
Supplementary Material

A Proof of Lemma 1

Lemma 1. Let z ∈ Dn be a distribution over n unit vectors a1, · · · , an in Rd. For ε ∈ (0, 1), a sparse weight
vector w ∈ Dn of sparsity s ≤ 1/ε2 can be computed in O(nd/ε2) time such that∥∥∥∥∥

n∑
i=1

zi · ai −
n∑

i=2

wi ai

∥∥∥∥∥
2

≤ ε. (9)

We note that the Caratheodory Theorem [4] proves Lemma 1 for the special case ε = 0 using only d+1 points.
Our approach and algorithm can thus be considered as an ε-approximation for the Caratheodory Theorem, to
get coresets of size independent of d. Note that our Frank-Wolfe-style algorithm might run more than d+ 1 or
n iterations without getting zero error, since the same point may be selected in several iterations. Computing in
each iteration the closest point to the origin that is spanned by all the points selected in the previous iterations,
would guarantee coresets of size at most d + 1, and fewer iterations. Of course, the computation time of each
iteration will also be much slower. ’

Proof. We assume that
∑

i ziai = 0, otherwise we subtract
∑

j zjaj from each input vector ai. We also
assume ε < 1, otherwise the claim is trivial for w = 0. Let w ∈ Dn such that ‖w‖0 = 1, and denote the
current mean approximation by c =

∑
i wiai. Hence, ‖c‖2 = ‖ai‖ = 1.

The following iterative algorithm updates c in the end of each iteration until ‖c‖2 < ε. In the beginning of the
N th iteration the squared distance from c to the mean (origin) is

‖c‖22 ∈ [ε,
1

N
]. (10)

The average distance to c is thus∑
i

zi‖ai − c‖22 =
∑
i

zi‖ai‖22 + 2cT
∑
i

ziai +
∑
i

zi‖c‖22 = 1 + ‖c‖22 ≥ 1 + ε ,

where the sum here and in the rest of the proof are over [n]. Hence there must be a j ∈ [n] such that

‖qj − c‖22 ≥ 1 + ε. (11)

Let r be the point on the segment between aj and c at a distance ρ := 1/‖aj−c‖2 from aj . Since ‖aj−r‖2 =
ρ = ρ‖aj−0‖2, and ‖aj−0‖2 = 1 = ρ‖aj− c‖2, and ∠(0, aj , c) = ∠(c, aj ,0), the triangle whose vertices
are aj , r and 0 is similar to the triangle whose vertices are aj , 0, and c with a scaling factor of ρ. Therefore,

‖r − 0‖2 = ρ · ‖0− c‖2 =
‖c‖2

‖qj − c‖2
. (12)

From (11) and (12), by letting c′ be the closest point to 0 on the segment between aj and c, we obtain

‖c′‖22 ≤ ‖r‖22 =
‖c‖22

‖aj − c‖22
≤ ‖c‖

2
2

1 + ε
.

Combining this with (10) yields

‖c′‖22 ≤
1
N

1 + ε
≤

1
N

1 + 1
N

=
1

N + 1
.

Since c′ is a convex combination of aj and c, there is α ∈ [0, 1], such that c′ = αaj + (1− α)c. Therefore,

c′ = αaj + (1− α)
∑
i

wiai

and thus we have c′ =
∑

i w
′
iai, where w′ = (1−α)w+αej , and ej ∈ Dn is the jth standard vector. Hence,

‖w′‖0 = N + 1. If ‖c′‖22 < ε the algorithm returns c′. Otherwise

‖c′‖22 ∈ [ε,
1

N + 1
] (13)

We can repeat the procedure in (10) with c′ instead of c and N + 1 instead of N . By (29) N + 1 ≤ 1/ε so the
algorithm ends after N ≤ 1/ε iterations. After the last iteration we return the center c′ =

∑n
i=1 w

′
iai so∥∥∥∥∥∑

i

(zi − w′i)ai

∥∥∥∥∥
2

2

= ‖c′‖22 ≤
1

N + 1
≤ ε.

