Therefore, we have

Pθ̃
[
σ−1(i), σ−1(i′) > `

]
=

(
κ− 2

`

)
` !

(κ− 2 + α̃)(κ− 2 + α̃− 1) · · · (κ− 2 + α̃− (`− 1))

≥ (κ− 2)!

(κ− `− 2)!

1

(κ+ α− 2)(κ+ α− 3) · · · (κ+ α− (`+ 1))

≥ (κ− `+ α− 2)(κ− `+ α− 3) · · · (κ− `− 1)

(κ+ α− 2)(κ+ α− 3) · · · (κ− 1)

≥ (κ− `)(κ− `− 1)

κ(κ− 1)

(
1− `

κ+ 1

)α−2

. (58)

Claim (36) follows by combining Equations (57) and (58) and using the fact that α ≤ 2e2b.
Claim (37): Define,

α̃`,θ ≡ min
i∈S

min
`′∈[`]

min
Ω∈S\{i}

:|Ω|=κ−`′+1

{
exp(θi)(∑

j∈Ω exp(θj)
)
/|Ω|

}
. (59)

Also, define α`,θ ≡ bα̃`,θc. Note that α`,θ ≥ 0 and α̃`,θ ≤ e2b. We denote the sum of the weights
by W ≡∑j∈S exp(θj). Analogous to the proof of claim (36), we define the new set of parameters

{θ̃j}j∈S :

θ̃j =

{
log(α̃`,θ) for j = i ,

0 otherwise . (60)

Similarly define W̃ ≡∑j∈S exp(θ̃j) = κ− 1 + α̃`,θ. Using the techniques similar to the ones used
in proof of claim (36), we have,

Pθ
[
σ−1(i) = `

]
≤ e4bPθ̃

[
σ−1(i) = `

]
. (61)

Observe that exp(θ̃j) = 1 for all j 6= i and exp(θ̃i) = α̃`,θ ≥ bα̃`,θc = α`,θ ≥ 0. Therefore, we
have

Pθ̃
[
σ−1(i) = `

]
=

(
κ− 1

`− 1

)
α̃`,θ(`− 1)!

(κ− 1 + α̃`,θ)(κ− 2 + α̃`,θ) · · · (κ− `+ α̃`,θ)

≤ (κ− 1)!

(κ− `)!
e2b

(κ− 1 + α`,θ)(κ− 2 + α`,θ) · · · (κ− `+ α`,θ)

≤ e2b

κ

(
1− `

κ+ α`,θ

)α`,θ−1

≤ e2b

κ− ` . (62)
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Claim 37 follows by combining Equations (61) and (62).
Claim (38): Again, we construct a new set of parameters {θ̃j}j∈[d] from the original θ using α̃`,θ
defined in (59):

θ̃j =

{
log(α̃`,θ) for j ∈ {i, i′} ,

0 otherwise . (63)

Similarly define W̃ ≡ ∑j∈S exp(θ̃j) = κ − 2 + 2α̃`,θ. Using the techniques similar to the ones
used in proof of claim (36), we have,

Pθ
[
σ−1(i) = `1, σ

−1(i′) = `2

]
≤ e8bPθ̃

[
σ−1(i) = `1, σ

−1(i′) = `2

]
(64)

Observe that exp(θ̃j) = 1 for all j 6= i, i′ and exp(θ̃i) = exp(θ̃i′) = α̃`,θ ≥ bα̃c`,θ = α`,θ ≥ 0.
Therefore, we have

= Pθ̃
[
σ−1(i) = `1, σ

−1(i′) = `2

]

=

( (
κ−2
`2−2

)
α̃2
`,θ(`2 − 2)!

(κ− 2 + 2α̃`,θ)(κ− 1 + 2α̃`,θ) · · · (κ− 2 + 2α̃`,θ − (`1 − 1))

1

(κ− 2 + α̃`,θ − (`1 − 1)) · · · (κ− 2 + α̃`,θ − (`2 − 2))

)

≤ (κ− 2)!

(κ− `2)!

e4b

(κ− 2)(κ− 1) · · · (κ− `1 − 1)(κ− `1 − 1) · · · (κ− `2)

≤ e4b

(κ− `1 − 1)(κ− `2)
. (65)

Claim 38 follows by combining Equations (64) and (65).

