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Abstract

In PU learning, a binary classifier is trained from positive (P) and unlabeled (U) data
without negative (N) data. Although N data is missing, it sometimes outperforms
PN learning (i.e., ordinary supervised learning). Hitherto, neither theoretical nor
experimental analysis has been given to explain this phenomenon. In this paper,
we theoretically compare PU (and NU) learning against PN learning based on the
upper bounds on estimation errors. We find simple conditions when PU and NU
learning are likely to outperform PN learning, and we prove that, in terms of the
upper bounds, either PU or NU learning (depending on the class-prior probability
and the sizes of P and N data) given infinite U data will improve on PN learning.
Our theoretical findings well agree with the experimental results on artificial and
benchmark data even when the experimental setup does not match the theoretical
assumptions exactly.

1 Introduction

Positive-unlabeled (PU) learning, where a binary classifier is trained from P and U data, has drawn
considerable attention recently [1, 2, 3, 4, 5, 6, 7, 8]. It is appealing to not only the academia but also
the industry, since for example the click-through data automatically collected in search engines are
highly PU due to position biases [9, 10, 11]. Although PU learning uses no negative (N) data, it is
sometimes even better than PN learning (i.e., ordinary supervised learning, perhaps with class-prior
change [12]) in practice. Nevertheless, there is neither theoretical nor experimental analysis for this
phenomenon, and it is still an open problem when PU learning is likely to outperform PN learning.
We clarify this question in this paper.

Problem settings For PU learning, there are two problem settings based on one sample (OS) and
two samples (TS) of data respectively. More specifically, let X ∈ Rd and Y ∈ {±1} (d ∈ N) be the
input and output random variables and equipped with an underlying joint density p(x, y). In OS [3],
a set of U data is sampled from the marginal density p(x). Then if a data point x is P, this P label is
observed with probability c, and x remains U with probability 1− c; if x is N, this N label is never
observed, and x remains U with probability 1. In TS [4], a set of P data is drawn from the positive
marginal density p(x | Y = +1) and a set of U data is drawn from p(x). Denote by n+ and nu the
sizes of P and U data. As two random variables, they are fully independent in TS, and they satisfy
n+/(n+ + nu) ≈ cπ in OS where π = p(Y = +1) is the class-prior probability. Therefore, TS is
slightly more general than OS, and we will focus on TS problem settings.

Similarly, consider TS problem settings of PN and NU learning, where a set of N data (of size n−) is
sampled from p(x | Y = −1) independently of the P/U data. For PN learning, if we enforce that
n+/(n+ + n−) ≈ π when sampling the data, it will be ordinary supervised learning; otherwise, it is
supervised learning with class-prior change, a.k.a. prior probability shift [12].
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In [7], a cost-sensitive formulation for PU learning was proposed, and its risk estimator was proven
unbiased if the surrogate loss is non-convex and satisfies a symmetric condition. Therefore, we can
naturally compare empirical risk minimizers in PU and NU learning against that in PN learning.

Contributions We establish risk bounds of three risk minimizers in PN, PU and NU learning for
comparisons in a flavor of statistical learning theory [13, 14]. For each minimizer, we firstly derive
a uniform deviation bound from the risk estimator to the risk using Rademacher complexities (see,
e.g., [15, 16, 17, 18]), and secondly obtain an estimation error bound. Thirdly, if the surrogate loss
is classification-calibrated [19], an excess risk bound is an immediate corollary. In [7], there was a
generalization error bound similar to our uniform deviation bound for PU learning. However, it is
based on a tricky decomposition of the risk, where surrogate losses for risk minimization and risk
analysis are different and labels of U data are needed for risk evaluation, so that no further bound is
implied. On the other hand, ours utilizes the same surrogate loss for risk minimization and analysis
and requires no label of U data for risk evaluation, so that an estimation error bound is possible.