10

B Proof of Theorem 3

Theorem 3 (Coreset for Low rank approximation). For every X ∈ Rd×(d−k) such that XTX = I ,∣∣∣∣1− ‖WAX‖2

‖AX‖2

∣∣∣∣ ≤ 5

∥∥∥∥∥
n∑

i=1

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ . (14)

Proof of Theorem 3. Let ε = ‖
∑n

i=1(1−W 2
i,i)viv

T
i ‖. For every i ∈ [n] let ti = 1−W 2

i,i. SetX ∈ Rd×(d−k)

such that XTX = I . Without loss of generality we assume V T = I , i.e. A = UΣ, otherwise we replace X
by V TX . It thus suffices to prove that ∣∣∣∣∣∑

i

ti‖Ai,:X‖2
∣∣∣∣∣ ≤ 5ε ‖AX‖2. (15)

Using the triangle inequality, we get∣∣∣∣∣∑
i

ti‖Ai,:X‖2
∣∣∣∣∣ ≤

∣∣∣∣∣∑
i

ti‖Ai,:X‖2 −
∑
i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ (16)

+

∣∣∣∣∣∑
i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ . (17)

We complete the proof by deriving bounds on (16) and (17).

Bound on (16): It was proven in [1] that for every pair of k-subspaces S1, S2 in Rd there is u ≥ 0 and a
(k − 1)-subspace T ⊆ S1 such that the distance from every point p ∈ S1 to S2 equals to its distance to T
multiplied by u. By letting S1 denote the k-subspace that is spanned by the first k standard vectors of Rd,
letting S2 denote the k-subspace that is orthogonal to each column of X , and y ∈ Rk be a unit vector that is
orthogonal to T , we obtain that for every row vector p ∈ Rk,

‖(p,0)X‖2 = u2(py)2. (18)

After defining x = Σ1:k,1:ky/‖Σ1:k,1:ky‖, (16) is bounded by∑
i

ti‖(Ai,1:k,0)X‖2 =
∑
i

ti · u2‖Ai,1:ky‖2

= u2
∑
i

ti‖Ai,1:ky‖2

= u2
∑
i

ti‖Ui,1:kΣ1:k,1:ky‖2

= u2‖Σ1:k,1:ky‖2
∑
i

ti‖(Ui,1:k)x‖2. (19)

The left side of (19) is bounded by substituting p = Σj,1:k in (18) for j ∈ [k], as

u2‖Σ1:k,1:ky‖2 =

k∑
j=1

u2(Σj,1:ky)2 =

k∑
j=1

‖(Σj,1:k,0)X‖2

=

k∑
j=1

σ2
j ‖Xj,:‖2 ≤

d∑
j=1

σ2
d‖Xj,:‖2

= ‖ΣX‖2 = ‖UΣX‖2 = ‖AX‖2. (20)

The right hand side of (19) is bounded by∣∣∣∣∣∑
i

ti‖(Ui,1:k)x‖2
∣∣∣∣∣ =

∣∣∣∣∣∑
i

ti(Ui,1:k)TUi,1:k · xxT
∣∣∣∣∣ =

∣∣∣∣∣xxT ·∑
i

ti(Ui,1:k)TUi,1:k

∣∣∣∣∣
≤ ‖xxT ‖ · ‖

∑
i

ti(Ui,1:k)TUi,1:k‖ (21)

≤ ‖
∑
i

ti(vi,1:k)T vi,1:k‖ ≤ ‖
∑
i

tiv
T
i vi‖ = ε (22)

11

where (21) is by the Cauchy-Schwartz inequality and the fact that ‖xxT ‖ = ‖x‖2 = 1, and in (22) we used
the assumption Ai,j = Ui,jσj = vi,j for every j ∈ [k].

