
A From the Rendering Mixture Model Classifier to a DCN Layer

Proposition A.1 (MaxOut Neural Networks). The discriminative relaxation of a noise-free Gaussian
Rendering Mixture Model (GRMM) classifier with nuisance variable g 2 G is a single layer neural
net consisting of a local template matching operation followed by a piecewise linear activation
function (also known as a MaxOut NN [7]).

Proof. For transparency, we prove this claim exhaustively. Later claims will have simpler proofs. We
have

ĉ(I) ⌘ argmax

c2C
p(c|I)

= argmax

c2C
{p(I|c)p(c)}

= argmax

c2C

8
<
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⇢
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⇢
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⌦
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cg

↵
+ ln p(c, g) � D

2

ln |⌃
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|
!)

= argmax
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(
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g2G
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X

!

⌦
w!

cg

|I!

↵
+ b!

cg

!)

(d)

⌘ argmax

c2C

⇢
exp

✓
max

g2G
{w

cg

?
LC

I}
◆�

= argmax

c2C

⇢
max

g2G
{w

cg

?
LC

I}
�

= Choose {MaxOutPool(LocalTemplateMatch(I))}
= MaxOut-NN(I; ✓).

In line (a), we take the noise-free limit of the GRMM, which means that one hypothesis (c, g)

dominates all others in likelihood. In line (b), we assume that the image I consists of multiple
channels ! 2 ⌦, that are conditionally independent given the global configuration (c, g). Typically,
for input images these are color channels and ⌦ ⌘ {R, G, B} but in general ⌦ can be more abstract
(e.g. as in feature maps). In line (c), we assume that the pixel noise covariance is isotropic and
conditionally independent given the global configuration (c, g), so that ⌃

cg

= �2

x

1
D

is proportional
to the D ⇥ D identity matrix 1

D

. In line (d), we defined the locally connected template matching
operator ?

LC

, which is a location-dependent template matching operation.

Note that the nuisance variables g 2 G are (max-)marginalized over, after the application of a local
template matching operation against a set of filters/templates W ⌘ {w

cg

}
c2C,g2G .

Lemma A.2 (Translational Nuisance !
d

DCN Convolution). The MaxOut template matching
and pooling operation (from Proposition A.1) for a set of translational nuisance variables G ⌘ T
reduces to the traditional DCN convolution and max-pooling operation.
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Proof. Let the activation for a single output unit be y
c

(I). Then we have

y
c

(I) ⌘ max

g2G
{w

cg

?
LC

I}

= max

t2T
{hw

ct

|Ii}

= max

t2T
{hT

t

w
c

|Ii}

= max

t2T
{hw

c

|T�t

Ii}

= max

t2T
{(w

c

?DCN I)

t

}

= MaxPool(w
c

?DCN I).

where ?DCN is the traditional DCN Convolution operator. Finally, vectorizing in c gives us the
desired result y(I) = MaxPool(W ?DCN I).

Proposition A.3 (Max Pooling DCNs with ReLu Activations). The discriminative relaxation of a
noise-free GRMM with translational nuisances and random missing data is a single convolutional
layer of a traditional DCN. The layer consists of a generalized convolution operation, followed by a
ReLu activation function and a Max-Pooling operation.

Proof. We will model completely random missing data as a nuisance transformation a 2 A ⌘
{keep, drop}, where a = keep = 1 leaves the rendered image data untouched, while a = drop = 0

throws out the entire image after rendering. Thus, the switching variable a models missing data.
Critically, whether the data is missing is assumed to be completely random and thus independent of any
other task variables, including the measurements (i.e. the image itself). Since the missingness of the
evidence is just another nuisance, we can invoke Proposition A.1 to conclude that the discriminative
relaxation of a noise-free GRMM with random missing data is also a MaxOut-DCN, but with a
specialized structure which we now derive.

Mathematically, we decompose the nuisance variable g 2 G into two parts g = (t, a) 2 G = T ⇥ A,
and then, following a similar line of reasoning as in Proposition A.1, we have

ĉ(I) = argmax

c2C
max

g2G
p(c, g|I)

= argmax

c2C

⇢
max

g2G
{w

cg

?
LC

I}
�

(a)

= argmax

c2C

⇢
max

t2T
max

a2A
{a(hw

ct

|Ii + b
ct

) + b0
ct

+ b
a

+ b0
I

}
�

(b)

= argmax

c2C

⇢
max

t2T
{max{(w

c

?DCN I)

t

, 0} + b0
ct

+ b0
drop + b0

I

}
�

(c)

= argmax

c2C

⇢
max

t2T
{max{(w

c

?DCN I)

t

, 0} + b0
ct

}
�

(d)

= argmax

c2C

⇢
max

t2T
{max{(w

c

?DCN I)

t

, 0}}
�

= Choose {MaxPool(ReLu(DCNConv(I)))}
= DCN(I; ✓).

