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Abstract

We investigate the statistical performance and computational efficiency of the
alternating minimization procedure for nonparametric tensor learning. Tensor
modeling has been widely used for capturing the higher order relations between
multimodal data sources. In addition to a linear model, a nonlinear tensor model has
been received much attention recently because of its high flexibility. We consider
an alternating minimization procedure for a general nonlinear model where the true
function consists of components in a reproducing kernel Hilbert space (RKHS).
In this paper, we show that the alternating minimization method achieves linear
convergence as an optimization algorithm and that the generalization error of the
resultant estimator yields the minimax optimality. We apply our algorithm to some
multitask learning problems and show that the method actually shows favorable
performances.

1 Introduction

Tensor modeling is widely used for capturing the higher order relations between several data sources.
For example, it has been applied to spatiotemporal data analysis [19], multitask learning [20}, [2, [14]]
and collaborative filtering [[15]. The success of tensor modeling is usually based on the low-rank
property of the target parameter. As in the matrix, the low-rank decomposition of tensors, e.g.,
canonical polyadic (CP) decomposition [10}11] and Tucker decomposition [31]], reduces the effective
dimension of the statistical model, improves the generalization error, and gives a better understanding
of the model based on an condensed representation of the target system.

Among several tensor models, linear models have been extensively studied from both theoretical
and practical points of views [16]. A difficulty of the tensor model analysis is that typical tensor
analysis problems usually fall under a non-convex problem and it is difficult to solve the problem.
To overcome the computational difficulty, several authors have proposed convex relaxation methods
[18 231191 30, 29]]. Unfortunately, however, convex relaxation methods lose statistical optimality in
favor of computational efficiency [28]].

Another promising approach is the alternating minimization procedure which alternately updates
each component of the tensor with the other fixed components. The method has shown a nice
performance in practice. Moreover, its theoretical analysis has also been given by several authors
[ 113016 3L 214 136, 27, 37]. These theoretical analyses indicate that the estimator given by the
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alternating minimization procedure has a good generalization error, with a mild dependency on the
size of the tensor if the initial solution is properly set. In addition to the alternating minimization
procedure, it has been shown that the Bayes estimator achieves the minimax optimality under quite
weak assumptions [28]].

Nonparametric models have also been proposed for capturing nonlinear relations [35) 24, 22]]. In
particular, [24]] extended the linear tensor learning to the nonparametric learning problem using
a kernel method and proposed a convex regularization method and an alternating minimization
method. Recently, [14}[12] showed that the Bayesian approach has good theoretical properties for the
nonparametric problem. In particular, it achieves the minimax optimality under weak assumptions.
However, from a practical point of view, the Bayesian approach is computationally expensive
compared with the alternating minimization approach. An interesting observation is that the practical
performance of the alternating minimization procedure is quite good [24] and is comparable to the
Bayesian one [[14], although its computational efficiency is much better than that of the Bayesian
one. Despite the practical usefulness of the alternating minimization, its statistical properties have
not been investigated yet in the general nonparametric model.

In this paper, we theoretically analyze the alternating minimization procedure in the nonparametric
model. We investigate its computational efficiency and analyze its statistical performance. It is shown
that, if the true function is included in a reproducing kernel Hilbert space (RKHS), then the algorithm
converges to an (a possibly local) optimal solution in linear rate, and the generalization error of the
estimator achieves the minimax optimality if the initial point of the algorithm is in the O(1) distance
from the true function. Roughly speaking, the theoretical analysis shows that

179 = £, = Op(dKn™ 7 log(dK) + dK (3/4)")

where f(t) is the estimated nonlinear tensor at the ¢th iteration of the alternating minimization
procedure, n is the sample size, d is the rank of the true tensor, K is the number of modes, and s is
the complexity of the RKHS. This indicates that the alternating minimization procedure can produce
a minimax optimal estimator after O(log(n)) iterations.

