
Universal Correspondence Network

Christopher B. Choy
Stanford University

chrischoy@ai.stanford.edu

JunYoung Gwak
Stanford University

jgwak@ai.stanford.edu

Silvio Savarese
Stanford University

ssilvio@stanford.edu

Manmohan Chandraker
NEC Laboratories America, Inc.

manu@nec-labs.com

Abstract

We present a deep learning framework for accurate visual correspondences and
demonstrate its effectiveness for both geometric and semantic matching, spanning
across rigid motions to intra-class shape or appearance variations. In contrast
to previous CNN-based approaches that optimize a surrogate patch similarity
objective, we use deep metric learning to directly learn a feature space that preserves
either geometric or semantic similarity. Our fully convolutional architecture, along
with a novel correspondence contrastive loss allows faster training by effective
reuse of computations, accurate gradient computation through the use of thousands
of examples per image pair and faster testing with O(n) feed forward passes for
n keypoints, instead of O(n2) for typical patch similarity methods. We propose
a convolutional spatial transformer to mimic patch normalization in traditional
features like SIFT, which is shown to dramatically boost accuracy for semantic
correspondences across intra-class shape variations. Extensive experiments on
KITTI, PASCAL, and CUB-2011 datasets demonstrate the significant advantages
of our features over prior works that use either hand-constructed or learned features.

1 Introduction

Correspondence estimation is the workhorse that drives several fundamental problems in computer
vision, such as 3D reconstruction, image retrieval or object recognition. Applications such as
structure from motion or panorama stitching that demand sub-pixel accuracy rely on sparse keypoint
matches using descriptors like SIFT [22]. In other cases, dense correspondences in the form of stereo
disparities, optical flow or dense trajectories are used for applications such as surface reconstruction,
tracking, video analysis or stabilization. In yet other scenarios, correspondences are sought not
between projections of the same 3D point in different images, but between semantic analogs across
different instances within a category, such as beaks of different birds or headlights of cars. Thus, in
its most general form, the notion of visual correspondence estimation spans the range from low-level
feature matching to high-level object or scene understanding.

Traditionally, correspondence estimation relies on hand-designed features or domain-specific priors.
In recent years, there has been an increasing interest in leveraging the power of convolutional neural
networks (CNNs) to estimate visual correspondences. For example, a Siamese network may take a
pair of image patches and generate their similiarity as the output [1, 34, 35]. Intermediate convolution
layer activations from the above CNNs are also usable as generic features.

However, such intermediate activations are not optimized for the visual correspondence task. Such
features are trained for a surrogate objective function (patch similarity) and do not necessarily form a
metric space for visual correspondence and thus, any metric operation such as distance does not have

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Figure 1: Various types of correspondence problems have traditionally required different specialized methods:
for example, SIFT or SURF for sparse structure from motion, DAISY or DSP for dense matching, SIFT Flow or
FlowWeb for semantic matching. The Universal Correspondence Network accurately and efficiently learns a
metric space for geometric correspondences, dense trajectories or semantic correspondences.

explicit interpretation. In addition, patch similarity is inherently inefficient, since features have to be
extracted even for overlapping regions within patches. Further, it requires O(n2) feed-forward passes
to compare each of n patches with n other patches in a different image.

In contrast, we present the Universal Correspondence Network (UCN), a CNN-based generic dis-
criminative framework that learns both geometric and semantic visual correspondences. Unlike many
previous CNNs for patch similarity, we use deep metric learning to directly learn the mapping, or
feature, that preserves similarity (either geometric or semantic) for generic correspondences. The
mapping is, thus, invariant to projective transformations, intra-class shape or appearance variations,
or any other variations that are irrelevant to the considered similarity. We propose a novel correspon-
dence contrastive loss that allows faster training by efficiently sharing computations and effectively
encoding neighborhood relations in feature space. At test time, correspondence reduces to a nearest
neighbor search in feature space, which is more efficient than evaluating pairwise patch similarities.

The UCN is fully convolutional, allowing efficient generation of dense features. We propose an
on-the-fly active hard-negative mining strategy for faster training. In addition, we propose a novel
adaptation of the spatial transformer [13], called the convolutional spatial transformer, desgined to
make our features invariant to particular families of transformations. By learning the optimal feature
space that compensates for affine transformations, the convolutional spatial transformer imparts the
ability to mimic patch normalization of descriptors such as SIFT. Figure 1 illustrates our framework.