In line (a) we calculated the log-posterior (ignoring (c, g)-independent constants)

ln p(c, g|I) = ln p(c, t, a|I)

= ln p(I|c, t, a) + ln p(c, t, a) + ln p(I)

=

1

�2

x

haµ
ct

|Ii � 1

2�2

x

(kaµ
ct

k2

2

+ kIk2

2

)) + ln p(c, t, a)

⌘ a(hw
ct

|Ii + b
ct

) + b0
ct

+ b
a

+ b0
I

,

where a 2 {0, 1}, w
ct

⌘ 1

�

2

x

µ
ct

, b
ct

⌘ � 1

2�

2

x

kµ
ct

k2

2

, b
a

⌘ ln p(a), b0
ct

⌘ ln p(c, t), b0
I

⌘
� 1

2�

2

x

kIk2

2

. In line (b), we use Lemma A.2 to write the expression in terms of the DCN convolution
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operator, after which we invoke the identity max{u, v} = max{u � v, 0} + v ⌘ ReLu(u � v) + v
for real numbers u, v 2 R. Here we’ve defined b0

drop ⌘ ln p(a = drop) and we’ve used a slightly

modified DCN convolution operator ?DCN defined by w
ct

?DCN I ⌘ w
ct

? I + b
ct

+ ln

⇣
p(a=keep)
p(a=drop)

⌘
.

Also, we observe that all the primed constants are independent of a and so can be pulled outside of
the max

a

. In line(c), the two primed constants that are also independent of c, t can be dropped due
to the argmax

ct

. Finally, in line (d), we assume a uniform prior over c, t. The resulting sequence
of operations corresponds exactly to those applied in a single convolutional layer of a traditional
DCN.

B From the Deep Rendering Mixture Model to DCNs

Here we define the DRMM in full detail.

Definition B.1 (Deep Rendering Mixture Model (DRMM)). The Deep Rendering Mixture Model
(DRMM) is a deep Gaussian Mixture Model (GMM) with special constraints on the latent variables.
Generation in the DRMM takes the form:

c(L) ⇠ Cat({⇡
c

(L)

})

g(`) ⇠ Cat({⇡
g

(`)

}) 8` 2 [L] ⌘ {1, 2, . . . , L}
µ

c

(L)

g

⌘ ⇤

g

µ
c

(L)

⌘ ⇤

(1)

g

(1)

⇤

(2)

g

(2)

. . .⇤
(L�1)

g

(L�1)

⇤

(L)

g

(L)

µ
c

(L)

I ⇠ N (µ
c

(L)

g

, )

= N (µ
c

(L)

g

, �2

1

D

(0)

)

where the latent variables, parameters, and helper variables are defined as

g(`) ⌘
⇣
g
(`)

x

(`)

⌘

x

(`)2X (`)

t(`) ⌘
⇣
t
(`)

x

(`)

⌘

x

(`)2X (`)

, a(`) ⌘
⇣
a
(`)

x

(`)

⌘

x

(`)2X (`)

g
(`)

x

(`)

⌘
⇣
t
(`)

x

(`)

, a
(`)

x

(`)

⌘

t
(`)

x

(`)

2 {UL, UR, LL, LR}

a
(`)

x

(`)

2 {0, 1} ⌘ {OFF, ON}

x(`) 2 X (`) ⌘ {pixels in level `} 2 RD

(`)

⇤

(`)

g

(`)

= ⇤

(`)

t

(`)

,a

(`)

2 RD

(`�1)⇥D

(`)

= T
(`)

t

(`)

Z(`)

�

(`)M
(`)

a

(`)

M
(`)

a

(`)

⌘ diag
⇣
a(`)

⌘
2 RD

(`)⇥D

(`)

T
(`)

t

(`)

⌘ translation operator to position t(`) 2 RD

(`�1)⇥D

(`�1)

Z(`) ⌘ zero-padding operator 2 RD

(`�1)⇥F

(`)

�

(`) ⌘ ⌦
x

(`)2X (`)

�

(`)

x

(`)|{z}
F

(`)⇥1

2 RF

(`)⇥D

(`)

�

(`)

x

(`)

⌘ {filter bank at level `} 2 RF

(`)

F (`) ⌘ W (`)H(`)C(`)

= size of the core templates at layer (`)

For simplicity, in the following sections, we will use c and c(L) interchangeably.
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Definition B.2 (Nonnegative Deep Rendering Mixture Model (NN-DRM)). The Nonnegative
Deep Rendering Mixture Model is defined as a DRMM (Definition B.1) with additional nonnegativity
constraint(s) on the intermediate latent variables (rendered templates):

z(`)

n

= ⇤

g

(`+1)

n

· · ·⇤
g

(L)

n

µ
c

(L)

n

� 0 8` 2 {1, . . . , L} (9)

Following the same line of reasoning as in the main text, we will derive the Hard EM algorithm for
the DRMM model.