2 Problem setting: nonlinear tensor model

Here, we describe the model to be analyzed. Suppose that we are given n input-output pairs
{(x;,y;)}_, that are generated from the following system. The input 2; is a concatenation of K

variables, i.e., T; = (x,gl), e ,xEK)) € Xy x -+ x Xg = X, where each 15“ is an element of a set
X, and is generated from a distribution Pj. We consider the regression problem where the outputs

{yi}, are observed according to the nonparametric tensor model [24]:
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where {¢; }7_; represents an i.i.d. zero-mean noise and each f(*vv ) 18 @ component of the true function
included in some RKHS . .. In this regression problem, our objective is to estimate the true function
(@) = W,y = 4 T, f(*nk)(a:(k)) based on the observations {(x;,y;)}" ;.
This model has been applied to several problems such as multitask learning, recommendation system
and spatiotemporal data analysis. Although we focus on the squared loss regression problem, the

discussion in this paper can be easily generalized to Lipschitz continuous and strongly convex losses
as in [4].

Example 1: multitask learning Suppose that we have several tasks indexed by a two-dimensional
index (s,t) € [M;] x [M,][] and each task (s, ) is a regression problem for which there is a true
function gE; 1l (z) that takes an input feature w € X3. The ith input sample is given as x; = (s;, t;, w;),

which is a combination of task index (s;, ¢;) and input feature w;. By assuming that the true function
9[*5 4 is a linear combination of a few latent factors h,. as

grs,t] (1’) = Zg:l asﬂ"ﬁtﬂ"hr(’w) (217 = (S7ta U)))7 (2)

! We denote by [k] = {1,...,k}.




Algorithm 1 Alternating minimization procedure for nonlinear tensor estimation

Require: Training data D,, = {(z;, y;)},, the regularization parameter (™) jteration number 7.
Ensure: f=Y%_ 4 ") e, A(TT,C) as the estimator
fort=1,...,Tdo
Set firiy = Fegy) (V(r, k), and &, = o'~ (vr),
for (r, k) € {1,...,d} x{1,..., K} do
The (r, k)-element of £ is updated as

f('r’k): argmin { Z [ (f(r k)H for, k/)—i—z Upr H Forr e ) x5 } + Cn||f||'2}‘lr7k}~ 4)
S €t e | i k' #k e k=1
’[}r — ||.f(/r’k)||ns f(r,k) — fN(ITyk)/ﬁr-
endfor o _
Set f(r,k) = ferky (V(r, k)) and © Oy (V7).
end for

and the output is given as y; = g[*si ti](xi) + ¢; [20) 2, [14], then we can reduce the multitask

learning problem for estimating { 9ps t]}&t to the tensor estimation problem, where f(,.1)(s) =

Qs r, f(r,2) (t) = /Bt,rv f(r,3) (w) = h7‘(w)'

3 Alternating regularized least squares algorithm

To learn the nonlinear tensor factorization model (T)), we propose to optimize the regularized empirical
risk in an alternating way. That is, we optimize each component f(,. ) with the other fixed components

{ Jor w )}(T k")#(r,k)- Basically, we want to execute the following optimization problem:

{f(r )}, k) f(T k) EHr Kk
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where the first term is the loss function for measuring how our guess Ele Hszl fr,k) fits the data
and the second term is a regularization term for controlling the complexity of the learning function.
However, this optimization problem is not convex and is difficult to exactly solve.

We found that this computational difficulty could be overcome if we assume some additional assump-
tions and aim to achieve a better generalization error instead of exactly minimizing the training error.
The optimization procedure we discuss to obtain such an estimator is the alternating minimization
procedure, which minimizes the objective function (3) alternately with respect to each component
f(r,k)- For each component f(,. ), the objective function (3) is a convex function, and thus, it is easy
to obtain the optimal solution. Actually, the subproblem is reduced to a variant of the kernel ridge
regression, and the solution can be analytically obtained.

The algorithm we call alternating minimization procedure (AMP) is summarized in Algorithm [T}
After minimizing the objective (Eq. (d)), the obtained solution is normalized so that its empirical Lo-
norm becomes 1 to adjust the scaling factor freedom. The parameter C,, in Eq. (@) is a regularization
parameter that is appropriately chosen.

For theoretical simplicity, we consider the following equivalent constraint formula instead of the
penalization one (@):

n K 2
i i 1 . 2 ICONI P (k")
f(r,k) € argmin {n Z <y2 (r,k) H f( k') xz; Ur H (r',k )(ZCZ )

f(r.k)EHr,k 5 i=1 k'#£k r! k'=1
Iy I, <R

- (%)
where the parameter R is a regularization parameter for controlling the complexity of the estimated
function.