Plugging (20) and (22) in (19) bounds (16) as

|
∑
i

ti‖(Ai,1:k,0)X‖2| ≤ ε‖AX‖2. (23)

Bound on (17): For every i ∈ [n] we have

‖Ai,:X‖2 − ‖(Ai,1:k,0)X‖2

= 2(Ai,1:k,0)XXT (0, Ai,k+1:d)T + ‖(0, Ai,k+1:d)X‖2

= 2Ai,1:kX1:k,:(Xk+1:d,:)
T (Ai,k+1:d)T + ‖(0, Ai,k+1:d)X‖2

= 2

k∑
j=1

Ai,jXj,:(Xk+1:d,:)
T (Ai,k+1:d)T + ‖(0, Ai,k+1:d)X‖2

=

k∑
j=1

2σjXj,:(Xk+1:d,:)
T · ‖σk+1:d‖vi,j(vi,k+1:d)T +

‖σk+1:d‖2‖(0, vi,k+1:d)X‖2. (24)

Summing this over i ∈ [n] with multiplicative weight ti and using the triangle inequality, will bound (17) by∣∣∣∣∣∑
i

ti‖Ai,:X‖2 −
∑
i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣

≤
∣∣∣∑

i

ti

k∑
j=1

2σjXj,:(Xk+1:d,:)
T (25)

· ‖σk+1:d‖vi,j(vi,k+1:d)T
∣∣∣

+

∣∣∣∣∣∑
i

ti‖σk+1:d‖2‖(0, vi,k+1:d)X‖2
∣∣∣∣∣ . (26)

The right hand side of (25) is bounded by∣∣∣∣∣
k∑

j=1

2σjXj,:(Xk+1:d)T · ‖σk+1:d‖
∑
i

tivi,j(vi,k+1:d)T

∣∣∣∣∣
≤

k∑
j=1

2σj‖Xj,:Xk+1:d‖ · ‖σk+1:d‖‖
∑
i

tivi,jvi,k+1:d‖ (27)

≤
k∑

j=1

(εσ2
j ‖Xj,:‖2 +

‖σk+1:d‖2

ε
‖
∑
i

tivi,jvi,k+1:d‖2) (28)

≤ 2ε‖AX‖2, (29)

where (27) is by the Cauchy-Schwartz inequality, (28) is by the inequality 2ab ≤ a2 + b2. In (29) we used the
fact that

∑
i ti(vi,1:k)T vi,k+1:d is a block in the matrix

∑
i tiviv

T
i , and

‖σk+1:d‖2 ≤ ‖AX‖2 and
k∑

j=1

σ2
j ‖Xj,:‖2

= ‖Σ1:k,1:kX1:k,:‖2 ≤ ‖ΣX‖2 ≤ ‖AX‖2.

(30)

Next, we bound (26). Let Y ∈ Rd×k such that Y TY = I and Y TX = 0. Hence, the columns of Y span the
k-subspace that is orthogonal to each of the (d − k) columns of X . By using the Pythagorean Theorem and

12

then the triangle inequality,

‖σk+1:d‖2|
∑
i

ti‖(0, vi,k+1:d)X‖2| (31)

=‖σk+1:d‖2|
∑
i

ti‖(0, vi,k+1:d)‖2

−
∑
i

ti‖(0, vi,k+1:d)Y ‖2|

≤ ‖σk+1:d‖2|
∑
i

ti‖vi,k+1:d‖2| (32)

+ ‖σk+1:d‖2|
∑
i

ti‖(0, vi,k+1:d)Y ‖2|. (33)

For bounding (33), observe that Y corresponds to a (d − k) subspace, and (0, vi,k+1:d) is contained in the
(d− k) subspace that is spanned by the last (d− k) standard vectors. Using same observations as above (18),
there is a unit vector y ∈ Rd−k such that for every i ∈ [n] ‖(0, vi,k+1:d)Y ‖2 = ‖(vi,k+1:d)y‖2. Summing
this over ti yields,

|
∑
i

ti‖(0, vi,k+1:d)Y ‖2| = |
∑
i

ti‖vi,k+1:dy‖2|

= |
∑
i

ti

d∑
j=k+1

v2i,jy
2
j−k| = |

d∑
j=k+1

y2j−k

∑
i

tiv
2
i,j |.

