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Our theory proof consists of two parts. Appendix A provides preliminary results for lasso, when
strong conditions on the feature matrix are imposed. In Appendix B, we adapt these results to
DECO and show that the decorrelated data will automatically satisfy the conditions on the feature
matrix even when the original features are highly correlated.

Appendix A: Review on the lasso theory

Define Q = {1, 2, · · · , p} and let Ac be Q \ A for any set A ⊆ Q. The following theorem pro-
vides deterministic conditions for lasso on sup-norm convergence, `2-norm convergence and sign
consistency.

Theorem 0. Denote the solution to the lasso problem as

β̂ = arg min
β∈Rp

1

n

∥∥Y −Xβ∥∥2
2

+ 2λn‖β‖1.

Define W = Y −Xβ∗, where β∗ is the true value of β. For any arbitrary subset J ⊆ Q (J could be
∅), if X satisfies that

1. M1 ≤ |xTi xi/n| ≤M2, for some 0 < M1 < M2 and all i,

2. maxi 6=j |xTi xj/n| ≤ min

{
1
γ1s
, γ2λ

q
n

}
, for γ1 >

32
M1
, γ2 ≥ 0, q ≥ 0 and s = |J |,

3. ‖ 1nX
TW‖∞ ≤ λn/2,

then any solution to the lasso problem satisfies that

‖β̂ − β∗‖∞ ≤
3M1γ1 + 51

2M1(M1γ1 − 7)
λn +

4M1γ1γ2 + 36γ2
M1(M1γ1 − 7)

‖β∗Jc‖1λqn +
8
√

3γ2
M1
√
M1γ1 − 7

‖β∗Jc‖
1
2
1 λ

1+q
2

n ,

where β∗Jc is the sub-vector of β∗ consisting of coordinates in Jc and

‖β̂ − β∗‖22 ≤
18γ21sλ

2
n

(M1γ1 − 32)2
+ 6λn‖β∗Jc‖1 + 32γ2λ

q
n‖β∗Jc‖21.

Furthermore, if β∗Jc = 0 and mink∈J |β∗k| ≥ 2
M1
λn, then the solution is unique and sign consistent,

that is,

sign(β̂k) = sign(β∗k), ∀k ∈ J and β̂k = 0, ∀k ∈ Jc.
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Theorem 0 partly extends the results in Bickel et al. (2009) and Lounici (2008). The proof is
provided in Appendix A. Theorem 0 can lead to some useful results. In particular, we investigate
two types of models when β∗ is either exactly sparse or in an lr-ball defined as B(r,R) = {v ∈
Rp :

∑p
k=1 |vk|

r ≤ R}. For the exactly sparse model, we have the following result.

Corollary 1 (s-sparse). Assume that β∗ ∈ Rp is an s-sparse vector with J containing all non-zero
indices. If Condition 1 and 3 in Theorem 0 hold and maxi 6=j |xTi xj/n| ≤ 1

γ1s
for some γ1 > 32/M1,

then we have

‖β̂ − β∗‖∞ ≤
3M1γ1 + 51

2M1(M1γ1 − 7)
λn and ‖β̂ − β∗‖22 ≤

18γ21sλ
2
n

(M1γ1 − 32)2
.

Further, if mink∈J |βk| ≥ 2
M1
λn, then β̂ is sign consistent.

The sup-norm convergence in Corollary 1 resembles the results in Lounici (2008). For the lr-ball
we have

Corollary 2 (lr− ball). Assume β∗ ∈ B(r,R). If condition 1 and 3 in Theorem 0 hold and

maxi 6=j |xTi xj/n| ≤
λrn
γ1R

for some γ1 > 32/M1, then we have

‖β̂ − β∗‖∞ ≤
(

3M1γ1 + 51

2M1(M1γ1 − 7)
+

4M1γ1 + 36

M1(M1γ1 − 7)

)
λn +

8
√

3

M1
√
M1γ1 − 7

λn,

‖β̂ − β∗‖22 ≤
(

18γ21
(M1γ1 − 32)2

+ 38

)
Rλ2−rn .