B.1 E-step: Computing the Soft Responsibilities

�
ncg

⌘ p(c, g|I
n

)

=

p(I
n

|c, g; ✓)p(c, g|✓)P
c,g

p(I
n

|c, g; ✓)p(c, g|✓)

=

⇡
cg

| |�1/2

exp

�
� 1

2

kI
n

� µ
cg

k2

 

�1

�

Z
,

where the partition function Z is defined as

Z(✓) ⌘
X

c,g

⇡
cg

| |�1/2

exp

✓
�1

2

kI
n

� µ
cg

k2

 

�1

◆
.

Since the numerator and denominator both contain | |�1/2, the responsibilities simplify to

�
ncg

=

⇡
cg

exp

�
� 1

2

kI
n

� µ
cg

k2

 

�1

�

Z 0 , (10)

where Z 0 is defined as

Z 0
(✓) ⌘

X

cg

⇡
cg

exp

✓
�1

2

kI
n

� µ
cg

k2

 

�1

◆
.

B.2 E-step: Computing the Hard Responsibilities

Assuming isotropic noise  = �2

1

D

and taking the zero-noise limit �2 ! 0, the term in the
denominator Z 0

(✓) for which kI
n

� µ
cg

k2

2

is smallest will go to zero most slowly. Hence the
responsibilities �

ncg

will all approach zero, except for one term (c⇤, g⇤
), for which the �

nc

⇤
g

⇤ will
approach one. 2 Thus, the soft responsibilities become hard responsibilities in the zero-noise limit:

�
ncg

�!0�! r
ncg

⌘
⇢

1, if (c, g) = argmax

c

0
g

0 � 1

2

kI
n

� µ
c

0
g

0k2

2

0, otherwise (11)

B.3 Useful Lemmas

In order to derive the E-step for the DRMM, we will need a few simple theoretical results. We prove
them here.
Definition B.3 (Masking Operator). Let a 2 {0, 1}d be a binary vector (mask) and let ⇤ 2 RD⇥d

be a real matrix. Then the masking operator M
a

(⇤) 2 RD⇥d is defined as

M
a

(⇤) ⌘ ⇤ · M
a

⌘ ⇤ · diag(a),

where M
a

⌘ diag(a) 2 Rd⇥d is the diagonal masking matrix.

2Technically, there can be multiple maximizers and the algorithms below can be generalized to handle this
case. But we focus on the case with just one unique maximum for simplicity.
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Lemma B.4. The action of a masking operator on a vector z 2 Rd can be written in several
equivalent ways:

M
a

(⇤)z = ⇤ · diag(a) · z

= ⇤ · diag(a) · diag(a) · z

= ⇤[:, a] · z[a]

= ⇤(a � z).

Here � denotes the elementwise (Hadamard) product between two vectors and ⇤[:, a] is numpy
notation for the subset of columns {j 2 [D] : a

j

= 1} of ⇤.

Proof. The first equality is by definition. The second equality is a result of a being binary since
a2

i

= a
i

for a
i

2 {0, 1}. The third and fourth equalities result from the associativity of matrix
multiplication.

Lemma B.5 (Optimization with Masking Operators). Let z, u 2 RD⇥1. Consider the optimiza-
tion problem

max

a2{0,1}D

M
a

(zT

)u = max

a2{0,1}D

zT M
a

u (12)

where M
a

⌘ diag(a). Then the optimization can be solved in closed form as:

(a) max

a2{0,1}D

M
a

(zT

)u = 1T

D

ReLu(z � u).

(b) â ⌘ argmax

a2{0,1}D

M
a

(zT

)u = [z � u > 0] 2 {0, 1}D.

(c) M
â

u = sgn(z) � ReLu (sgn(z) � u).

(d) If z � 0, then â ⌘ argmax

a2{0,1}D

M
a

(zT

)u = [u > 0] 2 {0, 1}D is a maximizer, for which M
â

u =

ReLu (u).

Proof. (a) The maximum value can be computed as

v? ⌘ max

a2{0,1}D

M
a

(zT

)u

= max

a2{0,1}D

zT

diag(a)u

= max

a2{0,1}D

X

i2[D]

z
i

a
i

u
i

=

X

i2[D]

max

a

i

2{0,1}
a

i

(z
i

u
i

)

⌘
X

i2[D]

â
i

(z
i

u
i

)

=

X

i2[D]

[z
i

u
i

> 0] · z
i

u
i

=

X

i2[D]

ReLu(z
i

u
i

)

= 1T

D

ReLu(z � u).