The capabilities of UCN are compared to a few important prior approaches in Table 1. Empirically,
the correspondences obtained from the UCN are denser and more accurate than most prior approaches
specialized for a particular task. We demonstrate this experimentally by showing state-of-the-art
performances on sparse SFM on KITTI, as well as dense geometric or semantic correspondences on
both rigid and non-rigid bodies in KITTI, PASCAL and CUB datasets.

To summarize, we propose a novel end-to-end system that optimizes a general correspondence
objective, independent of domain, with the following main contributions:

• Deep metric learning with an efficient correspondence constrastive loss for learning a feature
representation that is optimized for the given correspondence task.
• Fully convolutional network for dense and efficient feature extraction, along with fast active hard

negative mining.
• Fully convolutional spatial transformer for patch normalization.
• State-of-the-art correspondences across sparse SFM, dense matching and semantic matching,

encompassing rigid bodies, non-rigid bodies and intra-class shape or appearance variations.

2 Related Works
Correspondences Visual features form basic building blocks for many computer vision applica-
tions. Carefully designed features and kernel methods have influenced many fields such as structure

2



Figure 2: System overview: The network is fully convolutional, consisting of a series of convolutions,
pooling, nonlinearities and a convolutional spatial transformer, followed by channel-wise L2 normalization and
correspondence contrastive loss. As inputs, the network takes a pair of images and coordinates of corresponding
points in these images (blue: positive, red: negative). Features that correspond to the positive points (from both
images) are trained to be closer to each other, while features that correspond to negative points are trained to be
a certain margin apart. Before the last L2 normalization and after the FCNN, we placed a convolutional spatial
transformer to normalize patches or take larger context into account.

Features Dense Geometric Corr. Semantic Corr. Trainable Efficient Metric Space
SIFT [22] 7 3 7 7 3 7
DAISY [28] 3 3 7 7 3 7
Conv4 [21] 3 7 3 3 3 7
DeepMatching [25] 3 3 7 7 7 3
Patch-CNN [34] 3 3 7 3 7 7
LIFT [33] 7 3 7 3 3 3
Ours 3 3 3 3 3 3

Table 1: Comparison of prior state-of-the-art methods with UCN (ours). The UCN generates dense and accurate
correspondences for either geometric or semantic correspondence tasks. The UCN directly learns the feature
space to achieve high accuracy and has distinct efficiency advantages, as discussed in Section 3.

from motion, object recognition and image classification. Several hand-designed features, such as
SIFT, HOG, SURF and DAISY have found widespread applications [22, 3, 28, 8].

Recently, many CNN-based similarity measures have been proposed. A Siamese network is used in
[34] to measure patch similarity. A driving dataset is used to train a CNN for patch similarity in [1],
while [35] also uses a Siamese network for measuring patch similarity for stereo matching. A CNN
pretrained on ImageNet is analyzed for visual and semantic correspondence in [21]. Correspondences
are learned in [16] across both appearance and a global shape deformation by exploiting relationships
in fine-grained datasets. In contrast, we learn a metric space in which metric operations have direct
interpretations, rather than optimizing the network for patch similarity and using the intermediate
features. For this, we implement a fully convolutional architecture with a correspondence contrastive
loss that allows faster training and testing and propose a convolutional spatial transformer for local
patch normalization.

Metric learning using neural networks Neural networks are used in [5] for learning a mapping
where the Euclidean distance in the space preserves semantic distance. The loss function for learning
similarity metric using Siamese networks is subsequently formalized by [7, 12]. Recently, a triplet
loss is used by [29] for fine-grained image ranking, while the triplet loss is also used for face
recognition and clustering in [26]. Mini-batches are used for efficiently training the network in [27].

CNN invariances and spatial transformations A CNN is invariant to some types of transfor-
mations such as translation and scale due to convolution and pooling layers. However, explicitly
handling such invariances in forms of data augmentation or explicit network structure yields higher
accuracy in many tasks [17, 15, 13]. Recently, a spatial transformer network is proposed in [13] to
learn how to zoom in, rotate, or apply arbitrary transformations to an object of interest.