4 Assumptions and problem settings for the convergence analysis

Here, we prepare some assumptions for our theoretical analysis. First, we assume that the distribution
P(X) of the input feature x € X is a product measure of Py (X) on each X};. Thatis, Py(dX) =
Pi(dXy) x -+ X Pg(dXg) for X = (Xq,...,Xg) € X = Xy X --- X Xk. This is typically
assumed in the analysis of linear tensor estimation methods [13} 16} 3, 21} 1,136} 27} 137]. Thus, the
Lo-norm of a “rank-1" function f(z) = Hle fe(x(®)) can be decomposed into

||fH%2(PX) = Hf1||2L2(P1) X X ||fK||2LQ(PK)-

Hereafter, with a slight abuse of notations, we denote by || f||lz, = ||f|/z,(p,) for a function f :
X, — R. The inner product in the space Lo is denoted by (f,¢)r, := [ f(X)g(X)dPx(X).
Note that because of the construction of Py, it holds that (f, g)r, = Hszl (fx, gk) L, for functions
f@) =TI, fu(@®) and g(z) = [T/, gr(x®)) where z = (2D, ..., 2(K)) € x.

Next, we assume that the norm of the true function is bounded away from zero and from above.
Let the magnitude of the rth component of the true function be v, := || Hszl fiyllLe and the
normalized components be f(",) := f(*T),C)/||f(*T7k)HL2 (V(r, k).

Assumption 1 (Boundedness Assumption).

(A[T}F1) There exist 0 < vpmin < Umax Such that vmin < v < Omax (Vr=1,...,d).

(A1}2) The true function f, ,, is included in the RKHS H,y, i.e. f(. .y € Hpr (V(r,k)), and
there exists R > 0 such that max{vy, 1} fi7 1, < B (V(r,k)).

(Al}3) The kernel function ki) associated with the RKHS H, is bounded as
SUPex, Kk (@, 2) <1 (V(r, k).

(A[T}4) There exists L > 0 such that the noise is bounded as |e;| < L (a.s.).

Assumption (1] is a standard one for the analysis of the tensor model and the kernel regression
model. Note that the boundedness condition of the kernel gives that || f || = sup, ) |f(z*)] <
| fll%,.. forall f € H,. ) because the Cauchy-Schwarz inequality gives |{f, k(.5 (-, 2")))5, | <
Koy (8, 20))|| f[|5,.., for all z(¥). Thus, combining with (2), we also have || fi" [loo < R.
The last assumption (A[T}4) is a bit restrictive. However, this assumption can be replaced with a
Gaussian assumption. In that situation, we may use the Gaussian concentration inequality [[17] instead
of Talagrand’s concentration inequality in the proof.

Next, we characterize the complexity of each RKHS H,.;, by using the entropy number [33, 23]
The e-covering number N (e, G, Lo (Px)) with respect to L2(Px) is the minimal number of balls
with radius e measured by Lo(Py) needed to cover a set G C Lo(Px). The ith entropy number
ei(G, La(Py)) is defined as the infimum of € > 0 such that N'(¢, G, Ly) < 2¢=1 [23]. Intuitively, if
the entropy number is small, the space G is “simple”; otherwise, it is “complicated.”

Assumption 2 (Complexity Assumption). Let By, , be the unit ball of an RKHS H.,. .. There exist
0 < s < 1 and c such that

€i(By, ., L2(Px)) < ci” 2, (6)
foralll <r<dandl1 <k<K.

The optimal rate of the ordinary kernel ridge regression on the RKHS with Assumption [2]is given as
n- T [26]]. Next, we give a technical assumption about the L..-norm.

Assumption 3 (Infinity Norm Assumption). There exist 0 < so < 1 and cy such that
1 Flloo < 2l fllz, 2 IFN5, . (VF € Hop) (7)
foralll <r<dandl1 <k<K.

By Assumption ] this assumption is always satisfied for c; = 1 and s = 1. so < 1 is a nontrivial
situation and gives a tighter bound. We would like to note that this condition with sy < 1 is satisfied



by many practically used kernels such as the Gaussian kernel. In particular, it is satisfied if the kernel
is smooth so that H,. ;. is included in a Sobolev space W2:*2[0, 1]. More formal characterization of
this condition using the notion of a real interpolation space can be found in [26] and Proposition
2.10 of [5]].