Our main results can be summarized as follows. Denote by ĝpn, ĝpu and ĝnu the risk minimizers in
PN, PU and NU learning. Under a mild assumption on the function class and data distributions,

• Finite-sample case: The estimation error bound of ĝpu is tighter than that of ĝpn whenever
π/
√
n+ + 1/

√
nu < (1 − π)/

√
n−, and so is the bound of ĝnu tighter than that of ĝpn if

(1− π)/
√
n− + 1/

√
nu < π/

√
n+.

• Asymptotic case: Either the limit of bounds of ĝpu or that of ĝnu (depending on π, n+ and
n−) will improve on that of ĝpn, if n+, n− →∞ in the same order and nu →∞ faster in
order than n+ and n−.

Notice that both results rely on only the constant π and variables n+, n− and nu; they are simple and
independent of the specific forms of the function class and/or the data distributions. The asymptotic
case is from the finite-sample case that is based on theoretical comparisons of the aforementioned
upper bounds on the estimation errors of ĝpn, ĝpu and ĝnu. To the best of our knowledge, this is the
first work that compares PU learning against PN learning.

Throughout the paper, we assume that the class-prior probability π is known. In practice, it can be
effectively estimated from P, N and U data [20, 21, 22] or only P and U data [23, 24].

Organization The rest of this paper is organized as follows. Unbiased estimators are reviewed in
Section 2. Then in Section 3 we present our theoretical comparisons based on risk bounds. Finally
experiments are discussed in Section 4.

2 Unbiased estimators to the risk

For convenience, denote by p+(x) = p(x | Y = +1) and p−(x) = p(x | Y = −1) partial marginal
densities. Recall that instead of data sampled from p(x, y), we consider three sets of data X+, X−
and Xu which are drawn from three marginal densities p+(x), p−(x) and p(x) independently.

Let g : Rd → R be a real-valued decision function for binary classification and ` : R× {±1} → R
be a Lipschitz-continuous loss function. Denote by

R+(g) = E+[`(g(X),+1)], R−(g) = E−[`(g(X),−1)]

partial risks, where E±[·] = EX∼p± [·]. Then the risk of g w.r.t. ` under p(x, y) is given by

R(g) = E(X,Y )[`(g(X), Y )] = πR+(g) + (1− π)R−(g). (1)

In PN learning, by approximating R(g) based on Eq. (1), we can get an empirical risk estimator as

R̂pn(g) = π
n+

∑
xi∈X+

`(g(xi),+1) + 1−π
n−

∑
xj∈X−

`(g(xj),−1).

For any fixed g, R̂pn(g) is an unbiased and consistent estimator to R(g) and its convergence rate is
of order Op(1/

√
n+ + 1/

√
n−) according to the central limit theorem [25], where Op denotes the

order in probability.

In PU learning, X− is not available and then R−(g) cannot be directly estimated. However, [7] has
shown that we can estimate R(g) without any bias if ` satisfies the following symmetric condition:

`(t,+1) + `(t,−1) = 1. (2)
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Specifically, let Ru,−(g) = EX [`(g(X),−1)] = πE+[`(g(X),−1)] + (1− π)R−(g) be a risk that
U data are regarded as N data. Given Eq. (2), we have E+[`(g(X),−1)] = 1−R+(g), and hence

R(g) = 2πR+(g) +Ru,−(g)− π. (3)

By approximating R(g) based on (3) using X+ and Xu, we can obtain

R̂pu(g) = −π + 2π
n+

∑
xi∈X+

`(g(xi),+1) + 1
nu

∑
xj∈Xu

`(g(xj),−1).

Although R̂pu(g) regards Xu as N data and aims at separating X+ and Xu if being minimized, it is
an unbiased and consistent estimator to R(g) with a convergence rate Op(1/

√
n+ + 1/

√
nu) [25].