A.1 Proof of the `2 and `∞ convergence

We first need the following lemmas

Lemma 0. Assuming the Condition 3 in Theorem 0, and defining ∆ = β̂ − β∗, where β̂ is the
solution to the lasso problem and β∗ is the true value, then for any set J ⊆ Q (J could be ∅), where
Q = {1, 2, · · · , p}, we have

‖∆Jc‖1 ≤ 3‖∆J‖1 + 4‖β∗Jc‖1, (1)

where ∆J denotes a sub-vector of ∆ containing coordinates whose indexes belong to J and ‖∆∅‖1 =
0.

Proof of Lemma 0. We follow the proof in Bickel et al. (2009) and Lounici (2008). Define Ŝ(β̂) =
{k : β̂k 6= 0}. The sufficient and necessary condition (also known as the KKT conditions) for β̂ to
minimize the lasso problem is that

1

n
(xTi Y − xTi Xβ̂) = λnsign(β̂i), for i ∈ Ŝ(β̂)

1

n
|xTi Y − xTi Xβ̂| ≤ λn, for i 6∈ Ŝ(β̂).

Therefore, regardless of Ŝ(β̂), the minimizer β̂ always satisfies that

1

n
‖XTY −XTXβ̂‖∞ ≤ λn.

Noticing that Y = Xβ∗ +W and 1
n‖X

TW‖∞ ≤ λn/2, we have

1

n

∥∥XTX(β∗ − β̂)
∥∥
∞ ≤

3

2
λn. (2)
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At the same time, using the optimality of lasso we have

1

n
‖Y −Xβ̂‖22 + 2λn‖β̂‖1 ≤

1

n
‖Y −Xβ∗‖22 + 2λn‖β∗‖1 =

1

n
‖W‖22 + 2λn‖β∗‖1,

which implies

2λn‖β̂‖1 ≤ 2λn‖β∗‖1 +
1

n
‖W‖22 −

1

n
‖Y −Xβ̂‖22

= 2λn‖β∗‖1 +
1

n
‖W‖22 −

1

n
‖Xβ∗ −Xβ̂ +W‖22

≤ 2λn‖β∗‖1 +
∣∣2(β̂ − β∗)

XTW

n

∣∣.
Using ‖ 1nX

TW‖∞ ≤ λn/2, we know that

2λn‖β̂‖1 ≤ 2λn‖β∗‖1 + λn‖β̂ − β∗‖1,

i.e., we have

2‖β̂‖1 ≤ 2‖β∗‖1 + ‖β̂ − β∗‖1 = 2‖β∗‖1 + ‖∆‖1, (3)

Let J be any arbitrary subset of Q, we have

2‖∆Jc‖1 = 2‖β̂Jc − β∗Jc‖1 ≤ 2‖β̂Jc‖1 + 2‖β∗Jc‖1. (4)

Now if J = ∅, using (3) and (4) we have

2‖∆‖1 = 2‖∆Jc‖1 ≤ 2‖β̂Jc‖1 + 2‖β∗Jc‖1 = 2‖β̂‖1 + 2‖β∗‖1 ≤ 4‖β∗‖1 + ‖∆‖1.

This gives that

‖∆Jc‖1 = ‖∆‖1 ≤ 4‖β∗‖1 = 3‖∆J‖1 + 4‖β∗Jc‖1.

For J 6= ∅, because `1 norm is decomposable, i.e., ‖β̂‖1 = ‖β̂J‖1 + ‖β̂Jc‖1, using (3), we have

2‖β̂Jc‖1 + 2‖β∗Jc‖1 = 2‖β̂‖1 − 2‖β̂J‖1 + 2‖β∗Jc‖1
≤ 2‖β∗‖1 + ‖∆‖1 − 2‖β̂J‖1 + 2‖β∗Jc‖1
= 2‖β∗J‖1 + 2‖β∗Jc‖1 + ‖∆J‖1 + ‖∆Jc‖1 − 2‖β̂J‖1 + 2‖β∗Jc‖1
= 2(‖β∗J‖1 − ‖β̂J‖1) + ‖∆J‖1 + ‖∆Jc‖1 + 4‖β∗Jc‖1
≤ 3‖∆J‖1 + ‖∆Jc‖1 + 4‖β∗Jc‖1,

where the second inequality is due to (3). Thus, combining the above result with (4) we have
proved that

‖∆Jc‖1 ≤ 3‖∆J‖1 + 4‖β∗Jc‖1.