(b) In the 4th line the vector optimization decouples into a set of independent scalar optimizations
max

a

i

2{0,1} a
i

(z
i

u
i

), each of which is solvable in closed form: â
i

⌘ [z
i

u
i

> 0]. Hence, the optimal
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solution â is given by â = [z � u > 0].
(c) Substituting in â, we get

M
â

u = u � [z � u > 0]

= (sgn(z) � sgn(z))| {z }
1
D

�u � [ sgn(z) � u > 0]

= sgn(z) � (sgn(z) � u) � [ sgn(z) � u > 0]

= sgn(z) � ReLu (sgn(z) � u) ,

where in the third and fourth equalities we have used the associativity of elementwise multiplication
and the definition of ReLu, respectively.
(d) If z � 0, then when z

i

> 0, â
i

= [u
i

> 0], and when z
i

= 0, â
i

can be either 0 or 1 since
then max

a

i

2{0,1} a
i

(z
i

u
i

) = 08a
i

2 {0, 1}. Therefore, if z � 0, â = [u > 0] is a solution of the
optimization 12. It follows that M

â

u = [u > 0]u = ReLu (u).

Lemma B.6 (Optimization with “Row" Max-Marginal). Let z, u 2 RD⇥1. Consider the opti-
mization problem

max

t2T D

zT u(t) = max

t2T D

X

x

z
x

u(t)
x

(13)

where T is the set of possible fine-scale translations at location x. Also,

t ⌘

2

664

...
t
x

...

3

775 and u(t) ⌘

2

664

...
u

x

(t
x

)

...

3

775 (14)

Then the optimization can be solved as:

(a) max

t2T D

zT u(t) =

P
x

|z
x

|max

t

x

2T
sgn(z

x

)u
x

(t
x

)

(b) ˆt = argmax

t2T D

zT u(t) = argmax

t

sgn(z) � u(t) =

2

6664

...
argmax

t

x

sgn(z
x

)u
x

(t
x

)

...

3

7775

(c) u(

ˆt) = sgn(z) � max

t

(sgn(z) � u(t)) =

2

664

...
sgn(z

x

)max

t

x

sgn(z
x

)u
x

(t
x

)

...

3

775

(d) If z � 0, then ˆt = argmax

t

u(t) =

2

6664

...
argmax

t

x

u
x

(t
x

)

...

3

7775
is a maximizer for which u(

ˆt) =

max

t

(u(t)) =

2

664

...
max

t

x

u
x

(t
x

)

...

3

775
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Proof. (a) The maximum value can be computed as

v? ⌘ max

{t

x

2T }D

x=1

X

x

z
x

u
x

(t
x

)

=

X

x

max

t

x

2T
z
x

u
x

(t
x

)

=

X

x

max

t

x

2T
|z

x

| sgn(z
x

)u
x

(t
x

)

=

X

x

|z
x

|max

t

x

2T
sgn(z

x

)u
x

(t
x

)

(b) In the 2nd line the vector optimization decouples into a set of independent scalar optimizations
max

t

x

2T z
x

u
x

(t
x

), each of which has the solution as follows: argmax

t

x

sgn(z
x

)u
x

(t
x

). Hence, the

optimal solution ˆt = argmax

t2T D

zT u(t) =

2

6664

...
argmax

t

x

sgn(z
x

)u
x

(t
x

)

...

3

7775
= argmax

t

sgn(z) � u(t).

(c) Substituting in ˆt, we obtain

v?

=

X

x

|z
x

| sgn(z
x

)u
x

(

ˆt
x

)

=

X

x

z
x

sgn(z
x

)(sgn(z
x

)u
x

(

ˆt
x

))

=

X

x

z
x

sgn(z
x

)max

t

x

sgn(z
x

)u
x

(t
x

)

= zT

2

664

...
sgn(z

x

)max

t

x

sgn(z
x

)u
x

(t
x

)

...

3

775

Hence,

u(

ˆt) =

2

664

...
sgn(z

x

)max

t

x

sgn(z
x

)u
x

(t
x

)

...

3

775 = sgn(z) � max

t

(sgn(z) � u(t)) ,

(d) If z � 0, then when z
i

> 0, ˆt
x

= argmax

t

x

u
x

(t
x

), and when z
i

= 0, ˆt
x

can take any value in its

domain since then max

t

x

2T
sgn(z

x

)u
x

(t
x

) = 08t
x

2 T . Therefore, if z � 0, ˆt
x

= argmax

t

x

u
x

(t
x

) is a

solution of the optimization 13. It follows that u(

ˆt) = max

t

(u(t)) ⌘

2

664

...
max

t

x

u
x

(t
x

)

...

3

775.