Finally, we assume an incoherence condition on { f(*r Ic)}T‘JC' Roughly speaking, the incoherence

property of a set of functions { f(; ») },x means that components { f(, » }» are linearly independent
across different 1 < r < d on the same mode k. This is required to distinguish each component. An
analogous assumption has been assumed also in the literature of linear models [[13} 16} 13} 211136} 27]].

Definition 1 (Incoherence). A set of functions { f(r k) }r.x» Where f. iy € La(Py), is p-incoherent if,
forallk =1,..., K, it holds that

[ foriys foray) Lol < il fermy Lol for iyl (V7 #77).

Assumption 4 (Incoherence Assumption). There exists 1 > p* > 0 such that the true function
{f(’; k)}hk is p*-incoherent.

5 Linear convergence of alternating minimization procedure

In this section, we give the convergence analysis of the AMP algorithm. Under the assumptions
presented in the previous section, it will be shown that the AMP algorithm shows linear convergence
in the sense of optimization algorithm and achieves the minimax optimal rate in the sense of statistical
performance. Roughly speaking, if the initial solution is sufficiently close to the true function (namely,
in a distance of O(1)), then the solution generated by AMP linearly converges to the optimal solution

and the estimation accuracy of the final solution is given as O(dK n‘ﬁ) up to log(dK) factor.

We analyze how close the updated estimator is to the true one when the (r, k)th component is
updated from f(r k) to f(r k)" The tensor decomposition { f(, x) } -« of a nonlinear tensor model has a

freedom of scaling. Thus, we need to measure the accuracy based on a normalized representation to
avoid the scaling factor uncertainty. Let the normalized components of the estimator be f(, /) =

Forser N il (V07 ) € [d) x [KT) and 0 = B TT5_y 1ol (%07 € [d]). On the
other hand, the newly updated (r, k)th element is denoted by f(’r~ ) (see Eq. #)) and we denote by ..
the updated value of @, correspondingly: o.. = || f(’r iy lze Tl | f(r, %]l .- The normalized newly
updated element is denoted by f(’r K = f(’rk)/Hf(’T i llLs-

For an estimator (f,0) = ({ f( &) }r &, {0 }+) which is a couple of the normalized component
and the scaling factor, define

doo(f,’[)) = (Ig}%,)/(){vrlnf(’”/’kl) (,,,/ k?’ ||L2 =+ |'UT @T/l}.

For any Ay 5, > 0 and Az, > 0 and 7 > 0, we let a, := max{1l, L} max{1,7}log(dK) and define
gn = fn()\l,ru ) and §/ - 5/ )\2 ny T asﬂ

+2s -5
K 2
&i=a ( : L v ik ) ¢ =a (AQ’” V. >
noT 9T 254+ (1—s)s ) n T 1 N
\/ﬁ A\, 2aF 21 \/ﬁ /\22 nnlj—s

l,n nits

Theorem 2. Suppose that Assumpfionsare satisfied, and the regularization parameter Rin Eq.
@) is set as R = 2R. Let R = 8R/ min{vmin, 1} and suppose that we have already obtained an
estimator f satisfying the following conditions:

e The RKHS-norms of { f(;+ ')} i are bounded as ||f(rl’k/)||7.[r,)k, < R/2 (V(r',K') # (r, k).
e The distance from the true one is bounded as do,(f,v) <y

Then, for a sufficiently small |* and v (independent of n), there exists an event with probability
greater than 1 — 3 exp(—7) where any (f,v) satisfying the above conditions gives

7 *x - 2 1 r = >
(0l Ftrsy = Sl + 15 = vrl)” < Sdoo(F,0)% + S, B2 (®)

The symbol V indicates the max operation, that is, a VV b := max{a, b}.



for any sufficiently large n, where S, is defined for a constant C' depending on s, so, ¢, co as
S 1= C" &MY + €+ deantly + BT (06,2 (14 va)?]