Lemma 1. Assume the Condition 1 and 2 in Theorem 0. For any J ⊆ {1, 2, · · · , p} (J could be
∅) and |J | ≤ s and any v ∈ Rp such that ‖vJc‖1 ≤ c0‖vJ‖1 + c1‖β∗Jc‖1, we have

1

n
‖Xv‖22 ≥

(
M1 −

1 + 2c0
γ1

)
‖vJ‖22 − 2c1γ2

√
sλqn‖β∗Jc‖1‖vJ‖2, (5)

3



where vJ denotes a sub-vector of v containing coordinates whose indexes belong to J .

Proof of Lemma 1. When J = ∅, the result is straightforward and thus omitted. Assume |J | > 0.
For convenience, we define ṽ to be the vector that extends vJ to p-dimensional by adding zero
coodinates, i.e.,

ṽi = vi if i ∈ J
ṽi = 0 if i 6∈ J

We use v
(i)
J to denote the ith coordinate of vJ . For any J ⊆ {1, 2, · · · , p} with |J | = s and any

v ∈ Rp such that ‖vJc‖1 ≤ c0‖vJ‖1 + c1‖β∗Jc‖1, we have

‖Xṽ‖22
n‖vJ‖22

=
ṽT (XTX/n−M1Ip)ṽ

‖vJ‖22
+M1

= M1 +

∑p
i=1(x

T
i xi/n−M1)|ṽi|2 +

∑
i 6=j(x

T
i xj/n)ṽiṽj

‖vJ‖22

= M1 +

∑
i∈J(xTi xi/n−M1)|v(i)J |2 +

∑
i 6=j∈J(xTi xj/n)v

(i)
J v

(i)
J

‖vJ‖22

≥M1 −
1

γ1s

∑
i 6=j

v
(i)
J v

(j)
J

‖vJ‖22
≥M1 −

1

γ1s

‖vJ‖21
‖vJ‖22

.

Notice that ‖vJ‖21 ≤ s‖vJ‖22 because |J | ≤ s. Thus, we have

1

n
‖Xv‖22 ≥

1

n
‖Xṽ‖22 + 2ṽT (

1

n
XTX)(v − ṽ)

≥M1‖vJ‖22 −
1

γ1s
‖vJ‖21 − 2 max

i 6=j

1

n
|xTi xj |‖vJ‖1‖vJc‖1

≥
(
M1 −

1

γ1

)
‖vJ‖22 − 2c0 max

i 6=j

1

n
|xTi xj |‖vJ‖21 − 2c1 max

i 6=j

1

n
|xTi xj |‖β∗Jc‖1‖vJ‖1

≥
(
M1 −

1

γ1

)
‖vJ‖22 −

2c0
γ1s
‖vJ‖21 − 2c1γ2λ

q
nβ∗Jc‖1‖vJ‖1

≥
(
M1 −

1 + 2c0
γ1

)
‖vJ‖22 − 2c1γ2

√
sλqn‖β∗Jc‖1‖vJ‖2.

Lemma 2. Assume the Condition 1 and 2 in Theorem 0. For any J ⊆ {1, 2, · · · , p} (J could be
∅) and |J | ≤ s and any v ∈ Rp such that ‖vJc‖1 ≤ c0‖vJ‖1 + c1‖β∗Jc‖1, we have

1

n
‖Xv‖22 ≥

(
M1 −

2(1 + c0)
2

γ1

)
‖v‖22 − 2c21λ

q
n‖β∗Jc‖21. (6)

where vJ denotes a sub-vector of v containing coordinates whose indexes belong to J .
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Proof of Lemma 2. Different from Lemma 1, we have

1

n
‖Xv‖22 ≥

∑
i∈Q

1

n
‖xi‖22v2i +

∑
i 6=j∈Q

1

n
xTi xjvivj

≥M1‖v‖22 −max
i 6=j

1

n
|xTi xj |‖v‖21 = M1‖v‖22 −max

i 6=j

1

n
|xTi xj |(‖vJ‖1 + ‖vJc‖1)2

≥M1‖v‖22 −max
i 6=j

1

n
|xTi xj |

(
(1 + c0)‖vJ‖1 + c1‖β∗Jc‖1

)2

≥M1‖v‖22 − 2 max
i 6=j

1

n
|xTi xj |(1 + c0)

2‖vJ‖21 − 2 max
i 6=j

1

n
|xTi xj |c21‖β∗Jc‖21

≥M1‖v‖22 −
2(1 + c0)

2

γ1
‖vJ‖22 − 2c21γ2λ

q
n‖β∗Jc‖21

≥
(
M1 −

2(1 + c0)
2

γ1

)
‖v‖22 − 2c21γ2λ

q
n‖β∗Jc‖21

Now, We turn to the proof of `2 and `∞ convergence in Theorem 0.