Definition B.7 (Deep Masking Operator). Let a(`) 2 {0, 1}D

(`)

be a collection of binary (vector)
masks and let ⇤(`) 2 RD

(`�1)⇥D

(`)

be a collection of (matrix) operators. Then the deep masking

operator M{a

(`)}({⇤(`)}) 2 RD

(0)⇥D

(L)

is defined as

M{a

(`)}({⇤(`)}) ⌘
LY

`=1

M
a

(`)

(⇤

(`)

) =

LY

`=1

⇤

(`) · M
a

(`)

,

where M
a

⌘ diag(a) is the diagonal masking matrix for mask a.
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B.4 E-Step: Inference of Top-Level Category

Theorem B.8 (Inference in DRMM ) Signed Convnets). Inference in the DRMM, according to
the Dynamic Programming-based algorithm below, yields Signed DCNs. The inference algorithm
has a bottom-up and top-down pass.

Proof. Given input image I
n

⌘ I
(0)

n

, we infer ĉ
n

as follows:

ĉ
n

= argmax

c

max

g

�1

2

kI
n

� µ
cg

k2

2

= argmax

c

max

g

µT

cg

I
n

� 1

2

kI
n

k2

2

� 1

2

kµ
cg

k2

2

= argmax

c

max

g

µT

cg

I
n

� 1

2

kµ
cg

k2

2

,

where the last equality follow since I
n

is independent of c, g. We further assume that:

↵
g

(`)

= 0 8`

kµ
cg

k2

2

= const 8c, g.

As a result, µ
cg

= ⇤

g

µ
c

and the most probable class ĉ
n

is inferred as

ĉ
n

= argmax

c

max

g

µT

cg

I(0)

n

(15)

= argmax

c

max

g

(⇤

g

µ
c

)

T I(0)

n

(16)

= argmax

c

max

g

(L:1)

µT

c

⇤

T

g

(L)

· · ·⇤T

g

(2)

⇤

T

g

(1)

I(0)

n

(17)

= argmax

c

max

g

(L:2)

max
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In line (a), we employ Lemma B.5(b) to infer the optimal â
(1)

n

. In line (b) and (c), we employ B.6(c)
and Lemma B.5(c) to calculate the max-product message I

(1)

n

to be sent to the next layer. Notice
that here s(1)#

= sgn

�
z(1)#�. In line (b), ˆt

(1)

n

is implicitly inferred via Lemma B.6(b). In line (d),
s(1)# � s(1)# becomes a vector of all 1’s. Also, in the same line, diag(s(1)#

) is a diagonal matrix with
diagonal s(1)# and u

(1)"
n

(T ) is a matrix [u
nxt

] where rows are indexed by x 2 X and columns by
t 2 T . It corresponds to the output of the convolutional layer in a DCN, prior to the ReLu and spatial
max-pooling operators.
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Note that we have succeeded in expressing the optimization (Eq. 17) recursively in terms of a one
level smaller sub-problem (Eq. 25). Iterating this procedure yields a set of recurrence relations, which
define our Dynamic Programming (DP) algorithm for the bottom-up and top-down inference in the
DRMM:

Bottom-Up E-Step (E"):
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n

= ⇤
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⇣
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⌘
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Top-Down/Traceback E-Step (E"):
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â(`)l
n
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where u
(`)"
n

and ẑ
(`)#
n

are the bottom-up and top-down net inputs into layer `, respectively.

Corollary B.9 (Inference in the NN-DRMM ) Convnets). Inference in the NN-DRMM according
to the Dynamic Programming-based algorithm above yields ReLu DCNs.

Proof. The NN-DRMM assumes that the intermediate rendered latent variables z
(`)

n

� 0 for all `,
which implies that the signs are also nonnegative i.e., s

(`)

n

� 0. This in turn, according to Lemma
B.5(d) and B.6(d), reduces Eqs. 31, 32, 36 and 37 to

E" : I(`)

n

= MaxPool ReLu

⇣
u(`)"

n

⌘
(38)

ĉ(L)

n

= argmax

c

(L)

µT

c

(L)

I(L)

n

(39)

E# : â(`)

n

= [u(`)"
n

> 0] (40)
ˆt(`)
n

= argmax

t

(`)

u(`)"
n

(t(`)), (41)

which is equivalent to feedforward propagation in a DCN. Note that the the top-down step no
longer requires information from the deeper levels, and so it can be computed in the bottom-up step
instead.

Remark: Note that the vector max notation max

t

u(t) =

2

664

...
max

t

x

u
x

(t
x

)

...

3

775 is the same as the max nota-

tion we use in our arXiv post. It refers to the row max-marginals of the matrix u(t) ⌘ [u
xt

]

x2X ,t2T
with respect to latent variables t.
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Figure 3: Neural network implementation of shallow Rendering Model EM algorithm.

C Rendering Factor Model (RFM) Architecture

D Transforming a Generative Classifier into a Discriminative One

Before we formally define the procedure, some preliminary definitions and remarks will be helpful.
A generative classifier models the joint distribution p(c, I) of the input features and the class labels.
It can then classify inputs by using Bayes Rule to calculate p(c|I) / p(c, I) = p(I|c)p(c) and
picking the most likely label c. Training such a classifier is known as generative learning, since one
can generate synthetic features I by sampling the joint distribution p(c, I). Therefore, a generative
classifier learns an indirect map from input features I to labels c by modeling the joint distribution
p(c, I) of the labels and the features.