Similarly, in NU learning R+(g) cannot be directly estimated. Let Ru,+(g) = EX [`(g(X),+1)] =
πR+(g) + (1− π)E−[`(g(X),+1)]. Given Eq. (2), E−[`(g(X),+1)] = 1−R−(g), and

R(g) = Ru,+(g) + 2(1− π)R−(g)− (1− π). (4)

By approximating R(g) based on (4) using Xu and X−, we can obtain

R̂nu(g) = −(1− π) + 1
nu

∑
xi∈Xu

`(g(xi),+1) + 2(1−π)
n−

∑
xj∈X−

`(g(xj),−1).

On the loss function In order to train g by minimizing these estimators, it remains to specify the
loss `. The zero-one loss `01(t, y) = (1− sign(ty))/2 satisfies (2) but is non-smooth. [7] proposed
to use a scaled ramp loss as the surrogate loss for `01 in PU learning:

`sr(t, y) = max{0,min{1, (1− ty)/2}},

instead of the popular hinge loss that does not satisfy (2). Let I(g) = E(X,Y )[`01(g(X), Y )] be the
risk of g w.r.t. `01 under p(x, y). Then, `sr is neither an upper bound of `01 so that I(g) ≤ R(g) is
not guaranteed, nor a convex loss so that it gets more difficult to know whether `sr is classification-
calibrated or not [19].1 If it is, we are able to control the excess risk w.r.t. `01 by that w.r.t. `. Here
we prove the classification calibration of `sr, and consequently it is a safe surrogate loss for `01.
Theorem 1. The scaled ramp loss `sr is classification-calibrated (see Appendix A for the proof).

3 Theoretical comparisons based on risk bounds

When learning is involved, suppose we are given a function class G, and let g∗ = arg ming∈G R(g)

be the optimal decision function in G, ĝpn = arg ming∈G R̂pn(g), ĝpu = arg ming∈G R̂pu(g), and
ĝnu = arg ming∈G R̂nu(g) be arbitrary global minimizers to three risk estimators. Furthermore, let
R∗ = infg R(g) and I∗ = infg I(g) denote the Bayes risks w.r.t. ` and `01, where the infimum of g
is over all measurable functions.

In this section, we derive and compare risk bounds of three risk minimizers ĝpn, ĝpu and ĝnu under
the following mild assumption on G, p(x), p+(x) and p−(x): There is a constant CG > 0 such that

Rn,q(G) ≤ CG/
√
n (5)

for any marginal density q(x) ∈ {p(x), p+(x), p−(x)}, where

Rn,q(G) = EX∼qnEσ
[
supg∈G

1
n

∑
xi∈X σig(xi)

]
is the Rademacher complexity of G for the sampling of size n from q(x) (that is, X = {x1, . . . , xn}
and σ = {σ1, . . . , σn}, with each xi drawn from q(x) and each σi as a Rademacher variable) [18].
A special case is covered, namely, sets of hyperplanes with bounded normals and feature maps:

G = {g(x) = 〈w, φ(x)〉H | ‖w‖H ≤ Cw, ‖φ(x)‖H ≤ Cφ}, (6)

whereH is a Hilbert space with an inner product 〈·, ·〉H, w ∈ H is a normal vector, φ : Rd → H is a
feature map, and Cw > 0 and Cφ > 0 are constants [26].

1A loss function ` is classification-calibrated if and only if there is a convex, invertible and nondecreasing
transformation ψ` with ψ`(0) = 0, such that ψ`(I(g)− infg I(g)) ≤ R(g)− infg R(g) [19].
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3.1 Risk bounds

Let L` be the Lipschitz constant of ` in its first parameter. To begin with, we establish the learning
guarantee of ĝpu (the proof can be found in Appendix A).
Theorem 2. Assume (2). For any δ > 0, with probability at least 1− δ,2

R(ĝpu)−R(g∗) ≤ 8πL`Rn+,p+(G) + 4L`Rnu,p(G) + 2π
√

2 ln(4/δ)
n+

+
√

2 ln(4/δ)
nu

, (7)

where Rn+,p+(G) and Rnu,p(G) are the Rademacher complexities of G for the sampling of size n+
from p+(x) and the sampling of size nu from p(x). Moreover, if ` is a classification-calibrated loss,
there exists nondecreasing ϕ with ϕ(0) = 0, such that with probability at least 1− δ,