(Partial) proof of Theorem 0. According to Lemma 0, 1, 2 and (1), (2) and (5), we have∥∥ 1

n
XTX∆

∥∥
∞ ≤

3

2
λn (7)

and

‖∆‖1 ≤ 4‖∆J‖1 + 4‖β∗Jc‖1 ≤ 4
√
s‖∆J‖2 + 4‖β∗Jc‖1 (8)

and

1

n
‖X∆‖22 ≥

(
M1 −

7

γ1

)
‖∆J‖22 − 8γ2

√
sλqn‖β∗Jc‖1‖∆J‖2. (9)

Using Equations (7) and (8), we have

1

n
‖X∆‖22 ≤ ‖

1

n
XTX∆‖∞‖∆‖1 ≤ 6λn

√
s‖∆J‖2 + 6λn‖β∗Jc‖1,

which combining with (9) implies that(
M1 −

7

γ1

)
‖∆J‖22 − 2(3

√
sλn + 4γ2

√
sλqn‖β∗Jc‖1)‖∆J‖2 − 6λn‖β∗Jc‖1 ≤ 0

This is a quadratic form and with some simple algebra, we get a loose solution to the quadratic
inequality

1

2

(
M1 −

7

γ1

)
‖∆J‖22 ≤

2(3
√
sλn + 4γ2

√
sλqn‖β∗Jc‖1)2

M1 − 7
γ1

+ 6λn‖β∗Jc‖1,

thus

‖∆J‖22 ≤
72γ21s

(M1γ1 − 7)2
λ2n +

192γ21γ
2
2‖β∗Jc‖21s

(M1γ1 − 7)2
λ2qn +

12γ1‖β∗Jc‖1
M1γ1 − 7

λn,
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and thus

‖∆J‖2 ≤

√
72γ21s

(M1γ1 − 7)2
λ2n +

192γ21γ
2
2‖β∗Jc‖21s

(M1γ1 − 7)2
λ2qn +

12γ1‖β∗Jc‖1
M1γ1 − 7

λn

≤ 6
√

2γ1
M1γ1 − 7

√
sλn +

8
√

3γ1γ2‖β∗Jc‖1
M1γ1 − 7

√
sλqn +

2
√

3γ
1
2
1 ‖β∗Jc‖

1
2
1√

M1γ1 − 7
λ

1
2
n (10)

Similarly, for ‖∆‖22, using (6) we have(
M1 −

32

γ1

)
‖∆‖22 − 32γ2λ

q
n‖β∗Jc‖21 ≤

1

n
‖X∆‖22 ≤ 6λn

√
s‖∆J‖2 + 6λn‖β∗Jc‖1.

Noticing that ‖∆J‖2 ≤ ‖∆‖2, we can solve the quadratic inequality and obtain that

‖∆‖22 ≤
18γ21sλ

2
n

(M1γ1 − 32)2
+ 6λn‖β∗Jc‖1 + 32γ2λ

q
n‖β∗Jc‖21. (11)