Fully convolutional neural network Fully connected layers are converted in 1× 1 convolutional
filters in [20] to propose a fully convolutional framework for segmentation. Changing a regular CNN
to a fully convolutional network for detection leads to speed and accuracy gains in [11]. Similar to
these works, we gain the efficiency of a fully convolutional architecture through reusing activations

3



Figure 3: Correspondence contrastive loss takes three
inputs: two dense features extracted from images and a
correspondence table for positive and negative pairs.

Methods # examples per # feed forwards
image pair per test

Siamese Network 1 O(N2)
Triplet Loss 2 O(N)
Contrastive Loss 1 O(N)

Corres. Contrast. Loss > 103 O(N)

Table 2: Comparisons between metric learning meth-
ods for visual correspondence. Feature learning allows
faster test times. Correspondence contrastive loss al-
lows us to use many more correspondences in one pair
of images than other methods.

for overlapping regions. Further, since number of training instances is much larger than number of
images in a batch, variance in the gradient is reduced, leading to faster training and convergence.

3 Universal Correspondence Network

We now present the details of our framework. Recall that the Universal Correspondence Network is
trained to directly learn a mapping that preserves similarity instead of relying on surrogate features.
We discuss the fully convolutional nature of the architecture, a novel correspondence contrastive
loss for faster training and testing, active hard negative mining, as well as the convolutional spatial
transformer that enables patch normalization.
Fully Convolutional Feature Learning To speed up training and use resources efficiently, we
implement fully convolutional feature learning, which has several benefits. First, the network can
reuse some of the activations computed for overlapping regions. Second, we can train several
thousand correspondences for each image pair, which provides the network an accurate gradient for
faster learning. Third, hard negative mining is efficient and straightforward, as discussed subsequently.
Fourth, unlike patch-based methods, it can be used to extract dense features efficiently from images
of arbitrary sizes.

During testing, the fully convolutional network is faster as well. Patch similarity based networks such
as [1, 34, 35] require O(n2) feed forward passes, where n is the number of keypoints in each image,
as compared to only O(n) for our network. We note that extracting intermediate layer activations as
a surrogate mapping is a comparatively suboptimal choice since those activations are not directly
trained on the visual correspondence task.
Correspondence Contrastive Loss Learning a metric space for visual correspondence requires
encoding corresponding points (in different views) to be mapped to neighboring points in the feature
space. To encode the constraints, we propose a generalization of the contrastive loss [7, 12], called
correspondence contrastive loss. Let FI(x) denote the feature in image I at location x = (x, y). The
loss function takes features from images I and I ′, at coordinates x and x′, respectively (see Figure 3).
If the coordinates x and x′ correspond to the same 3D point, we use the pair as a positive pair that
are encouraged to be close in the feature space, otherwise as a negative pair that are encouraged to be
at least margin m apart. We denote s = 1 for a positive pair and s = 0 for a negative pair. The full
correspondence contrastive loss is given by

L =
1

2N

N∑
i

si‖FI(xi)−FI′(xi
′)‖2 + (1− si)max(0,m− ‖FI(x)−FI′(xi

′)‖)2 (1)

For each image pair, we sample correspondences from the training set. For instance, for KITTI
dataset, if we use each laser scan point, we can train up to 100k points in a single image pair. However
in practice, we used 3k correspondences to limit memory consumption. This allows more accurate
gradient computations than traditional contrastive loss, which yields one example per image pair.
We again note that the number of feed forward passes at test time is O(n) compared to O(n2) for
Siamese network variants [1, 35, 34]. Table 2 summarizes the advantages of a fully convolutional
architecture with correspondence contrastive loss.
Hard Negative Mining The correspondence contrastive loss in Eq. (1) consists of two terms. The
first term minimizes the distance between positive pairs and the second term pushes negative pairs to
be at least margin m away from each other. Thus, the second term is only active when the distance
between the features FI(xi) and FI′(x′

i) are smaller than the margin m. Such boundary defines the

4



(a) SIFT (b) Spatial transformer (c) Convolutional spatial transformer

Figure 4: (a) SIFT normalizes for rotation and scaling. (b) The spatial transformer takes the whole image
as an input to estimate a transformation. (c) Our convolutional spatial transformer applies an independent
transformation to features.

metric space, so it is crucial to find the negatives that violate the constraint and train the network to
push the negatives away. However, random negative pairs do not contribute to training since they are
are generally far from each other in the embedding space.