In contrast, a discriminative classifier parametrically models p(c|I) = p(c|I; ✓
d

) and then trains on
a dataset of input-output pairs {(I

n

, c
n

)}N

n=1

in order to estimate the parameter ✓
d

. This is known
as discriminative learning, since we directly discriminate between different labels c given an input
feature I . Therefore, a discriminative classifier learns a direct map from input features I to labels c
by directly modeling the conditional distribution p(c|I) of the labels given the features.

Given these definitions, we can now define the discriminative relaxation procedure for converting
a generative classifier into a discriminative one. Starting with the standard learning objective for a
generative classifier, we will employ a series of transformations and relaxations to obtain the learning
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relaxa+on"
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⇢(·)A B
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⌘
brain

˜✓ ⌘ ✓
world

Figure 4: Graphical depiction of discriminative relaxation procedure. (A) The Rendering Model (RM)
is depicted graphically, with mixing probability parameters ⇡

cg

and rendered template parameters �
cg

.
Intuitively, we can interpret the discriminative relaxation as a brain-world transformation applied
to a generative model. According to this interpretation, instead of the world generating images and
class labels (A), we instead imagine the world generating images I

n

via the rendering parameters
˜✓ ⌘ ✓

world

while the brain generates labels c
n

, g
n

via the classifier parameters ⌘
dis

⌘ ⌘
brain

(B). The
brain-world transformation converts the RM (A) to an equivalent graphical model (B), where an extra
set of parameters ˜✓ and constraints (arrows from ✓ to ˜✓ to ⌘) have been introduced. Discriminatively
relaxing these constraints (B, red X’s) yields the single-layer DCN as the discriminative counterpart
to the original generative RM classifier in (A).

objective for a discriminative classifier. Mathematically, we have

max
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✓
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 max

⌘

X

n

ln p(c
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|I
n

, ⌘)

| {z }
⌘L
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(⌘)

, (42)

where the L’s are the generative, conditional and discriminative log-likelihoods, respectively. In line
(a), we used the Chain Rule of Probability. In line (b), we introduced an extra set of parameters ˜✓
while also introducing a constraint that enforces equality with the old set of generative parameters ✓.
In line (c), we relax the equality constraint (first introduced by Bishop, LaSerre and Minka in [4]),
allowing the classifier parameters ✓ to differ from the image generation parameters ˜✓. In line (d),
we pass to the natural parametrization of the exponential family distribution I|c, where the natural
parameters ⌘ = ⇢(✓) are a fixed function of the conventional parameters ✓. This constraint on the
natural parameters ensures that optimization of L

cond

(⌘) yields the same answer as optimization
of L

cond

(✓). And finally, in line (e) we relax the natural parameter constraint to get the learning
objective for a discriminative classifier, where the parameters ⌘ are now free to be optimized. A
graphical model depiction of this process is shown in Fig. 4.

In summary, starting with a generative classifier with learning objective L
gen

(✓), we complete steps
(a) through (e) to arrive at a discriminative classifier with learning objective L

dis

(⌘). We refer to
this process as a discriminative relaxation of a generative classifier and the resulting classifier is a
discriminative counterpart to the generative classifier.
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dumbbell cup dalmatian 

bell pepper lemon husky 

washing machine computer keyboard kit fox 

goose limousine ostrich 

Figure 1: Numerically computed images, illustrating the class appearance models, learnt by a
ConvNet, trained on ILSVRC-2013. Note how different aspects of class appearance are captured
in a single image. Better viewed in colour.

3

Figure 5: Results of activity maximization on the ImageNet dataset [23]. For a given class c,
activity-maximizing inputs are superpositions of various poses of the object, with distinct patches
P

i

containing distinct poses g⇤
P

i

, as predicted by Eq. 44. Figure adapted with permission from the
authors.

E Derivation of Closed-Form Expression for Activity-Maximizing Images

Results of running activity maximization are shown in Fig. 5 for completeness. Mathematically, we
seek the image I that maximizes the score S(c|I) of a specific object class. Using the DRM, we have
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where I⇤
P

i

(c(`), g) ⌘ argmax
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i

hµ(c(`), g)|IP
i

i and g⇤
P

i

= g⇤
(c(`), P

i

) ⌘
argmax

g2G hµ(c(`), g)|I⇤
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i

(c(`), g)i. In the third line, the image I is decomposed into P
patches IP

i

of the same size as I , with all pixels outside of the patch P
i

set to zero. The max

g2G
operator finds the most probable g⇤

P
i

within each patch. The solution I⇤ of the activity maximization
is then the sum of the individual activity-maximizing patches

I⇤ ⌘
X

P
i

2P
I⇤
P

i

(c(`), g⇤
P

i

) /
X

P
i

2P
µ(c(`), g⇤

P
i

). (44)

F From the DRMM to Decision Trees

In this section we show that, like DCNs, Random Decision Forests (RDFs) can also be derived from
the DRMM model. Instead of translational and switching nuisances, we will show that an additive
mutation nuisance process that generates a hierarchy of categories (e.g., evolution of a taxonomy of
living organisms) is at the heart of the RDF.