For the sup-norm, we make use of (10). Notice that

eTj
XTX

n
∆ =

xTj X

n
∆ =

‖xj‖22
n

∆j +
∑
i 6=j

xTi xj
n

∆i

which combning with (7) and (8) implies that

‖xj‖22
n
|∆j | ≤

∣∣∣∣eTj XTX

n
∆

∣∣∣∣+

∣∣∣∣∑
i 6=j

xTi xj
n

∆i

∣∣∣∣ ≤ ‖ 1

n
XTX∆‖∞ + max

i 6=k

1

n
|xTi xk|‖∆‖1

≤ 3

2
λn + 4 max

i 6=k

1

n
|xTi xk|

√
s‖∆J‖2 + 4 max

i 6=k

1

n
|xTi xk|‖β∗Jc‖1

Note that maxi 6=k
1
n |x

T
i xk| ≤ min{ 1

γ1s
, γ2λ

q
n} also implies that maxi 6=k

1
n |x

T
i xk| ≤

√
γ2λ

q
n

γ1s
. There-

fore, using result in (10) we have

M1‖∆‖∞ ≤
3

2
λn +

24
√

2

M1γ1 − 7
λn +

32
√

3γ2
M1γ1 − 7

‖β∗Jc‖1λqn +
8
√

3γ
1
2
2√

M1γ1 − 7
‖β∗Jc‖

1
2
1 λ

1+q
2

n + 4γ2‖β∗Jc‖1λqn,

which yields,

‖∆‖∞ ≤
3M1γ1 + 51

2M1(M1γ1 − 7)
λn +

4M1γ1γ2 + 36γ2
M1(M1γ1 − 7)

‖β∗Jc‖1λqn +
8
√

3γ2
M1
√
M1γ1 − 7

‖β∗Jc‖
1
2
1 λ

1+q
2

n .

This completes the proof.

A.2 Proof of the sign consistency

Our conclusion on sign consistency is stated as follows

Theorem 1. Let J be the set containing indexes of all the nonzero coefficients. Assume all the
conditions in Theorem 0. In addition, if the following conditions hold

min
k∈J
|βk| ≥

2

M1
λn,
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then the solution to the lasso is unique and satisfies the sign consistency, i.e,

sign(β̂k) = sign(β∗k), ∀k ∈ J and β̂k = 0, ∀k ∈ Jc.

Here we use the primal-dual witness (PDW) approach (Wainwright, 2009) to prove sign consis-
tency. The PDW approach works on the following two terms

Zk =
1

nλn
xTk ΠX⊥J

W +
1

n
xTkXJ

(
1

n
XT
J XJ

)−1
z̆J ,

where ΠA is the projection on to the linear space spanned by the vectors in A and

∆k = eTk

(
1

n
XT
J XJ

)−1( 1

n
XT
JW − λnsign(β∗J)

)
,

for which Wainwright (2009) proves the following lemma

Lemma 3. (Wainwright, 2009) If Zk and ∆k satisfy that

sign(β∗k + ∆k) = sign(β∗k), ∀k ∈ J and |Zk| < 1, ∀k ∈ Jc,

then the optimal solution to lasso is unique and satisfies the sign consistency, i.e.,

sign(β̂k) = sign(β∗k), ∀k ∈ J and β̂k = 0, ∀k ∈ Jc.

Therefore, we just need to verify the two conditions in Lemma 3 for Theorem 1. Before we
proceed to prove Theorem 1, we state another lemma that is needed for the proof.

Lemma 4. (Varah, 1975) Let A be a strictly diagonally dominant matrix and define δ = mink(|Akk|−∑
j 6=k |Akj |) > 0, then we have

‖A−1‖∞ ≤ δ−1,

where ‖A‖∞ is the maximum of the row sums of A.

Proof of Theorem 1. We first bound |Zk| for k ∈ Jc. Notice the first term in Zk follows that

1

nλn
xTk ΠX⊥J

W =
1

nλn
xTkW −

1

nλn
xTkXJ(XT

J XJ)−1XT
JW,

where 1
nλn

xTkW follows ∣∣∣∣ 1

nλn
xTkW

∣∣∣∣ ≤ 1

λn
‖ 1

n
XTW‖∞ ≤

1

2

and 1
nλn

xTkXJ(XT
J XJ)−1XT

JW follows∣∣∣∣ 1

nλn
xTkXJ(XT

J XJ)−1XT
JW

∣∣∣∣ ≤ 1

λn
‖ 1

n
xTkXJ‖1‖(XT

J XJ)−1XT
JW‖∞

From Condition 2 in Theorem 0, we know that

‖ 1

n
xTkXJ‖1 ≤

∑
j∈J

1

n
|xTk xj | ≤

1

γ1

7



and using Lemma 4 we have

‖(XTX/n)−1‖∞ = max
k∈Q
‖eTk (XT

J XJ/n)−1‖1 ≤ (M1 − 1/γ1)
−1.