I(ĝpu)−I∗ ≤ ϕ
(
R(g∗)−R∗+8πL`Rn+,p+(G)+4L`Rnu,p(G)+2π

√
2 ln(4/δ)
n+

+
√

2 ln(4/δ)
nu

)
. (8)

In Theorem 2, R(ĝpu) and I(ĝpu) are w.r.t. p(x, y), though ĝpu is trained from two samples following
p+(x) and p(x). We can see that (7) is an upper bound of the estimation error of ĝpu w.r.t. `, whose
right-hand side (RHS) is small if G is small; (8) is an upper bound of the excess risk of ĝpu w.r.t. `01,
whose RHS also involves the approximation error of G (i.e., R(g∗)−R∗) that is small if G is large.
When G is fixed and satisfies (5), we have Rn+,p+(G) = O(1/

√
n+) and Rnu,p(G) = O(1/

√
nu),

and then
R(ĝpu)−R(g∗)→ 0, I(ĝpu)− I∗ → ϕ(R(g∗)−R∗)

in Op(1/
√
n+ + 1/

√
nu). On the other hand, when the size of G grows with n+ and nu properly,

those complexities of G vanish slower in order than O(1/
√
n+) and O(1/

√
nu) but we may have

R(ĝpu)−R(g∗)→ 0, I(ĝpu)− I∗ → 0,

which means ĝpu approaches the Bayes classifier if ` is a classification-calibrated loss, in an order
slower than Op(1/

√
n+ + 1/

√
nu) due to the growth of G.

Similarly, we can derive the learning guarantees of ĝpn and ĝnu for comparisons. We will just focus
on estimation error bounds, because excess risk bounds are their immediate corollaries.
Theorem 3. Assume (2). For any δ > 0, with probability at least 1− δ,

R(ĝpn)−R(g∗) ≤ 4πL`Rn+,p+(G) + 4(1− π)L`Rn−,p−(G) + π
√

2 ln(4/δ)
n+

+ (1− π)
√

2 ln(4/δ)
n−

,

(9)
where Rn−,p−(G) is the Rademacher complexity of G for the sampling of size n− from p−(x).
Theorem 4. Assume (2). For any δ > 0, with probability at least 1− δ,

R(ĝnu)−R(g∗) ≤ 4L`Rnu,p(G)+8(1−π)L`Rn−,p−(G)+
√

2 ln(4/δ)
nu

+2(1−π)
√

2 ln(4/δ)
n−

. (10)

In order to compare the bounds, we simplify (9), (7) and (10) using Eq. (5). To this end, we define
f(δ) = 4L`CG +

√
2 ln(4/δ). For the special case of G defined in (6), define f(δ) accordingly as

f(δ) = 4L`CwCφ +
√

2 ln(4/δ).
Corollary 5. The estimation error bounds below hold separately with probability at least 1− δ:

R(ĝpn)−R(g∗) ≤ f(δ) · {π/√n+ + (1− π)/
√
n−}, (11)

R(ĝpu)−R(g∗) ≤ f(δ) · {2π/√n+ + 1/
√
nu}, (12)

R(ĝnu)−R(g∗) ≤ f(δ) · {1/
√
nu + 2(1− π)/

√
n−}. (13)

3.2 Finite-sample comparisons

Note that three risk minimizers ĝpn, ĝpu and ĝnu work in similar problem settings and their bounds
in Corollary 5 are proven using exactly the same proof technique. Then, the differences in bounds
reflect the intrinsic differences between risk minimizers. Let us compare those bounds. Define

αpu,pn =
(
π/
√
n+ + 1/

√
nu
)
/
(
(1− π)/

√
n−
)
, (14)

αnu,pn =
(
(1− π)/

√
n− + 1/

√
nu
)
/
(
π/
√
n+
)
. (15)