F.1 The Evolutionary Deep Rendering Mixture Model

We define the Evolutionary DRMM (E-DRMM) as a DRMM with an evolutionary tree of categories.
Samples from the model are generated by starting from the root ancestor template and randomly
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mutating the templates. Each child template is an additive “mutation” of its parent, where the specific
mutation does not depend on the parent (see Eq.45 below). At the leaves of the tree, a sample
is generated by adding Gaussian pixel noise. Like in the DRMM, given c(L) ⇠ Cat(⇡

c

(L)

) and
g(`+1) ⇠ Cat(⇡

g

(`+1)

), with c(L) 2 CL and g(`+1) 2 G`+1 where ` = 1, 2, · · · , L, the template
µ

c

(L)

g

and the image I are rendered as

µ
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g
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g

µ
c
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(1)

· · ·⇤
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I ⇠ N (µ
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D

) 2 RD.

Here, ⇤
g

(`)

has a special structure due to the additive mutation process: ⇤
g

(`)

= [1 | ↵
g

(`)

], where 1
is the identity matrix. The rendering path represents template evolution and is defined as the sequence
(c(L), g(L), . . . , g(`), . . . , g(1)

) from the root ancestor template down to the individual pixels at ` = 0.
µ

c

(L)

is an abstract template for the root ancestor c(L), and
P

`

↵
g

(`)

represents the sequence of local
nuisance transformations, in this case, the accumulation of many additive mutations.

As with the DRMM, we can cast the E-DRMM into an incremental form by defining an intermediate
class c(`) ⌘ (c(L), g(L), . . . , g(`+1)

) that intuitively represents a partial evolutionary path up to level
`. Then, the mutation from level ` + 1 to ` can be written as

µ
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. (45)
Here, ↵

g

(`)

is the mutation added to the template at level ` in the evolutionary tree.

F.2 Inference with the E-DRM Yields a Decision Tree

Since the E-DRMM is an RMM with a hierarchical prior on the rendered templates, we can use Eq.3
to derive the E-DRMM inference algorithm for ĉ(L)

(I) as:
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where µ
c

(`)

has been defined in the second line. Here, we assume that the sub-trees are well-separated.
In the last lines, we repeatedly use the distributivity of max over sums, resulting in the iteration
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hµ
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(`+1)

| {z }
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|Ii

⌘ ChooseChild(Filter(I)). (47)
Eqs.46 and 47 define a Decision Tree. The leaf label histograms at the end of a decision tree plays a
similar role as the SoftMax regression layer in DCNs. Applying bagging [5] on decision trees yield a
Random Decision Forest (RDF).

G Unifying the Probabilistic and Neural Network Perspectives

H Additional Experimental Results

H.1 Learned Filters and Image Reconstructions

Filters and reconstructed images are shown in Fig. 6.

H.2 Additional Training Results

More results plus comparison to other related work are given in Table 3.
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Table 2: Summary of probabilistic and neural network perspectives for DCNs. The DRMM provides
a probabilistic interpretation for all of the common elements of DCNs relating to the underlying
model, inference algorithm, and learning rules.

Aspect Neural Nets Perspective  
(Deep Convolutional Neural 
Networks)  

Probabilistic Perspective 
(Deep Rendering Model) 

Model Weights and biases of filters at a 
given layer  

Partial Rendering at a given abstraction level/scale 

 Number of Layers Number of Abstraction Levels 
 Number of Filters in a layer Number of Clusters/Classes at a given abstraction level  
 Implicit in network weights; can 

be computed by product of 
weights over all layers or by 
activity maximization 

Category prototypes are finely detailed versions of coarser-
scale super-category prototypes.  
Fine details are modeled with affine nuisance 
transformations. 

Inference Forward propagation thru DCN Exact bottom-up inference via Max-Sum Message Passing 
(with Max-Product for Nuisance Factorization). 

 Input and Output Feature Maps Probabilistic Max-Sum Messages (real-valued functions of 
variables nodes) 

 Template matching at a given 
layer (convolutional, locally or 
fully connected) 

Local computation at factor node (log-likelihood of 
measurements) 

 Max-Pooling over local pooling 
region 

Max-Marginalization over Latent Translational Nuisance 
transformations 

 Rectified Linear Unit (ReLU). 
Sparsifies output activations. 