Replacing (33) in (31) by the last inequality yields

‖σk+1:d‖2|
∑
i

ti‖(0, vi,k+1:d)X‖2|

≤ ‖σk+1:d‖2(|
∑
i

tiv
2
i,d+1|+

d∑
j=k+1

y2j−k‖
∑
i

tiviv
T
i ‖) (34)

≤ ‖σk+1:d‖2(ε+ ε

d∑
j=k+1

y2j−k) ≤ 2ε‖AX‖2, (35)

where (34) follows since
∑

i tiv
2
i,j is an entry in the matrix

∑
i tiviv

T
i , in (35) we used (30) and the fact that

‖y‖2 = 1. Plugging (29) in (25) and (35) in(20) gives the desired bound on (17) as

|
∑
i

ti‖Ai,:X‖2 −
∑
i

ti‖(Ai,1:k,0)X‖2| ≤ 4ε‖AX‖2.

Finally, using (23) in (16) and the last inequality in (17), proves the desired bound of (15).

C Analysis of Algorithm 1

Algorithm 1 contains the full listing of the construction algorithm for the coreset for sum of vectors.

Input: A: n input points a1, . . . , an in Rd; ε > 0: the nominal approximation error.

Output: a non-negative vector w ∈ [0,∞)n of only O(1/ε2) non-zeros entries which are the non-negative
weights of the corresponding points selected for the coreset.

Analysis: The first step is to translate and scale the input points such that the mean is zero and the variance is 1
(lines 4–5). After initialization (lines 6–8), we begin the main iterative steps of the algorithm. First we find the
index j of the farthest point from the initial point a1. The next point added to the coreset is denoted by p = aj .
Next we compute ‖c− p‖, the distance from the current point p to the previous center c. In order to do this we
compute G = W ′ ·AJ where J is the set of all previously added indices j, starting with the first point, and W ′

is defined in line 11. Note that G also gives us the error of the current iteration, ε = trace(GGT) (line 23).
Next we find the point c′ on the line from c to p that is closest to the origin, and find the distance between the
current center c and the new center c′ (lines 12–16). Finally, the ratio of distances between the current center,
farthest point, and new center give us a value for α, the amount by which we update the coreset weights (lines
17–20).

13

Algorithm 1 CORESET-SUMVECS(A, ε)

1: Input: A: n input points a1, . . . , an in Rd
2: Input: ε ∈ (0, 1): the approximation error
3: Output: w ∈ [0,∞)n: non-negative weights
4: A← A−mean(A)
5: A← cA where c is a constant s.t. var(A) = 1
6: w ← (1, 0, . . . , 0)
7: j ← 1, p← Aj , J ← {j}
8: Mj =

{
y2 | y = A ·ATj

}

9: for i = 1, . . . , n do
10: j ← argmin {wJ ·MJ}
11: G←W ′ ·AJ where W ′i,i =

√
wi

12: ‖c‖ = ‖GTG)‖2F
13: c · p =

∑|J|
i=1Gp

T

14: ‖c− p‖ =
√

1 + ‖c‖2 − c · p
15: compp(v) = 1/‖c− p‖ − (c · p) /‖c− p‖
16: ‖c− c′‖ = ‖c− p‖ − compp(v)
17: α = ‖c− c′‖/‖c− p‖
18: w ← w(1− |α|)
19: wj ← wj + α
20: w ← w/

∑n
i=1 wi

21: Mj ←
{
y2 | y = A ·ATj

}

22: J ← J ∪ {j}
23: if ‖c‖2 ≤ ε then
24: break
25: end if
26: end for
27: return w

The algorithm then updates the recorded indices J , update the lookup table M of previously computed row
inner products for subsequent iterations, and repeat lines 10–26 until the loop terminates. The terminating
conditions depend on the system specification – we may wish to bound the error, or the number of iterations.
Moreover, if the update value α is below a specified threshold, we may also terminate the loop if such threshold
is lower than a desired level of accuracy.

D Analysis of Algorithm 2

Algorithm 2 contains the full listing of the construction algorithm for the coreset for low rank approximation.

Input: A: n input points a1, . . . , an in Rd; k ≥ 1: the approximation rank; ε > 0: the nominal approximation
error.