Thus, we have

1

λn
‖(XT

J XJ)−1XT
JW‖∞ ≤

1

λn
‖(XT

J XJ/n)−1‖∞‖
1

n
XT
JW‖∞ ≤

γ1
2(M1γ1 − 1)

.

Together, the first term can be bounded as∣∣∣∣ 1

nλn
xTk ΠX⊥J

W

∣∣∣∣ ≤ 1

2
+

1

2(M1γ1 − 1)
. (12)

The second term can be bounded similarly as the first term, i.e.,∣∣∣∣ 1nxTkXJ(XT
J XJ)−1z̆J

∣∣∣∣ ≤ ‖ 1

n
xTkXJ‖1‖(XT

J XJ)−1z̆J‖∞ ≤
1

M1γ1 − 1
,

Therefore, we have

|Zk| ≤
1

2
+

3

2(M1γ1 − 1)
.

It is easy to see that when γ1 > 32/M1, we have

|Zk| < 1, ∀k ∈ Jc

and completes the proof for Zk. We now turn our attention to ∆k and check whether sign(β∗k) =
sign(β∗k + ∆k). For ∆k, we have

|∆k| =
∣∣∣∣eTk( 1

n
XT
J XJ

)−1( 1

n
XT
JW − λnsign(β∗J)

)∣∣∣∣
≤
∣∣∣∣eTk( 1

n
XT
J XJ

)−1XT
JW

n

∣∣∣∣+ λn

∥∥∥∥( 1

n
XT
J XJ

)−1∥∥∥∥
∞

≤
∥∥∥∥( 1

n
XT
J XJ

)−1∥∥∥∥
∞
‖XT

JW/n‖∞ + λn

∥∥∥∥( 1

n
XT
J XJ

)−1∥∥∥∥
∞

≤ γ1
2(M1γ1 − 1)

λn +
γ1

M1γ1 − 1
λn

=
3γ1

2(M1γ1 − 1)
λn.

Thus, with the conditions in Theorem 2, we have

|∆k| ≤
3γ1

2(M1γ1 − 1)
λn =

3

2(M1 − 1/γ1)
λn <

2

M1
λn.

To meet the requirement sign(β∗k) = sign(β∗k + ∆k), we just need mink∈J |βk| ≥ 2
M1
λn and this

completes the proof.

A.3: Proof of Corollary 1 and 2

To prove the two corollaries, we just need to adapt the magnitude of maxi 6=j
1
n |x

T
i xj | to the correct

order.
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Proof of Corollary 1 and 2. To prove Corollary 1, we just need to take γ2 arbitrarily large and
q = 1. The result follows immediately from Theorem 0.

To prove Corollary 2, we first determine the set J by taking the larger signals as follows

J = {k : |βk| ≥ λn}.

Then the size of J can be bounded as

s = |J | ≤ R

λrn

and the size of ‖β∗Jc‖1 can be bounded as

‖β∗Jc‖1 =
∑
k∈Jc

|β∗k| ≤ λ1−rn

∑
k∈Jc

|β∗k|r ≤ Rλ1−rn .

Now we take γ2 = 1/‖β∗Jc‖1 and q = 1, then the bound on maxi 6=j
1
n |x

T
i xj | becomes

max
i 6=j

1

n
|xTi xj | ≤ min

{
1

γ1s
,

λn
‖β∗Jc‖1

}
≤ min

{
λrn
γ1R

,
λrn
R

}
≤ λrn
γ1R

,

which completes the proof.

Appendix B: Proof Theorem 1 and 2

To prove the two theorems, we just need to verify the three conditions for DECO. To verify
Condition 1 and Condition 2 in Theorem 0, we cite a result from Wang et al. (2015) which proves
the boundedness of M1 and M2 and that maxi 6=j |x̃Ti x̃Tj |/n is small.