Instead, we actively mine negative pairs that violate the constraints the most to dramatically speed up
training. We extract features from the first image and find the nearest neighbor in the second image.
If the location is far from the ground truth correspondence location, we use the pair as a negative. We
compute the nearest neighbor for all ground truth points on the first image. Such mining process is
time consuming since it requires O(mn) comparisons for m and n feature points in the two images,
respectively. Our experiments use a few thousand points for n, with m being all the features on the
second image, which is as large as 22000. We use a GPU implementation to speed up the K-NN
search [10] and embed it as a Caffe layer to actively mine hard negatives on-the-fly.

Convolutional Spatial Transformer CNNs are known to handle some degree of scale and rotation
invariances. However, handling spatial transformations explicitly using data-augmentation or a
special network structure have been shown to be more successful in many tasks [13, 15, 16, 17]. For
visual correspondence, finding the right scale and rotation is crucial, which is traditionally achieved
through patch normalization [23, 22]. A series of simple convolutions and poolings cannot mimic
such complex spatial transformations.

To mimic patch normalization, we borrow the idea of the spatial transformer layer [13]. However,
instead of a global image transformation, each keypoint in the image can undergo an independent
transformation. Thus, we propose a convolutional version to generate the transformed activations,
called the convolutional spatial transformer. As demonstrated in our experiments, this is especially
important for correspondences across large intra-class shape variations.

The proposed transformer takes its input from a lower layer and for each output feature, applies an
independent spatial transformation. The transformation parameters are also extracted convolutionally.
Since they go through an independent transformation, the transformed activations are placed inside
a larger activation without overlap and then go through a successive convolution with the stride to
combine the transformed activations independently. The stride size has to be equal to the size of the
spatial transformer kernel size. Figure 4 illustrates the convolutional spatial transformer module.

4 Experiments

We use Caffe [14] package for implementation. Since it does not support the new layers we propose,
we implement the correspondence contrastive loss layer and the convolutional spatial transformer
layer, the K-NN layer based on [10] and the channel-wise L2 normalization layer. We did not use
flattening layer nor the fully connected layer to make the network fully convolutional, generating
features at every fourth pixel. For accurate localization, we then extract features densely using
bilinear interpolation to mitigate quantization error for sparse correspondences. Please refer to the
supplementary materials for the network implementation details and visualization.

For each experiment setup, we train and test three variations of networks. First, the network has
hard negative mining and spatial transformer (Ours-HN-ST). Second, the same network without
spatial transformer (Ours-HN). Third, the same network without spatial transformer and hard negative
mining, providing random negative samples that are at least certain pixels apart from the ground

5



method SIFT-NN [22] HOG-NN [8] SIFT-flow [19] DaisyFF [31] DSP [18] DM best (1/2) [25] Ours-HN Ours-HN-ST
MPI-Sintel 68.4 71.2 89.0 87.3 85.3 89.2 91.5 90.7
KITTI 48.9 53.7 67.3 79.6 58.0 85.6 86.5 83.4

Table 3: Matching performance PCK@10px on KITTI Flow 2015 [24] and MPI-Sintel [6]. Note that DaisyFF,
DSP, DM use global optimization whereas we only use the raw correspondences from nearest neighbor matches.

(a) PCK performance for dense features NN (b) PCK performance on keypoints NN

Figure 5: Comparison of PCK performance on KITTI raw dataset (a) PCK performance of the densely extracted
feature nearest neighbor (b) PCK performance for keypoint features nearest neighbor and the dense CNN feature
nearest neighbor

(a) Original image pair and keypoints (b) SIFT [22] NN matches

(c) DAISY [28] NN matches (d) Ours-HN NN matches

Figure 6: Visualization of nearest neighbor (NN) matches on KITTI images (a) from top to bottom, first and
second images and FAST keypoints and dense keypoints on the first image (b) NN of SIFT matches on second
image. (c) NN of dense DAISY matches on second image. (d) NN of our dense UCN matches on second image.