Output: a non-negative vector w ∈ [0,∞)n of only O(1/ε2) non-zeros entries which are the non-negative
weights of the corresponding points selected for the coreset.

Analysis: Algorithm 2 starts by computing the k-SVD of input matrix A (line 5). This is possible because we
use the streaming model, so that the input arrives in small blocks. For each block we perform the computation
to create its coreset. By merging the resulting coresets we preserve sparsity and can aggregate the coreset for
A. Lines 7–8 use the k-SVD of this small input block to restructure the input matrix A into a combination
of the columns of A corresponding to its k largest eigenvalues and the remaining columns of D, the singular
values of A.

After initialization, we begin the main iterative steps of the algorithm. Note that lines 12–19 of Algorithm 2
are heavily optimized but functionally equivalent to lines 9–27 of Algorithm 1 – the end result in both cases is
a computation of α at each iteration of the for loop, and an update to the vector of weights w. First we find the
index j of the farthest point from the initial point a1 (Line 13). The next point is implicitly added to the coreset
is by updating w, and in turn affects the next farthest point as the computation wXXi is performed iteratively.
The variables a, b, c implicitly compute the distance from the current point p to the previous center q, the error
of the current iteration ε, the point on the line from the p to q that is closest to the origin, and the distance
between the current center q and the new center q′. Finally, line 17 updates α and line 18 updates w using the
new value of α.

14

Algorithm 2 CORESET-LOWRANK(A, k, ε)

1: Input: A: A sparse n×d matrix
2: Input: k ∈ Z>0: the approximation rank
3: Input: ε ∈

(
0, 12
)
: the approximation error

4: Output: w ∈ [0,∞)n: non-negative weights
5: Compute UΣV T = A, the SVD of A
6: R← Σk+1:d,k+1:d

7: P ← matrix whose i-th row ∀i ∈ [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

‖R‖F)
9: X ← matrix whose i-th row ∀i ∈ [n] is

10: Xi = Pi/‖Pi‖F
11: w ← (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌈
k2/ε2

⌉
do

13: j ← argmini=1,...,n{wXXi}
14: a =

∑n
i=1 wi(X

T
i Xj)

2

15: b =
1− ‖PXj‖2F +

∑n
i=1 wi‖PXi‖2F

‖P‖2F
16: c = ‖wX‖2F
17: α = (1− a+ b) / (1 + c− 2a)
18: w ← (1− α)Ij + αw
19: end for
20: return w

The algorithm terminates after k2/ε2 iterations, and we omit the explicit computation of ε since it is implied
in the guarantees proven in the following section. As in Algorithm 1, the terminating conditions depend on the
system specifications. We may wish to bound the error, or the number of iterations, or the update value α.

E Experimental Results – Synthetic Data

Synthetic data provides us with a ground-truth to objectively evaluate the quality, efficiency, and scalability of
our system.

Approximation error. We carried out experiments on a moderate size sparse input of (5000×1000) to evaluate
the relationship between the error ε and the number of iterations of the algorithm N . for a hyperplane coreset
(i.e. k = d−1). Fig. 1d shows how the characteristic function of the approximation error f(N) behaves with
respect to increasing number of iterations N (normalized to N = n). Note that three of the plotted functions
f(N) converge as N increases, while the last one ramps up and then increases linearly. From this we conclude
that ε decreases at a true rate somewhere between the rates of increase of f(N) = N logN and f(N) = N2.
The true characteristic f∗(N)+C indicates the theoretical breakpoint between increasing and decreasing error.

We then compare our coreset against uniform sampling and weighted random sampling, using the squared
norms ofU (A = UΣV T) as the weights. Tests were carried out on a small subset of Wikipedia (n=1000, d=
257K) to ensure representative data structure. Figure 1a–1c shows the results. As expected, approximation error
decreases with coreset size, as well as the subspace rank. (Note that since our algorithm is deterministic, there
is zero variance in the approximation error.)

Running time. We evaluate the efficiency of our algorithm by comparing the running time (coreset construc-
tion) against the built-in MATLAB svds function. Fig. 2a shows the runtimes of our coreset compared against
MATLAB svds. We used a fixed dimensionality d = 1000, approximation rank k = 100, sparsity 10−6 and
evaluated construction time for increasing input size N . The results are plotted as a function of the log of the
input size to show the order of magnitude difference in performance.