Moreover, if we denote by n,, the right hand side of Eq. @), then it holds that

H.f(/r,k)HHmk <

2
Ur = /Tn

The proof and its detailed statement are given in the supplementary material (Theorem [A.T). It
is proven by using such techniques as the so-called peeling device [32] or, equivalently, the local
Rademacher complexity [4]], and by combining these techniques with the coordinate descent opti-
mization argument. Theorem E] states that, if the initial solution is sufficiently close to the true one,
then the following updated estimator gets closer to the true one and its RKHS-norm is still bounded
above by a constant. Importantly, it can be shown that the updated one still satisfies the conditions
of Theorem [2|for large n. Since the bound given in Theorem [2]is uniform, the inequality (8) can be

recursively applied to the sequence of o (t=1,2,...).
By substituting Ay ,, = Kﬁﬁdfﬁnfﬁ and A\g , = nfﬁ, we have that
Sp=0 (n‘ﬁ v (n*ﬁ’“*”)mi“{i@’52<11+S>}p01y(d, K))) log(dK),

where poly(d, K') means a polynomial of d, K. Thus, if s, < 1 and n is sufficiently large compared

. . 1.
with d and K, then the second term is smaller than the first term and we have S,, < Cn™ T+s with a
constant C'. Furthermore, we can bound the Lo-norm from the true one as in the following theorem.

Theorem 3. Let (f(t), ﬁ(t)) be the estimator at the tth iteration. In addition to the assumptions of
—~, —~, 2 ~ 2
Theorem suppose that (f(),9M) satisfies doo (f, 5(D)2 < vm% and S, R** < v“%, sa <1

andn>> d, K, then f®(z) = 3¢, o Hszl f};)k) (z®)) satisfies

IF® — 2, =0 (danlﬁlog(dK) +dK (3/4)t) .
Sor all t > 2 uniformly with probability 1 — 3 exp(—7).

More detailed argument is given in Theorem [A.3]in the supplementary material. This means that
1
after T = O(log(n)) iterations, we obtain the estimation accuracy of O(dKn™~ T+slog(dK)). The

1
estimation accuracy bound O(dKn~ 7+ log(dK)) is intuitively natural because we are estimating
d x K functions { f(*r‘ k)},«, r and the optimal sample complexity to estimate one function f(*r k) is

known as rfﬁ [26]. Indeed, recently, it has been shown that this accuracy bound is minimax
optimal up to log(dK) factor [[14], that is,

inf sup BI|f - £ 2 dKn”

where inf is taken over all estimators and sup runs over all low rank tensors f* with || f© ) ll3,.. < R.

The Bayes estimator also achieves this minimax lower bound [14]. Hence, a rough Bayes estimator
would be a good initial solution satisfying the assumptions.

6 Relation to existing works

In this section, we describe the relation of our work to existing works. First, our work can be
seen as a nonparametric extension of the linear parametric tensor model. The AMP algorithm
and related methods for the linear model has been extensively studied in the recent years, e.g.
[ 13Li6l 3L 211 1364 27, 137]). Overall, the tensor completion problem has been mainly studied instead
of a general regression problem. Among the existing works, [37] analyzed the AMP algorithm for
a low-rank matrix estimation problem. It is shown that, under an incoherence condition, the AMP
algorithm converges to the optimal in a linear rate. However, their analysis is limited to a matrix
case. [1] analyzed an alternating minimization approach to estimate a low-rank tensor with positive
entries in a noisy observation setting. [[13} 6] considered an AMP algorithm for a tensor completion.



Their estimation method is close to our AMP algorithm. However, the analysis is for a linear tensor
completion with/without noise and is a different direction from our general nonparametric regression
setting. [3}36] proposed estimation methods other than an alternating minimization one, which were
specialized to a linear tensor completion problem.

As for the theoretical analysis for the nonparametric tensor regression model, some Bayes estimators
have been analyzed very recently by [[14,[12]]. They analyzed Bayes methods with Gaussian process
priors and showed that the Gaussian process methods possess a good statistical performance. In
particular, [14] showed that the Gaussian process method for the nonlinear tensor estimation yields
the mini-max optimality as an extension of the linear model analysis [28]. However, the Bayes
estimators require posterior sampling such as Gibbs sampling, which is rather computationally
expensive. On the other hand, the AMP algorithm yields a linear convergence rate and satisfies
the minimax optimality. An interesting observation is that the AMP algorithm requires a stronger
assumption than the Bayesian one. There would be a trade-off between computational efficiency and
statistical property.