Lemma 5. Assuming X ∼ N(0,Σ) and p > c0n for some c0 > 1, we have that for any C > 0,
there exists some constant 0 < c1 < 1 < c2 and c3 > 0 such that for any i 6= j ∈ Q

P
(

1

n
|x̃i|22 <

c1c∗
c∗

)
≤ 2e−Cn, P

(
1

n
|x̃i|22 >

c2c
∗

c∗

)
≤ 2e−Cn,

and

P
(

1

n
|x̃Ti x̃j | >

c4c
∗t

c∗

1√
n

)
≤ 5e−Cn + 2e−t

2/2,

for any t > 0, where c4 =
√

c2(c0−c1)
c3(c0−1) and c∗, c

∗ are the smallest and largest eigenvalues of Σ.

Verifying Condition 3 is the key to the whole proof. Different from the conventional setting,
W̃ now contains non-zero signals that are not independent from the predictors. This requires

us to accurately capture the behavior of the following two terms maxk∈Q
∣∣ 1
n x̃

T
k X̃

(−k)β
(−k)
∗

∣∣ and
maxk∈Q

∣∣ 1
n x̃

T
k ε̃
∣∣, for which we have

Lemma 6. Assume that ε is a sub-Gaussian variable with a ψ2 norm of σ and X ∼ N(0,Σ).
Define σ20 = var(Y ). If p > c0n for some c0 > 1, then we have for any t > 0

P
(

max
k∈Q

1

n
|x̃Tk ε̃| >

σt√
n

)
≤2p exp

(
− c∗c

2
0

2c∗c2(1− c0)2
t2
)

+ 4pe−Cn,

P
(

max
k∈Q

1

n

∣∣x̃Tk X̃(−k)β
(−k)
∗

∣∣ ≥ √σ20 − σ2t√
n

)
≤ 2p exp

(
− c3∗

2c24c
∗2 t

2

)
+ 5pe−Cn,
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where C, c1, c2, c4, c∗, c
∗ are defined in Lemma 5.

B.1: Proof of Lemma 5 and 6

Lemma 5 and the first part of 6 are existing results from Wang et al. (2015) and Wang and Leng
(2015). We focus on proving the second part of Lemma 6.

Proof of Lemma 5 and 6. Lemma 5 follows immediately from Lemma 3 in Wang et al. (2015)
and the first part of Lemma 6 follows Lemma 4 in Wang et al. (2015).

To prove the second part of Lemma 6, we first define H = XT (XXT )−
1
2 . When X ∼ N(0,Σ),

H follows the MACG(Σ) distribution as indicated in Lemma 3 in Wang et al. (2015) and Theorem
1 in Wang and Leng (2015). For simplicity, we only consider the case where k = 1.

For vector v with v1 = 0, we define v′ = (v2, v3, · · · , vp)T and we can always identify a (p− 1)×
(p− 1) orthogonal matrix T ′ such that T ′v′ = ‖v′‖2e′1 where e′1 is a (p− 1)× 1 unit vector with the
first coordinate being 1. Now we define a new orthogonal matrix T as

T =

(
1 0
0 T ′

)
and we have

Tv =

(
1 0
0 T ′

)(
0
v′

)
=

(
0

‖v‖2e′1

)
= ‖v‖2e2. and eT1 T

T = eT1

(
1 0

0 T
′T

)
= eT1

Therefore, we have

eT1HH
T v = eT1 T

TTHHTT TTv = eT1 T
THHTT T e2 = ‖v‖2eT1 H̃H̃T e2.

Since H follows MACG(Σ), H̃ = T TH follows MACG(T TΣT ) for any fixed T . Therefore, we can
apply Lemma 3 in Wang et al. (2015) or Lemma 5 again to obtain that

P
(
|eT1XT (XXT )−1Xv| ≥ ‖v‖2c4c

∗t

c∗

√
n

p

)
= P

(
|eT1HHT v| ≥ ‖v‖2c4c

∗t

c∗

√
n

p

)
= P

(
‖v‖2|eT1 H̃H̃T e2| ≥

‖v‖2c4c∗t
c∗

√
n

p

)
= P

(
|eT1 H̃H̃T e2| ≥

c4c
∗t

c∗

√
n

p

)
≤ 5e−Cn + 2e−t

2/2.

Applying the above result to v = (0, β
(−1)
∗ ) we have

1

n
|x̃T1 X̃(−1)β

(−1)
∗ | = 1

n
|e1X̃T X̃v| = 1

n

∣∣∣∣e1XT

(
XXT

p

)−1
Xv

∣∣∣∣ =
p

n
|e1XT (XXT )−1Xv| ≤ c4c

∗t

c∗

‖β∗‖2√
n
,

with probability at least 1− 5e−Cn − 2e−t
2/2.