Eqs. (14) and (15) constitute our first main result.
2Here, the probability is over repeated sampling of data for training ĝpu, while in Lemma 8, it will be for

evaluating R̂pu(g).
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Table 1: Properties of αpu,pn and αnu,pn.
no specification sizes are proportional ρpn = π/(1− π)

mono. inc. mono. dec. mono. inc. mono. dec. mono. inc. minimum

αpu,pn π, n− n+, nu π, ρpu ρpn ρpu 2
√
ρpu +

√
ρpu

αnu,pn n+ π, n−, nu ρpn, ρnu π ρnu 2
√
ρnu +

√
ρnu

Theorem 6 (Finite-sample comparisons). Assume (5) is satisfied. Then the estimation error bound
of ĝpu in (12) is tighter than that of ĝpn in (11) if and only if αpu,pn < 1; also, the estimation error
bound of ĝnu in (13) is tighter than that of ĝpn if and only if αnu,pn < 1.

Proof. Fix π, n+, n− and nu, and then denote by Vpn, Vpu and Vnu the values of the RHSs of (11),
(12) and (13). In fact, the definitions of αpu,pn and αnu,pn in (14) and (15) came from

αpu,pn =
Vpu − πf(δ)/

√
n+

Vpn − πf(δ)/
√
n+

, αnu,pn =
Vnu − (1− π)f(δ)/

√
n−

Vpn − (1− π)f(δ)/
√
n−

.

As a consequence, compared with Vpn, Vpu is smaller and (12) is tighter if and only if αpu,pn < 1,
and Vnu is smaller and (13) is tighter if and only if αnu,pn < 1.

We analyze some properties of αpu,pn before going to our second main result. The most important
property is that it relies on π, n+, n− and nu only; it is independent of G, p(x, y), p(x), p+(x) and
p−(x) as long as (5) is satisfied. Next, αpu,pn is obviously a monotonic function of π, n+, n− and
nu. Furthermore, it is unbounded no matter if π is fixed or not. Properties of αnu,pn are similar, as
summarized in Table 1.

Implications of the monotonicity of αpu,pn are given as follows. Intuitively, when other factors are
fixed, larger nu or n− improves ĝpu or ĝpn respectively. However, it is complicated why αpu,pn is
monotonically decreasing with n+ and increasing with π. The weights of the empirical average of
X+ is 2π in R̂pu(g) and π in R̂pn(g), as in R̂pu(g) it also joins the estimation of (1− π)R−(g). It
makes X+ more important for R̂pu(g), and thus larger n+ improves ĝpu more than ĝpn. Moreover,
(1− π)R−(g) is directly estimated in R̂pn(g) and the concentration Op((1− π)/

√
n−) is better if

π is larger, whereas it is indirectly estimated through Ru,−(g)− π(1−R+(g)) in R̂pu(g) and the
concentration Op(π/

√
n+ + 1/

√
nu) is worse if π is larger. As a result, when the sample sizes are

fixed ĝpu is more (or less) favorable as π decreases (or increases).

A natural question is what the monotonicity of αpu,pn would be if we enforce n+, n− and nu to be
proportional. To answer this question, we assume n+/n− = ρpn, n+/nu = ρpu and n−/nu = ρnu
where ρpn, ρpu and ρnu are certain constants, then (14) and (15) can be rewritten as

αpu,pn = (π +
√
ρpu)/((1− π)

√
ρpn), αnu,pn = (1− π +

√
ρnu)/(π/

√
ρpn).

As shown in Table 1, αpu,pn is now increasing with ρpu and decreasing with ρpn. It is because, for
instance, when ρpn is fixed and ρpu increases, nu is meant to decrease relatively to n+ and n−.

Finally, the properties will dramatically change if we enforce ρpn = π/(1− π) that approximately
holds in ordinary supervised learning. Under this constraint, we have

αpu,pn = (π +
√
ρpu)/

√
π(1− π) ≥ 2

√
ρpu +

√
ρpu,

where the equality is achieved at π̄ =
√
ρpu/(2

√
ρpu + 1). Here, αpu,pn decreases with π if π < π̄

and increases with π if π > π̄, though it is not convex in π. Only if nu is sufficiently larger than n+
(e.g., ρpu < 0.04), could αpu,pn < 1 be possible and ĝpu have a tighter estimation error bound.