Besides the fact that our algorithm minimizes the Frobenius norm and support PCA, an important advantage
of our technique compared to existing coreset constructions is that it is much numerically stable and faster in
practice. For example, the result of [7] is based on the technique of [3]. This technique needs to compute many
inverse of matrices during the computation, which makes it not only less stable but also very inefficient.

F Experimental Results – Latent Semantic Analysis of Wikipedia

For these experiments we used three types of machines:

15

Approximation rank k
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
un

ni
ng

 ti
m

e
(m

in
)

0

100

200

300

400

500

600

700

800

A[10000x100000], sparsity=0.033

MATLAB svds
SVD Coreset

MATLAB
crashed

 SVD Coreset

 scales up arbitrarily

(a) Relative error (k = 10)

Figure 2: Fig. 2a shows the runtimes of our coreset compared against MATLAB svds.

1. Regular desktop computer with quad-core Intel Xeon E5640 CPU @2.67GHz, 6GB RAM (low spec).

2. Modern laptop with quad-core Intel i7-4500U CPU @1.8GHz, 16GB RAM (medium spec).

3. High-performance computing clusters on Amazon Web Services (AWS) as well as local clusters, e.g.
an EC2 c3.8xlarge machine with 32-core Intel Xeon E5-2680v2 vCPU @2.8Ghz, 60GB RAM (high
spec).

We compute the coreset using a buffer stream of size N/2, parallelized across 64 nodes on Amazon Web
Services (AWS) clusters. The 64 individual coresets are then unified into a single coreset. Figure 1e shows the
running time of our algorithm compared against svds for increasing dimensionality d and a fixed input size
n=3.69M (number of documents). Note that this is a log-scale plot of dimensionality against running time, so
the differences in performance represent orders of magnitude. The desktop computer with 6GB RAM crashed
for d=2000 and was omitted from the plot. The same algorithm running on the cluster (blue plot) outperformed
the laptop (red plot), which also quickly ran out of memory. Comparing svds computation on AWS against
our coreset (green plot) highlights the difference in performance for identical computer architectures. As the
dimensionality d increases, any algorithm dependent on d will eventually crash, given a large enough input.

We show that our coreset can be used to create a topic model of k=100 topics for the entire English Wikipedia,
with a fixed memory requirement and coreset size of just N = 1000 words. We compute the projection of the
coresets on a subspace of rank k to generate the topics. Table 1 shows a selection of 10 of the most highly
weighted words from 4 of the computed topics. The total running time, including coreset construction, merging
and topic extraction was 140.66 min.

A cursory glance at the words suggests that the “themes” of these topics are (1) urban planning, (2) economy
and finance, (3) road safety, (4) entertainment. This serves as a qualitative proof of concept that our system can
produce meaningful results topics on very large datasets. We view this result optimistically, as proof of concept
that our system can be used to compute a topic model of the English language. A more objective analysis would
involve using a corpus of tagged documents as a ground truth, projecting the corresponding vectors onto our
topics, and comparing the classification error against topics computed by other systems. This is the subject of
our ongoing work.

16

Topic 1 Topic 2 Topic 3 Topic 4
US credit drivers comedy
highway risk distracted nominated
bridge plan phone actress
road union driver awards
river interest text television
traffic rating car episode
downtown earnings brain musical
bus capital accidents writing
harbor liquidity visual tv
street asset crash directing
· · · · · · · · · · · ·

Table 1: Example of the highest-weighted words from 4 topics of the k = 100 topic model of
Wikipedia computed by our algorithm

17

	NIPS2016-main
	Introduction
	Problem Formulation
	Related Work
	Key Contributions

	Technical Solution
	Proof of and , Theorem0 ??1 3

	Coreset for Sum of Vectors (k = 0)
	Coreset for Low Rank Approximation (k > 0)
	Evaluation and Experimental Results
	Latent Semantic Analysis of Wikipedia

	Conclusion