D Proof of Theorem 4.2

Let H(θ) ∈ Sd be Hessian matrix such that Hii′(θ) = ∂2LRB(θ)
∂θi∂θi′

. The Fisher information matrix
is defined as I(θ) = −Eθ[H(θ)]. From lemma 2.1, LRB(θ) is concave. This implies that I(θ) is
positive-semidefinite and from (22) its smallest eigenvalue is zero with all-ones being the correspond-
ing eigenvector. Fix any unbiased estimator θ̂ of θ ∈ Ωb. Since, θ̂ ∈ U , θ̂ − θ is orthogonal to 1. The
Cramer-Rao lower bound then implies that E[‖θ̂ − θ∗‖2] ≥∑d

i=2
1

λi(I(θ))
. Taking supremum over

both sides gives

sup
θ

E[‖θ̂ − θ∗‖2] ≥ sup
θ

d∑

i=2

1

λi(I(θ))
≥

d∑

i=2

1

λi(I(0))
. (66)

In the following, we will show that

I(0) = −Eθ[H(0)] �
n∑

j=1

`j∑

a=1

mj,a − ηj,a
κj(κj − 1)

∑

i<i′∈Sj
(ei − ei′)(ei − ei′)> (67)

� max
j,a

{
mj,a − ηj,a

}
L . (68)

Using Jensen’s inequality, we have
∑d
i=2

1
λi(I(0)) ≥

(d−1)2

∑d
i=2 λi(I(0))

= (d−1)2

Tr(I(0)) . From (67), we

have Tr(I(0)) ≤ ∑j,a(mj,a − ηj,a). From (68), we have
∑d
i=2 1/λi(I(0)) ≥ (1/max{mj,a −

ηj,a})
∑d
i=1 1/λi(L) . This proves the desired claim.

Now we are left to show claim (67). Consider a rank-breaking edge ej,a. Using notations defined in
lemma C.3, in particular Equation (43), and omitting subscript {j, a} whenever it is clear from the
context, we have, for any i ∈ V (ej,a),

∂2Pθ(ej,a)

∂2θi
=

{∑
σ

(
−AσBσeθi +Aσ(Bσ)2e2θi +AσCσe

θi
)

if i ∈ B(ej,a)∑
σ

(
Aσ − 3AσBσ,ie

θi +AσCσ,i)e
2θi +Aσ(Bσ,i)

2e2θi
)

if i ∈ T (ej,a) ,
(69)
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and using (44), we have

∂2 logPθ(ej,a)

∂2θi

∣∣∣
θ=0

=

{(
(Cσ −Bσ)

)
θ=0

if i ∈ B(ej,a)(
1

mj,a!

∑
σ

(
Cσ,i −Bσ,i + (Bσ,i)

2
)
−
(∑

σ
Bσ,i
mj,a!

)2)
θ=0

if i ∈ T (ej,a) ,
(70)

where σ ∈ ΛT (ej,a) and the subscript θ = 0 indicates the the respective quantities are evaluated
at θ = 0. From the definitions given in (43), for θ = 0, we have Bσ − Cσ =

∑m−1
u=0

(r−u−1)
(r−u)2

and,
∑
σ(Bσ,i − Cσ,i)/(m!) = 1

m

∑m−1
u=0

(m−u)(r−u−1)
(r−u)2 . Also,

∑
σ Bσ,i/(m!) = 1

m

∑m−1
u=0

m−u
r−u

and
∑
σ(Bσ,i)

2/(m!) = 1
m

∑m−1
u=0

(∑u
u′=0

1
r−u′

)2
. Combining all these and, using Pθ=0[i ∈

T (ej,a)] = m/κ and Pθ=0[i ∈ B(ej,a)] = (r −m)/κ, and after following some algebra, we have
for any i ∈ Sj ,

−E
[
∂2 logPθ(ej,a)

∂2θi

∣∣∣
θ=0

]

=
1

κ

(
m−

m−1∑

u=0

1

r − u −
1

m

m−1∑

u=0

u(m− u)

(r − u)2
− 1

m

m−2∑

u=0

2u

r − u

( m−1∑

u′>u

m− u′
r − u′

))

=
mj,a − ηj,a

κj
, (71)

where ηj,a is defined in (11). Since row-sums of H(θ) are zeroes, (22), and for θ = 0, all the items
are exchangeable, we have for any i 6= i′ ∈ Sj ,

E
[
∂2 logPθ(ej,a)

∂θi∂θi′

∣∣∣
θ=0

]
=

mj,a − ηj,a
κj(κj − 1)

, (72)

The claim (67) follows from the expression of H(θ), Equation (22).

To verify (71), observe that (r −m)(Bσ − Cσ) +m(
∑
σ Bσ,i/(m!)) = m−∑m−1

u=0
1

r−u . And,

1

m

(m−1∑

u=0

m− u
r − u

)2

−
m−1∑

u=0

( u∑

u′=0

1

r − u′
)2

=
m−1∑

u=0

(
(m− u)2

m(r − u)2
− m− u

(r − u)2

)
+

∑

0≤u<u′≤m−1

(
2(m− u)(m− u′)
m(r − u)(r − u′) −

2(m− u′)
(r − u)(r − u′)

)

=

m−1∑

u=0

−u(m− u)

m(r − u)2
+

∑

0≤u<u′≤m−1

−2u(m− u′)
m(r − u)(r − u′) .