3.3 Asymptotic comparisons

In practice, we may find that ĝpu is worse than ĝpn and αpu,pn > 1 given X+, X− and Xu. This is
probably the consequence especially when nu is not sufficiently larger than n+ and n−. Should we
then try to collect much more U data or just give up PU learning? Moreover, if we are able to have as
many U data as possible, is there any solution that would be provably better than PN learning?
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We answer these questions by asymptotic comparisons. Notice that each pair of (n+, nu) yields a
value of the RHS of (12), each (n+, n−) yields a value of the RHS of (11), and consequently each
triple of (n+, n−, nu) determines a value of αpu,pn. Define the limits of αpu,pn and αnu,pn as

α∗pu,pn = limn+,n−,nu→∞ αpu,pn, α∗nu,pn = limn+,n−,nu→∞ αnu,pn.

Recall that n+, n− and nu are independent, and we need two conditions for the existence of α∗pu,pn
and α∗nu,pn: n+ →∞ and n− →∞ in the same order and nu →∞ faster in order than them. It is
a bit stricter than what is necessary, but is consistent with a practical assumption: P and N data are
roughly equally expensive, whereas U data are much cheaper than P and N data. Intuitively, since
αpu,pn and αnu,pn measure relative qualities of the estimation error bounds of ĝpu and ĝnu against
that of ĝpn, α∗pu,pn and α∗nu,pn measure relative qualities of the limits of those bounds accordingly.

In order to illustrate properties of α∗pu,pn and α∗nu,pn, assume only nu approaches infinity while n+
and n− stay finite, so that α∗pu,pn = π

√
n−/((1 − π)

√
n+) and α∗nu,pn = (1 − π)

√
n+/(π

√
n−).

Thus, α∗pu,pnα
∗
nu,pn = 1, which implies α∗pu,pn < 1 or α∗nu,pn < 1 unless n+/n− = π2/(1 − π)2.

In principle, this exception should be exceptionally rare since n+/n− is a rational number whereas
π2/(1− π)2 is a real number. This argument constitutes our second main result.
Theorem 7 (Asymptotic comparisons). Assume (5) and one set of conditions below are satisfied:

(a) n+ <∞, n− <∞ and nu →∞. In this case, let α∗ = (π
√
n−)/((1− π)

√
n+);

(b) 0 < limn+,n−→∞ n+/n− <∞ and limn+,n−,nu→∞(n+ + n−)/nu = 0. In this case, let
α∗ = π/((1− π)

√
ρ∗pn) where ρ∗pn = limn+,n−→∞ n+/n−.

Then, either the limit of estimation error bounds of ĝpu will improve on that of ĝpn (i.e., α∗pu,pn < 1)
if α∗ < 1, or the limit of bounds of ĝnu will improve on that of ĝpn (i.e., α∗nu,pn < 1) if α∗ > 1. The
only exception is n+/n− = π2/(1− π)2 in (a) or ρ∗pn = π2/(1− π)2 in (b).
Proof. Note that α∗ = α∗pu,pn in both cases. The proof of case (a) has been given as an illustration
of the properties of α∗pu,pn and α∗nu,pn. The proof of case (b) is analogous.

As a result, when we find that ĝpu is worse than ĝpn and αpu,pn > 1, we should look at α∗ defined in
Theorem 7. If α∗ < 1, ĝpu is promising and we should collect more U data; if α∗ > 1 otherwise,
we should give up ĝpu, but instead ĝnu is promising and we should collect more U data as well. In
addition, the gap between α∗ and one indicates how many U data would be sufficient. If the gap is
significant, slightly more U data may be enough; if the gap is slight, significantly more U data may
be necessary. In practice, however, U data are cheaper but not free, and we cannot have as many U
data as possible. Therefore, ĝpn is still of practical importance given limited budgets.