In addition, we know that σ20 = var(Y ) = βT∗ Σβ∗ + σ2 and thus

‖β∗‖2 ≤

√
σ20 − σ2
c∗

.

Consequently, we have

P
(

1

n
|x̃T1 X̃(−1)β

(−1)
∗ | ≥

√
σ20 − σ2t√

n

)
≤ 2 exp

(
− c3∗

2c24c
∗2 t

2

)
+ 5e−Cn.

Applying the result to any k ∈ Q and taking the union bound gives the result in Lemma 6.
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B.2: Proof of Theorem 1 and 2

We assemble all previous results to prove these two theorems.

Proof of Theorem ?? and ??. We just need to verify the Condition 1 and 3 listed in Theorem
0 and the variants of Condition 2 in two corollaries.

First, we verify Condition 1. Taking M1 = c1c∗
c∗ and M2 = c2c∗

c∗
and using Lemma 5, we have

that

P
(
M1 ≤

1

n
|x̃Ti x̃i| ≤M2, ∀i ∈ Q

)
≥ 1− 4pe−Cn.

Next, we verify Condition 3, which follows immediately from Lemma 6. For any l ∈ {1, 2, 3, · · · ,m},
we have

max
l

1

n
‖X̃(l)W̃ (l)‖∞ ≤ max

k∈Q

1

n

∣∣x̃Tk X̃(−k)β
(−k)
∗

∣∣+ max
k∈Q

1

n
|x̃Tk ε̃| ≤

√
2σ0t√
n

,

with probability at least 1 − 2p exp

(
− c∗c20

2c∗c2(1−c0)2 t
2

)
− 2p exp

(
− c3∗

2c24c
∗2 t

2

)
− 9pe−Cn. Taking

t = A
√

log p/(2
√

2) for any A > 0, we have

P
(

max
l

1

n
‖X̃(l)W̃ (l)‖∞ ≥

1

2
Aσ0

√
log p

n

)
≤ 2p1−C1A2

+ 4p1−C2A2
+ 9pe−Cn,

where C1 =
c∗c20

16c∗c2(1−c0)2 and C2 = c3∗
16c24c

∗2 . This also indicates that λn should be chosen as

λn = Aσ0

√
log p

n
.

Finally, we verify the two conditions in Corollary 1 and 2. Notice that Lemma 5 indicates that

P
(

max
i 6=j

1

n
|x̃Ti x̃j | ≥ A

√
log p

n

)
≤ 2p1−8C2A2/c∗ + 5pe−Cn ≤ 2p1−C2A2

+ 5pe−Cn.

Therefore, the two conditions in Corollary 1 and 2 will be satisfied as long as

A2γ21s
2 log p

n
≤ 1 and A2γ21R

2

(
log p

n

)1−r
≤ 1.

Now we have verified that the three conditions hold for all subsets of the data. Let β̂(l) and β
(l)
∗

denote the estimate and true value of the coefficients on the lth worker and define sl = ‖β(l)∗ ‖0 and

Rl = ‖β(l)∗ ‖rr. Applying Corollary 1 and 2 to each subset and taking γ1 = 64/M1 we have

‖β̂(l) − β(l)∗ ‖∞ ≤
5Aσ0
M1

√
log p

n
and ‖β̂(l) − β(l)∗ ‖22 ≤

72A2σ20
M2

1

sl log p

n

for l = 1, 2, · · · ,m and β∗ being s-sparse. For β∗ ∈ B(r,R), we have

‖β̂(l) − β(l)∗ ‖∞ ≤
12Aσ0
M1

√
log p

n
and ‖β̂(l) − β(l)∗ ‖22 ≤

(
72

M2
1

+ 38

)
(Aσ0)

2−rRl

(
log p

n

)1− r
2

.

Notice that ‖β̂ − β∗‖22 =
∑m

l=1 ‖β̂(l) − β
(l)
∗ ‖22, s =

∑m
l=1 sl, Rl =

∑m
l=1Rl. Taking summation over l

11



and replacing M1 by c1c∗/c
∗ completes the whole proof.
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