
A Related Work

Exposure shaping problems are significantly more challenging than traditional influence maximiza-
tion problems which aim to identify the set of most influential users that generates spread or cascade
of largest size under certain budget constraint [11]. First, in influence maximization, the state of each
user is often assumed to be binary, i.e., active (infected) or inactive (healthy, uninfected) which does
not capture the recurrent nature of social activity. Second, while influence maximization methods
identify a set of users to provide incentives, they do not typically provide a quantitative prescription
on how much incentive should be provided to each user. Third, exposure shaping concerns about
a larger variety of target states, such as minimum exposure requirement and homogeneity, not just
maximization.

Existing work in stochastic optimal control includes jump diffusion stochastic differential equations
(SDE) [12] which focuses on controlling the SDEs with the jump term driven by Poisson processes.
Inspired by the opinion dynamics model proposed in [13], a multivariate jump diffusion process
framework for modeling opinion dynamics over networks and determining the control over such
networks is proposed [14]. In [15], a continuous action iterated prisoners’ dilemma was used to
model the interactions in a social network and extended by incorporating a mechanism for external
influence on the behavior of individual nodes. Markov Decision Process (MDP) framework is pro-
posed to develop several scheduling algorithms for optimal control of information epidemics with
susceptible-infected (SI) model on Erdős-Rényi and scale-free networks [16]. In [17], the authors
provided an analytically tractable model for information dissemination over networks and solved the
optimal control signal distribution time for minimizing the accumulated network cost via dynamic
programming.

In contrast, our work is built on the theory of multivariate point processes [6, 4]. Their usage in
modeling activity in social network is becoming increasingly popular [18, 19, 20]. More specifically,
we utilizes the multivariate Hawkes process [7] since its mutual and self excitation property has been
proved suitable for modeling the dynamics on the network [21, 22, 23, 5, 10]. Our work is closely
related to [8], which is extend in two significant directions here: First, we generalize their result on
driving a time-dependent average intensity in the case where the exogenous intensity is not constant.
Second, instead of one-shot optimization we pose the problem as a multi-stage optimal control
problem which is more fit to real world applications. Then we propose a dynamic programming
solution to the multi-stage optimization problem.

B Illustration of Multi-stage Campaigning

Fig. 3-a shows a hypothetical social network highlighting 4 users and their influence on each other.
They have their own set of followers which for simplicity are considered disjoint and being influ-
enced equally. Our objective in this toy example is to maximize the minimum exposure on the
followers. For the ease of exposition, we only consider 2 stages which in the beginning we can
intervene. Hypothetically, we are going to advertise iPhone 7 on behalf of Apple Inc.

Now, we intuitively proceed to find the optimum intervention. At the first stage, where the state is
zero (no exposure from the past), intervention through Jacob and Christine would not be part of the
solution (or their share would be negligible), because the outcome would be small due to the low
number of total followers and the small amount of influence. Between Bob and Sophie, we would
select her. Note that Sophie has a high influence on Bob and if she is incentivized to make a blog
post for the campaign, she can make Bob interested too. Therefore, the procedure will assign most
budget to Sophie. Furthermore, Bob has a high influence on Jacob and will probably inspire him to
do an activity. Let’s follow a hypothetical scenario. Sophie makes her post at 9:35am about apple’s
new phone. Bob is notified about her post and will make an inspiring post about the phone’s camera.
However, Jacob will not respond to this campaign well, e.g., he may be traveling that day. This
phenomenon is perfectly captured via the probabilistic framework for event analysis [6, 4]. On the
other hand, Christine who is not a big fan of Bob’s post compared to Jacob will respond to Bob’s post
by writing a comparison between Apple and Samsung’s product at 3:47pm. This will reinforce Bob
to make a separate post explaining the features of Apple’s new product. These events are illustrated
in Fig. 3-b.
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Figure 3: A social network and multi-stage campaigning to maximize the minimum exposure.

The cascade of events at the first stage will expose followers of Sophia, Bob, and Christine to the
new product. However, all things do not go according to our expectation. Jacob happens to be out
of his office that day and his followers are not aware of the news. Considering the MEM as the
objective function, this is quite disappointing that there are people who are exposed to the campaign
0 times. Exposures of followers are demonstrated in Fig. 3-b. This is the point where multi-stage
dynamic campaigning helps. Considering the exposure intensity of followers in Fig. 3-c, Christine’s,
Bob’s, and even Sophia’s followers are still under the influence. Furthermore, they may follow their
initial posts by new ones. Then, in the next stage, it looks reasonable to invest on Jacob. At least
his followers will notify about the campaign and also as Jacob has an influence on Sophie, his posts
may inspire Sophie again and this may increase the exposure intensity of followers of Sophie as
well. Therefore, thanks to a second chance in intervention, Jacob will get the most budget at the
second stage to advertise the product.