3.4 Remarks

Theorem 2 relies on a fundamental lemma of the uniform deviation from the risk estimator R̂pu(g) to
the risk R(g):
Lemma 8. For any δ > 0, with probability at least 1− δ,

supg∈G |R̂pu(g)−R(g)| ≤ 4πL`Rn+,p+(G) + 2L`Rnu,p(G) + 2π
√

ln(4/δ)
2n+

+
√

ln(4/δ)
2nu

.

In Lemma 8,R(g) is w.r.t. p(x, y), though R̂pu(g) is w.r.t. p+(x) and p(x). Rademacher complexities
are also w.r.t. p+(x) and p(x), and they can be bounded easily for G defined in Eq. (6).

Theorems 6 and 7 rely on (5). Thanks to it, we can simplify Theorems 2, 3 and 4. In fact, (5) holds
for not only the special case of G defined in (6), but also the vast majority of discriminative models in
machine learning that are nonlinear in parameters such as decision trees (cf. Theorem 17 in [16]) and
feedforward neural networks (cf. Theorem 18 in [16]).

Theorem 2 in [7] is a similar bound of the same order as our Lemma 8. That theorem is based on a
tricky decomposition of the risk

E(X,Y )[`(g(X), Y )] = πE+[˜̀(g(X),+1)] + E(X,Y )[˜̀(g(X), Y )],

where the surrogate loss ˜̀(t, y) = (2/(y + 3))`(t, y) is not ` for risk minimization and labels of Xu

are needed for risk evaluation, so that no further bound is implied. Lemma 8 uses the same ` as risk
minimization and requires no label of Xu for evaluating R̂pu(g), so that it can serve as the stepping
stone to our estimation error bound in Theorem 2.
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Figure 1: Theoretical and experimental results based on artificial data.

4 Experiments

In this section, we experimentally validate our theoretical findings.

Artificial data Here, X+, X− and Xu are in R2 and drawn from three marginal densities

p+(x) = N(+12/
√

2, I2), p−(x) = N(−12/
√

2, I2), p(x) = πp+(x) + (1− π)p−(x),

where N(µ,Σ) is the normal distribution with mean µ and covariance Σ, 12 and I2 are the all-one
vector and identity matrix of size 2. The test set contains one million data drawn from p(x, y).

The model g(x) = 〈w, x〉+ b where w ∈ R2, b ∈ R and the scaled ramp loss `sr are employed. In
addition, an `2-regularization is added with the regularization parameter fixed to 10−3, and there is
no hard constraint on ‖w‖2 or ‖x‖2 as in Eq. (6). The solver for minimizing three regularized risk
estimators comes from [7] (refer also to [27, 28] for the optimization technique).

The results are reported in Figure 1. In (a)(b), n+ = 45, n− = 5, π = 0.5, and nu varies from 5 to
200; in (c)(d), n+ = 45, n− = 5, nu = 100, and π varies from 0.05 to 0.95. Specifically, (a) shows
αpu,pn and αnu,pn as functions of nu, and (c) shows them as functions of π. For the experimental
results, ĝpn, ĝpu and ĝnu were trained based on 100 random samplings for every nu in (b) and π in
(d), and means with standard errors of the misclassification rates are shown, as `sr is classification-
calibrated. Note that the empirical misclassification rates are essentially the risks w.r.t. `01 as there
were one million test data, and the fluctuations are attributed to the non-convex nature of `sr. Also,
the curve of ĝpn is not a flat line in (b), since its training data at every nu were exactly same as the
training data of ĝpu and ĝnu for fair experimental comparisons.

In Figure 1, the theoretical and experimental results are highly consistent. The red and blue curves
intersect at nearly the same positions in (a)(b) and in (c)(d), even though the risk minimizers in the
experiments were locally optimal and regularized, making our estimation error bounds inexact.