7 Numerical experiments
We numerically compare the following methods in multitask learning problems (Eq. (2)):

e Gaussian process method (GP-MTL) [14]: The nonparametric Bayesian method with Gaussian
process priors. It was shown that the generalization error of GP-MTL achieves the minimax
optimal rate [14].

e Our AMP method with different kernels for the latent factors h, (see Eq. (2); the Gaussian RBF
kernel and the linear kernel. We also examined their mixture like 2 RBF kernels and 1 linear
kernel among d = 3 components. They are indicated as Lin(1)+RBF(2).

The tensor rank for AMP and GP-MTL was fixed d = 3 in the following two data sets. The kernel
width and the regularization parameter were tuned by cross validation. We also examined the scaled
latent convex regularization method [34]]. However, it did not perform well and was omitted.

7.1 Restaurant data

Here, we compared the methods in the Restaurant & Consumer Dataset [7]]. The task was to
predict consumer ratings about several aspects of different restaurants, which is a typical task of a
recommendation system. The number of consumers was M; = 138, and each consumer gave scores
of about My = 3 different aspects (food quality, service quality, and overall quality). Each restaurant
was described by M3 = 44 features as in [20], and the task was to predict the score of an aspect
by a certain consumer based on the restaurant feature vector. This is a multitask learning problem
consisting of My x My = 414 (nonlinear) regression tasks where the input feature vector is M3 = 44
dimensional. The kernel function representing the task similarities among Task 1 (restaurant) and
Task 2 (aspect) are set as k(p,p’) = 6, + 0.8 - (1 — &, ) (Where the pair p, p’ are restaurants or
aspects) [

Fig. [I] shows the relative MSE (the discrepancy of MSE from the best one) for different training
sample sizes n computed on the validation data against the number of iterations ¢ averaged over 10
repetitions. It can be seen that the validation error dropped rapidly to the optimal one. The best
achievable validation error depended on the sample size. An interesting observation was that, until
the algorithm converged to the best possible error, it dropped at a linear rate. After it reached the
bottom, the error was no longer improved.

Fig. 2] shows the performance comparison between the AMP method with different kernels and
the Gaussian process method (GP-MTL). The performances of AMP and GP-MTL were almost
identical. Although AMP is computationally quite efficient, as shown in Fig.[I] it did not deteriorate
the statistical performance. This is a remarkable property of the AMP algorithm.

7.2 Online shopping data

Here, we compared our AMP method with the existing method using data of Yahoo! Japan shopping.
Yahoo! Japan shopping contains various types of shops. The dataset is built on the purchase history

3We also tested the delta kernel k(p,p') = p,p’» DUt its performance was worse that the presented kernel.
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that describes how many times each consumer bought each product in each shop. Our objective was
to predict the quantity of a product purchased by a consumer at a specific shop. Each consumer was
described by 65 features based on his/her properties such as age, gender, and industry type of his/her
occupation. We executed the experiments on 100 items and 508 different shops. Hence, the problem
was reduced to a multitask learning problem consisting of 100 x 508 regression tasks.

Similarly to [14], we put a commute-time kernel K = L' [8] on the shops based on a Laplacian matrix
L on a weighted graph constructed by two similarity measures between shops (where 1 denotes
psuedoinverse). Here, the Lapalacian on the graph is given by L; ; = (Zjev w; ;)05 — Wi
where w; ; is the similarity between shops (7, 7). We employed the cosine similarity with different
parameters as the similarity measures (indicated by “cossim” and “cosdis”).

Based on the above settings, we performed a comparison between AMP and GP-MTL with different
similarity parameters. We used the Gaussian kernel for the latent factor h,.. The result is shown in
Fig.[3] which presents the validation error (MSE) against the size of the training data. We can see that,
for both “cossim” and “cosdis,” AMP performed comparably well to the GP-MTL method and even
better than the GP-MTL method in some situations. Here it should be noted that AMP is much more
computationally efficient than GP-MTL despite its high predictive performance. This experimental
result justifies our theoretical analysis.

8 Conclusion

We have developed a convergence theory of the AMP method for the nonparametric tensor learning.
The AMP method has been used by several authors in the literature, but its theoretical analysis has
not been addressed in the nonparametric setting. We showed that the AMP algorithm converges in a
linear rate as an optimization algorithm and achieves the minimax optimal statistical error if the initial
point is in the O(1)-neighborhood of the true function. We may use the Bayes estimator as a rough
initial solution, but it would be an important future work to explore more sophisticated determination
of the initial solution.
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