C Proofs

Lemma 1. Suppose Ψ : [0, T ]→ Rn×n is a matrix function, then for every fixed constant intensity
µ(t) = c ∈ Rn

+, ηc(t) := Ψ(t)c solves the semi-infinite integral equation

η(t) = c+

∫ t

0
Φ(t− s)η(s)ds, ∀t ∈ [0, T ], (27)

if and only if Ψ(t) satisfies

Ψ(t) = I +

∫ t

0
Φ(t− s)Ψ(s)ds, ∀t ∈ [0, T ]. (28)

In particular, if Φ(t) = Ae−ωt1≥0(t) = [aije−ωt1≥0(t)]ij where 0 ≤ ω /∈ Spectrum(A), then

Ψ(t) = e(A−ωI)t + ω(A− ωI)−1(e(A−ωI)t − I) (29)
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for t ∈ [0, T ], where, 1≥0(t) is an indicator function for t ≥ 0.

Proof. Suppose that Ψ(t)c solves (27) for every c, then substituting η(t) by ηc(t) := Ψ(t)c in
(27) we obtain

[
Ψ(t)− I −

∫ t
0 Φ(t− s)Ψ(s)ds

]
c = 0. Since c ∈ Rn

+ is arbitrary, we know that

Ψ(t)−I−
∫ t
0 Φ(t−s)Ψ(s)ds = 0 for all t, and hence (28) follows. The converse is trivial to verify.

Furthermore, one can readily check that (29) satisfies (28) for Φ(t) = Ae−ωt1≥0(t). !
Theorem 2. Let Ψ(t) satisfy (28) and µ(t) be a right-continuous piecewise constant intensity func-
tion of form (9), then the rate function η(t) is given by

η(t) =
m∑

k=0

Ψ(t− τk)(ck − ck−1), (30)

for all t ∈ (τm−1, τm] and m = 1, . . . ,M , where c−1 := 0 by convention.

Proof. We prove this result by induction on partition size M . The previous lemma shows (30) for
constant µ(t) = c1[0,T ](t) (i.e., M = 1). Suppose (30) is true for any given piecewise constant
µ(t) of form (9) with M partitions. If we impose a constant control c ∈ Rn

+ (different from original
cM ) since time τ ∈ (τM−1, T ], namely the piecewise constant intensity function is updated to
µ̂(t) := µ(t) + (c− cM )1(τ,T ](t), then we need to show that the updated rate function η̂(t) is

η̂(t) = η(t) +Ψ(t− τ)(c− cM )1(τ,T ](t), (31)

for all t ∈ [0, T ]. This result can by verified easily for t ∈ [0, τ ]. If t ∈ (τ, T ], then µ̂(t) =
µ(t) + (c− cM )1(τ,T ](t) = µ(t) + (c− cM ) and

µ̂(t) +

∫ t

0
Φ(t− s)η̂(s)ds

= µ(t) + (c− cM ) +

∫ t

0
Φ(t− s)[η(s) +Ψ(s− τ)(c− cM )1(τ,T ](s)]ds

= η(t) + (c− cM ) +

∫ t

0
Φ(t− s)Ψ(s− τ)(c− cM )1(τ,T ](s)ds (32)

= η(t) +

[
I +

∫ t−τ

0
Φ(t− τ − u)Ψ(u)du

]
(c− cM )

= η(t) +Ψ(t− τ)(c− cM ) = η̂(t),

where we used the fact that η(t) is the rate function for intensity µ(t) to get the second equality,
applied change of variables u = s − τ to obtain the third equality, and the property (28) of Ψ(t)
to get the fourth equality. This implies that the rate function is η̂(t) given in (31) for the updated
piecewise constant intensity µ̂(t) with M + 1 partitions, and hence completes the proof. !
Theorem 3. If Ψ ∈ C1([0, T ]) and satisfies (28), and exogenous intensity µ is bounded and piece-
wise absolutely continuous on [0, T ] where µ(t+) = µ(t) at all discontinuous points t, then µ is
differentiable almost everywhere, and the semi-indefinite integral

η(t) = µ(t) +

∫ t

0
Φ(t− s)η(s)ds, ∀t ∈ [0, T ], (33)

yields a rate function η : [0, T ]→ Rn
+ given by

η(t) =

∫ t

0
Ψ(t− s)dµ(s). (34)

Proof. It suffices to show (34) for absolutely continuous µ(t) on [0, T ) since extending the proof
to piecewise absolutely continuous function is straightforward. We first define µ(T ) = µ(T−) and
obtain a continuous µ(t) on [0, T ]. Since [0, T ] is compact, we know µ(t) is uniformly continuous,
and hence there exists a sequence of piecewise constant functions {µk}∞k=1 such that µk → µ
uniformly on [0, T ], i.e., limk→∞ sup0≤t≤T |µk(t) − µ(t)| = 0 [24, Thm. 2.3.6] This also implies
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that {µk} is uniformly bounded. For every k, piecewise constant function µk has bounded variation,
therefore we have by [25, Thm. 3.36] that