truth correspondence location instead (Ours-RN). With this configuration of networks, we verify the
effectiveness of each component of Universal Correspondence Network.
Datasets and Metrics We evaluate our UCN on three different tasks: geometric correspondence,
semantic correspondence and accuracy of correspondences for camera localization. For geometric
correspondence (matching images of same 3D point in different views), we use two optical flow
datasets from KITTI 2015 Flow benchmark and MPI Sintel dataset and split their training set into
a training and a validation set individually. The exact splits are available on the project website.
alidation For semantic correspondences (finding the same functional part from different instances),
we use the PASCAL-Berkeley dataset with keypoint annotations [9, 4] and a subset used by FlowWeb
[36]. We also compare against prior state-of-the-art on the Caltech-UCSD Bird dataset[30]. To test the
accuracy of correspondences for camera motion estimation, we use the raw KITTI driving sequences
which include Velodyne scans, GPS and IMU measurements. Velodyne points are projected in
successive frames to establish correspondences and any points on moving objects are removed.

To measure performance, we use the percentage of correct keypoints (PCK) metric [21, 36, 16] (or
equivalently “accuracy@T” [25]). We extract features densely or on a set of sparse keypoints (for
semantic correspondence) from a query image and find the nearest neighboring feature in the second
image as the predicted correspondence. The correspondence is classified as correct if the predicted
keypoint is closer than T pixels to ground-truth (in short, PCK@T ). Unlike many prior works, we
do not apply any post-processing, such as global optimization with an MRF. This is to capture the
performance of raw correspondences from UCN, which already surpasses previous methods.
Geometric Correspondence We pick random 1000 correspondences in each KITTI or MPI Sintel
image during training. We consider a correspondence as a hard negative if the nearest neighbor in

6



aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
conv4 flow 28.2 34.1 20.4 17.1 50.6 36.7 20.9 19.6 15.7 25.4 12.7 18.7 25.9 23.1 21.4 40.2 21.1 14.5 18.3 33.3 24.9
SIFT flow 27.6 30.8 19.9 17.5 49.4 36.4 20.7 16.0 16.1 25.0 16.1 16.3 27.7 28.3 20.2 36.4 20.5 17.2 19.9 32.9 24.7
NN transfer 18.3 24.8 14.5 15.4 48.1 27.6 16.0 11.1 12.0 16.8 15.7 12.7 20.2 18.5 18.7 33.4 14.0 15.5 14.6 30.0 19.9
Ours RN 31.5 19.6 30.1 23.0 53.5 36.7 34.0 33.7 22.2 28.1 12.8 33.9 29.9 23.4 38.4 39.8 38.6 17.6 28.4 60.2 36.0
Ours HN 36.0 26.5 31.9 31.3 56.4 38.2 36.2 34.0 25.5 31.7 18.1 35.7 32.1 24.8 41.4 46.0 45.3 15.4 28.2 65.3 38.6
Ours HN-ST 37.7 30.1 42.0 31.7 62.6 35.4 38.0 41.7 27.5 34.0 17.3 41.9 38.0 24.4 47.1 52.5 47.5 18.5 40.2 70.5 44.0
Table 4: Per-class PCK on PASCAL-Berkeley correspondence dataset [4] (α = 0.1, L = max(w, h)).

Query Ground Truth Ours HN-ST VGG conv4_3 NN Query Ground Truth Ours HN-ST VGG conv4_3 NN

Figure 7: Qualitative semantic correspondence results on PASCAL [9] correspondences with Berkeley
keypoint annotation [4] and Caltech-UCSD Bird dataset [30].

the feature space is more than 16 pixels away from the ground truth correspondence. We used the
same architecture and training scheme for both datasets. Following convention [25], we measure
PCK at 10 pixel threshold and compare with the state-of-the-art methods on Table 3. SIFT-flow [19],
DaisyFF [31], DSP [18], and DM best [25] use additional global optimization to generate more
accurate correspondences. On the other hand, just our raw correspondences outperform all the
state-of-the-art methods. We note that the spatial transformer does not improve performance in this
case, likely due to overfitting to a smaller training set. As we show in the next experiments, its
benefits are more apparent with a larger-scale dataset and greater shape variations. Note that though
we used stereo datasets to generate a large number of correspondences, the result is not directly
comparable to stereo methods without a global optimization and epipolar geometry to filter out the
noise and incorporate edges.