Benchmark data Table 2 summarizes the specification of benchmarks, which were downloaded
from many sources including the IDA benchmark repository [29], the UCI machine learning reposi-
tory, the semi-supervised learning book [30], and the European ESPRIT 5516 project.3 In Table 2,
three rows describe the number of features, the number of data, and the ratio of P data according to
the true class labels. Given a random sampling of X+, X− and Xu, the test set has all the remaining
data if they are less than 104, or else drawn uniformly from the remaining data of size 104.

For benchmark data, the linear model for the artificial data is not enough, and its kernel version is
employed. Consider training ĝpu for example. Given a random sampling, g(x) = 〈w, φ(x)〉+ b is
used where w ∈ Rn++nu , b ∈ R and φ : Rd → Rn++nu is the empirical kernel map [26] based on
X+ and Xu for the Gaussian kernel. The kernel width and the regularization parameter are selected
by five-fold cross-validation for each risk minimizer and each random sampling.

3See http://www.raetschlab.org/Members/raetsch/benchmark/ for IDA, http://archive.ics.
uci.edu/ml/ for UCI, http://olivier.chapelle.cc/ssl-book/ for the SSL book and https://www.
elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/ for the ELENA project.

Table 2: Specification of benchmark datasets.
banana phoneme magic image german twonorm waveform spambase coil2

dim 2 5 10 18 20 20 21 57 241
size 5300 5404 19020 2086 1000 7400 5000 4597 1500
P ratio .448 .293 .648 .570 .300 .500 .329 .394 .500
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Figure 2: Experimental results based on benchmark data by varying nu.

0 0.2 0.4 0.6 0.8 1

:

100

101

102

,

,pu;pn

,nu;pn

, = 1

(a) Theo.

0 0.2 0.4 0.6 0.8 1

:

10

20

30

40

50

M
is

cl
as

si
fic

at
io

n 
ra

te
 (

%
)
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Figure 3: Experimental results based on benchmark data by varying π.

The results by varying nu and π are reported in Figures 2 and 3 respectively. Similarly to Figure 1,
in Figure 2, n+ = 25, n− = 5, π = 0.5, and nu varies from 10 to 300, while in Figure 3, n+ = 25,
n− = 5, nu = 200, and π varies from 0.05 to 0.95. Figures 2(a) and 3(a) depict αpu,pn and αnu,pn

as functions of nu and π, and all the remaining subfigures depict means with standard errors of the
misclassification rates based on 100 random samplings for every nu and π.

The theoretical and experimental results based on benchmarks are still highly consistent. However,
unlike in Figure 1(b), in Figure 2 only the errors of ĝpu decrease with nu, and the errors of ĝnu just
fluctuate randomly. This may be because benchmark data are more difficult than artificial data and
hence n− = 5 is not sufficiently informative for ĝnu even when nu = 300. On the other hand, we
can see that Figures 3(a) and 1(c) look alike, and so do all the remaining subfigures in Figure 3 and
Figure 1(d). Nevertheless, three intersections in Figure 3(a) are closer than those in Figure 1(c), as
nu = 200 in Figure 3(a) and nu = 100 in Figure 1(c). The three intersections will become a single
one if nu =∞. By observing the experimental results, three curves in Figure 3 are also closer than
those in Figure 1(d) when π ≥ 0.6, which demonstrates the validity of our theoretical findings.

5 Conclusions

In this paper, we studied a fundamental problem in PU learning, namely, when PU learning is likely
to outperform PN learning. Estimation error bounds of the risk minimizers were established in PN,
PU and NU learning. We found that under the very mild assumption (5): The PU (or NU) bound is
tighter than the PN bound, if αpu,pn in (14) (or αnu,pn in (15)) is smaller than one (cf. Theorem 6);
either the limit of αpu,pn or that of αnu,pn will be smaller than one, if the size of U data increases
faster in order than the sizes of P and N data (cf. Theorem 7). We validated our theoretical findings
experimentally using one artificial data and nine benchmark data.
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