Max-Marginalization over Latent Switching state of 
Renderer. Low prior probability of being ON. 

Learning Stochastic Gradient Descent Batch Discriminative EM Algorithm with Fine-to-Coarse E-
step + Gradient M-step. No coarse-to-fine pass in E-step. 

 N/A Full EM Algorithm 
 Batch-Normalized SGD Discriminative Approximation to Full EM (assumes 

Diagonal Pixel Covariance) 
 

Figure 6: (Left) Filters learned from 60,000 unlabeled MNIST samples and (Right) reconstructed
images from the Shallow Rendering Mixture Model

I Model Configurations

In our experiments, configurations of the RFM and 2-layer DRFM are similar to LeNet5 [10] and
its variants. Also, configurations of the 5-layer DRMM (for MNIST) and the 9-layer DRMM (for
CIFAR10) are similar to Conv-Small and Conv-Large architectures in [26, 17], respectively.
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Table 3: Test error (%) for supervised, unsupervised and semi-supervised training on MNIST using
N

U

= 60K unlabeled images and N
L

2 {100, 600, 1K, 3K, 60K} labeled images.
Model Test Error (%)

N
L

= 100 N
L

= 600 N
L

= 1K N
L

= 3K N
L

= 60K

RFM sup - - - - 1.21
Convnet 1-layer sup - - - - 1.30
DRMM 5-layer sup - - - - 0.89
Convnet 5-layer sup - - - - 0.81

RFM unsup-pretr 16.2 5.65 4.64 2.95 1.17
DRMM 5-layer unsup-pretr 12.03 3.61 2.73 1.68 0.58
SWWAE unsup-pretr [31] - 9.80 6.135 4.41 -
RFM semi-sup 14.47 5.61 4.67 2.96 1.27
DRMM 5-layer semi-sup 3.50 1.56 1.67 0.91 0.51
Convnet [10] 22.98 7.86 6.45 3.35 -
TSVM [30] 16.81 6.16 5.38 3.45 -
CAE [19] 13.47 6.3 4.77 3.22 -
MTC [18] 12.03 5.13 3.64 2.57 -
PL-DAE [11] 10.49 5.03 3.46 2.69 -
WTA-AE [13] - 2.37 1.92 - -
SWWAE no dropout [31] 9.17 ± 0.11 4.16 ± 0.11 3.39 ± 0.01 2.50 ± 0.01 -
SWWAE with dropout [31] 8.71 ± 0.34 3.31 ± 0.40 2.83 ± 0.10 2.10 ± 0.22 -
M1+TSVM [8] 11.82 ± 0.25 5.72 4.24 3.49 -
M1+M2 [8] 3.33 ± 0.14 2.59 ± 0.05 2.40 ± 0.02 2.18 ± 0.04 -
Skip Deep Generative Model [12] 1.32 - - - -
LadderNetwork [17] 1.06 ± 0.37 - 0.84 ± 0.08 - -
Auxiliary Deep Generative Model [12] 0.96 - - - -
ImprovedGAN [21] 0.93 ± 0.065 - - - -
catGAN [25] 1.39 ± 0.28 - - - -

Table 4: Test error rates (%) between 2-layer DRMM and 9-layer DRMM trained with semi-
supervised EG and other best published results on CIFAR10 using N

U

= 50K unlabeled images and
N

L

2 {4K, 50K} labeled images

Model NL = 4K NL = 50K

Convnet [10] 43.90 27.17
Conv-Large [26] - 9.27
CatGAN [25] 19.58± 0.46 9.38
ImprovedGAN [21] 18.63± 2.32 -
LadderNetwork [17] 20.40± 0.47 -
DRMM 2-layer 39.2 24.60
DRMM 9-layer 23.24 11.37

Table 5: Comparison of RFM, 2-layer DRMM and 5-layer DRMM against Stacked What-Where
Auto-encoders with various regularization approaches on the MNIST dataset. N is the number of
labeled images used, and there is no extra unlabeled image.

Model N = 100 N = 600 N = 1K N = 3K

SWWAE (3 layers) [31] 10.66± 0.55 4.35± 0.30 3.17± 0.17 2.13± 0.10
SWWAE (3 layers) + dropout on convolution [31] 14.23± 0.94 4.70± 0.38 3.37± 0.11 2.08± 0.10
SWWAE (3 layers) + L1 [31] 10.91± 0.29 4.61± 0.28 3.55± 0.31 2.67± 0.25
SWWAE (3 layers) + noL2M [31] 12.41± 1.95 4.63± 0.24 3.15± 0.22 2.08± 0.18
Convnet (1 layer) 18.33 10.36 8.07 4.47

RFM (1 layer) 22.68 6.51 4.66 3.55
DRMM 2-layer 12.56 6.50 4.75 2.66
DRMM 5-layer 11.97 3.70 2.72 1.60
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