We also used KITTI raw sequences to generate a large number of correspondences, and we split
different sequences into train and test sets. The details of the split is on the supplementary material.
We plot PCK for different thresholds for various methods with densely extracted features on the larger
KITTI raw dataset in Figure 5a. The accuracy of our features outperforms all traditional features
including SIFT [22], DAISY [28] and KAZE [2]. Due to dense extraction at the original image scale
without rotation, SIFT does not perform well. So, we also extract all features except ours sparsely on
SIFT keypoints and plot PCK curves in Figure 5b. All the prior methods improve (SIFT dramatically
so), but our UCN features still perform significantly better even with dense extraction. Also note
the improved performance of the convolutional spatial transformer. PCK curves for geometric
correspondences on individual semantic classes such as road or car are in supplementary material.
Semantic Correspondence The UCN can also learn semantic correspondences invariant to intra-
class appearance or shape variations. We independently train on the PASCAL dataset [9] with various
annotations [4, 36] and on the CUB dataset [30], with the same network architecture.

We again use PCK as the metric [32]. To account for variable image size, we consider a predicted
keypoint to be correctly matched if it lies within Euclidean distance α ·L of the ground truth keypoint,
where L is the size of the image and 0 < α < 1 is a variable we control. For comparison, our
definition of L varies depending on the baseline. Since intraclass correspondence alignment is a
difficult task, preceding works use either geometric [18] or learned [16] spatial priors. However, even
our raw correspondences, without spatial priors, achieve stronger results than previous works.

As shown in Table 4 and 5, our approach outperforms that of Long et al.[21] by a large margin on the
PASCAL dataset with Berkeley keypoint annotation, for most classes and also overall. Note that our

7



mean α = 0.1 α = 0.05 α = 0.025
conv4 flow[21] 24.9 11.8 4.08

SIFT flow 24.7 10.9 3.55
fc7 NN 19.9 7.8 2.35
ours-RN 36.0 21.0 11.5
ours-HN 38.6 23.2 13.1

ours-HN-ST 44.0 25.9 14.4

Table 5: Mean PCK on PASCAL-Berkeley cor-
respondence dataset [4] (L = max(w, h)). Even
without any global optimization, our nearest neigh-
bor search outperforms all methods by a large mar-
gin.

Figure 8: PCK on CUB dataset [30], compared with
various other approaches including WarpNet [16] (L =√
w2 + h2.)

Features SIFT [22] DAISY [28] SURF [3] KAZE [2] Agrawal et al. [1] Ours-HN Ours-HN-ST
Ang. Dev. (deg) 0.307 0.309 0.344 0.312 0.394 0.317 0.325
Trans. Dev.(deg) 4.749 4.516 5.790 4.584 9.293 4.147 4.728

Table 6: Essential matrix decomposition performance using various features. The performance is measured as
angular deviation from the ground truth rotation and the angle between predicted translation and the ground
truth translation. All features generate very accurate estimation.

result is purely from nearest neighbor matching, while [21] uses global optimization too. We also
train and test UCN on the CUB dataset [30], using the same cleaned test subset as WarpNet [16]. As
shown in Figure 8, we outperform WarpNet by a large margin. However, please note that WarpNet is
an unsupervised method. Please see Figure 7 for qualitative matches. Results on FlowWeb datasets
are in supplementary material, with similar trends.

Finally, we observe that there is a significant performance improvement obtained through use of
the convolutional spatial transformer, in both PASCAL and CUB datasets. This shows the utility of
estimating an optimal patch normalization in the presence of large shape deformations.
Camera Motion Estimation We use KITTI raw sequences to get more training examples for this
task. To augment the data, we randomly crop and mirror the images and to make effective use of our
fully convolutional structure, we use large images to train thousands of correspondences at once.

We establish correspondences with nearest neighbor matching, use RANSAC to estimate the essential
matrix and decompose it to obtain the camera motion. Among the four candidate rotations, we choose
the one with the most inliers as the estimate Rpred, whose angular deviation with respect to the
ground truth Rgt is reported as θ = arccos

(
(Tr (R>

predRgt)− 1)/2
)
. Since translation may only be

estimated up to scale, we report the angular deviation between unit vectors along the estimated and
ground truth translation from GPS-IMU.

In Table 6, we list decomposition errors for various features. Note that sparse features such as SIFT are
designed to perform well in this setting, but our dense UCN features are still quite competitive. Note
that intermediate features such as [1] learn to optimize patch similarity, thus, our UCN significantly
outperforms them since it is trained directly on the correspondence task.