E Tightening of Lemma C.3

Recall that Pθ(ej,a) is same as probability of Pθ[T (ej,a) � B(ej,a)] that is the probability that an
agent ranks T (ej,a) items above B(ej,a) items when provided with a set comprising V (ej,a) items.
As earlier, for brevity of notations, we omit subscript {j, a} whenever it is clear from the context.
For m = 1 or 2, it is easy to check that all off-diagonal elements in hessian matrix of logPθ(e) are
non-negative. However, since number of terms in summation in Pθ(e) grows as m!, for m ≥ 3 the
straight-forward approach becomes too complex. Below, we derive expressions for cross-derivatives
in hessian, for general m, using alternate definition (sorting of independent exponential r.v.’s in
increasing order) of PL model, where the number of terms grow only as 2m. However, we are unable
to analytically prove that the cross-derivatives are non-negative for m > 2. Feeding these expressions
in MATLAB and using symbolic computation, for m = 3, we can simplify these expressions and it
turns out that they are sum of only positive numbers. For m = 4, with limited computational power it
becomes intractable. We believe that it should hold for any value of m < r. Using (35), we need
to check only for cross-derivatives for the case when i 6= i′ ∈ T (ej,a) or i ∈ T (ej,a), i′ ∈ B(ej,a).
Since, minimum of exponential random variables is exponential, we can assume that |B(ej,a)| = 1
that is r = m+ 1. Define λi ≡ eθi . Without loss of generality, assume T (ej,a) = {2, · · · ,m+ 1}
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and B(ej,a) = {1}. Define Cx =
∏m+1
i=3 (1− e−λix). Then, using the alternate definition of the PL

model, we have, Pθ(e) =
∫∞

0
Cx(1− e−λ2x)λ1e

−λ1xdx. Following some algebra, ∂
2 log Pθ(e)
∂θ1∂θ2

≥ 0
is equivalent to A1 ≥ 0, where A1 ≡
(∫

Cx
(
xe−λ1x − xe−λx

)
dx

)(∫
Cxxe

−λxdx

)
−
(∫

Cx(eλ1x − e−λx)dx

)(∫
Cxx

2e−λxdx

)
,

where all integrals are from 0 to ∞ and, λ ≡ λ1 + λ2. Consider A1 as a function of λ1.
Since A1(λ1) = 0 for λ1 = λ, showing ∂A1/∂λ1 ≤ 0 for 0 ≤ λ1 ≤ λ would suf-
fice. Following some algebra, and using λ1 ≤ λ, ∂A1/∂λ1 ≤ 0 is equivalent to A2(λ1) ≡( ∫∞

0
Cxxe

−λ1x
)
/
( ∫∞

0
Cxx

2e−λ1x
)

being monotonically non-decreasing in λ1. To further simplify
the condition, define f (0)(y) = 1/y2, g(0)(y) = 1/y3 and, f (1)(y) = f (0)(y) − f (0)(y + λ3),
and recursively f (m−1)(y) = f (m−2)(y)− f (m−2)(y + λm+1). Similarly define g(0), · · · , g(m−1).
Using these recursively defined functions,

2A2(λ1) =
f (m−1)(λ1)

g(m−1)(λ1)
,

for m = 3, 2A2(λ1) =
λ−2

1 − (λ1 + λ3)−2 − (λ1 + λ4)−2 + (λ1 + λ3 + λ4)−2

λ−3
1 − (λ1 + λ3)−3 − (λ1 + λ4)−3 + (λ1 + λ3 + λ4)−3

.

Therefore, we need to show that A2(λ1) is monotonically non-decreasing in λ1 ≥ 0 for any non-
negative λ3, · · · , λm, and that would suffice to prove that the cross-derivatives arising from i ∈
T (ej,a), i′ ∈ B(ej,a) are non-negative.

For cross-derivatives arising from i 6= i′ ∈ T (ej,a), define Bx =
∏m+1
i=4 (1 − eλix)e−λ1x.

∂2 log Pθ(e)
∂θ2∂θ3

≥ 0 is equivalent to A3 ≥ 0, where A3 ≡
(∫

Bx(1− e−λ2x)(1− e−λ3x)dx

)(∫
Bxx

2e−(λ2+λ3)xdx

)

−
(∫

Bx(1− e−λ2x)xe−λ3xdx

)(∫
Bx(1− e−λ3x)xe−λ2xdx

)
,

where all integrals are from 0 to∞. For m = 3, using MATLAB we can show that both types of
cross-derivatives are non-negative.
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