5 Conclusion

We have proposed a novel deep metric learning approach to visual correspondence, that is shown to be
advantageous over approaches that optimize a surrogate patch similarity objective. We propose several
innovations, such as a correspondence contrastive loss in a fully convolutional architecture, on-the-fly
active hard negative mining and a convolutional spatial transformer. These lend capabilities such as
more efficient training, accurate gradient computations, faster testing and local patch normalization,
which lead to improved speed or accuracy. We demonstrate in experiments that our features perform
better than prior state-of-the-art on both geometric and semantic correspondence tasks, even without
using any spatial priors or global optimization. In future work, we will explore applications for rigid
and non-rigid motion or shape estimation as well as applying global optimization towards applications
such as optical flow or dense stereo.

Acknowledgments
This work was part of C. Choy’s internship at NEC Labs. We acknowledge the support of Korea
Foundation of Advanced Studies, Toyota Award #122282, ONR N00014-13-1-0761, and MURI
WF911NF-15-1-0479.

8



References
[1] P. Agrawal, J. Carreira, and J. Malik. Learning to See by Moving. In ICCV, 2015.
[2] P. F. Alcantarilla, A. Bartoli, and A. J. Davison. Kaze features. In ECCV, 2012.
[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF). CVIU, 2008.
[4] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d pose annotations. In ICCV, 2009.
[5] J. Bromley, I. Guyon, Y. Lecun, E. Säckinger, and R. Shah. Signature verification using a Siamese time

delay neural network. In NIPS, 1994.
[6] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow

evaluation. In ECCV, 2012.
[7] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to

face verification. In CVPR, volume 1, June 2005.
[8] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object

Classes Challenge 2011 (VOC2011) Results.
[10] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud. K-nearest neighbor search: Fast gpu-based implemen-

tations and application to high-dimensional feature matching. In ICIP, 2010.
[11] R. Girshick. Fast R-CNN. ArXiv e-prints, Apr. 2015.
[12] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In

CVPR, 2006.
[13] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial Transformer Networks. NIPS,

2015.
[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:

Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
[15] H. Kaiming, Z. Xiangyu, R. Shaoqing, and J. Sun. Spatial pyramid pooling in deep convolutional networks

for visual recognition. In ECCV, 2014.
[16] A. Kanazawa, D. W. Jacobs, and M. Chandraker. WarpNet: Weakly Supervised Matching for Single-view

Reconstruction. ArXiv e-prints, Apr. 2016.
[17] A. Kanazawa, A. Sharma, and D. Jacobs. Locally Scale-invariant Convolutional Neural Network. In Deep

Learning and Representation Learning Workshop: NIPS, 2014.
[18] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial pyramid matching for fast dense correspon-

dences. In CVPR. IEEE, 2013.
[19] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. PAMI,

33(5), May 2011.
[20] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CVPR,

2015.
[21] J. Long, N. Zhang, and T. Darrell. Do convnets learn correspondence? In NIPS, 2014.
[22] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
[23] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal

regions. In BMVC, 2002.
[24] M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In CVPR, 2015.
[25] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. DeepMatching: Hierarchical Deformable Dense

Matching. Oct. 2015.
[26] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and

clustering. In CVPR, 2015.
[27] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric learning via lifted structured feature

embedding. In Computer Vision and Pattern Recognition (CVPR), 2016.
[28] E. Tola, V. Lepetit, and P. Fua. DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo.

PAMI, 2010.
[29] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu. Learning fine-grained

image similarity with deep ranking. In CVPR, 2014.
[30] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD Birds 200.

Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.
[31] H. Yang, W. Y. Lin, and J. Lu. DAISY filter flow: A generalized approach to discrete dense correspondences.

In CVPR, 2014.
[32] Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. PAMI, 2013.
[33] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. LIFT: Learned Invariant Feature Transform. In ECCV, 2016.
[34] S. Zagoruyko and N. Komodakis. Learning to Compare Image Patches via Convolutional Neural Networks.

CVPR, 2015.
[35] J. Zbontar and Y. LeCun. Computing the stereo matching cost with a CNN. In CVPR, 2015.
[36] T. Zhou, Y. Jae Lee, S. X. Yu, and A. A. Efros. Flowweb: Joint image set alignment by weaving consistent,

pixel-wise correspondences. In CVPR, June 2015.

9