ηk(t) :=

∫ t

0
Ψ(t− s)dµk(s) =

∫ t

0
Ψ′(t− s)µk(s)ds+Ψ(0)µk(t)−Ψ(t)µk(0), (35)

for all t ∈ [0, T ]. Since Ψ ∈ C1 we know Ψ′ is continuous and bounded on [0, T ]. By Lebesgue’s
bounded convergence theorem we know

∫ t

0
Ψ′(t− s)µk(s)ds→

∫ t

0
Ψ′(t− s)µ(s)ds. (36)

Furthermore, using the uniform convergence of {µk} to µ, we know the right hand side (35) con-
verges to

∫ t
0 Ψ′(t− s)µ(s)ds+Ψ(0)µ(t)−Ψ(t)µ(0). Then integration by parts for piecewise ab-

solutely continuous function µ which has bounded variation implies that η(t) =
∫ t
0 Ψ(t − s)dµ(s)

for all t ∈ [0, T ]. !
Corollary 4. Suppose Ψ and µ satisfy the same conditions as in Thm. 3, and define ψ = Ψ′, then
the rate function is η(t) = (ψ ∗ µ)(t). In particular, if Φ(t) = Ae−ωt1≥0(t) = [aije−ωt1≥0(t)]ij
then the rate function η(t) = A

∫ t
0 e(A−wI)(t−s)µ(s)ds.

Proof. Note that both ψ and µ have supports in R+, therefore integration by parts and the property of
derivative of convolution [26, p. 126] imply that η(t) =

∫ t
0 Ψ′(t− s)µ(s)ds = (ψ ∗µ)(t). If Φ(t) =

Ae−ωt1≥0(t) = [aije−ωt1≥0(t)]ij , then Ψ(t) is given in (29), and hence ψ(t) = Ae(A−wI)t and
the closed form of η(t) follows as in the claim. !

D Optimization Details

To find the linear and convex form of the open-loop optimization problems for the campaigning
objective we define

Υ(t) = B

∫ t

0
e(A−ωI)s ds = B(A− ωI)−1(e(A−ωI)t − I) (37)

Γ(t) = B

∫ t

0
Ψ(s) ds = BΥ(t) +B(A− ωI)−1(Υ(t)− It)/ω; (38)

Let Γ(k∆M ) = Γk and Υ(k∆M ) = Υk. Then for every m ≥ l, Eq. (22) is rewritten as:

Ēm(xm, um) =
m−1∑

k=l

(Γm−k+1 − Γm−k)uk + Γ1um + Γm−l+1µ+Υm−l+1xl. (39)

Aggregating these linear forms for all l ≥ m yields to the following matrix equation for finding Êl:
⎡

⎢⎢⎢⎢⎣

Ēl(xl, ul)
Ēl+1(xl+1, ul+1)
Ēl+2(xl+2, ul+2)

...
ĒM−1(xM−1, uM−1)

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Êl

=

⎡

⎢⎢⎢⎢⎣

Γ1 0 0 . . . 0
Γ2 − Γ1 Γ1 0 . . . 0
Γ3 − Γ2 Γ2 − Γ1 Γ1 . . . 0

...
...

...
. . .

...
ΓM−l − ΓM−l−1 ΓM−l−1 − ΓM−l−2 . . . Γ2 − Γ1 Γ1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Xl

⎡

⎢⎢⎢⎢⎣

ul

ul+1

ul+2
...

uM−1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ûl

+

⎡

⎢⎢⎢⎢⎣

Γ1

Γ2

Γ3
...

ΓM−l

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Yl

µ+

⎡

⎢⎢⎢⎢⎣

Υ1

Υ2

Υ3
...

ΥM−l

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Wl

xl

(40)
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Furthermore, aggregating all constraints of the form um ∈ Um for l ≤ m ≤ M into a matrix form
leads to:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c⊤l . . . 0⊤

...
. . .

...
0⊤ . . . c⊤M−1
I . . . 0
...

. . .
...

0 . . . I
−I . . . 0

...
. . .

...
0 . . . −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Zl

⎡

⎢⎢⎢⎢⎣

ul

ul+1

ul+2
...

uM−1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ûl

≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cl
...

CM−1

αl
...

αM−1

0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
z

. (41)

Then, we can proceed with the open-loop control problem benefiting from the linear from of Xlûl+
Ylµ+Wlxl = Êl such that Zlûl ≤ zl.

Scalable optimization. All the exposure shaping problems defined above require an efficient eval-
uation of average intensity η(t) at all stages, which entails computing matrices Xl, Yl, Wl, and
Zl. This leads to work with matrix exponentials and inverse matrices to obtain Υm, and Γm for
m = 1, . . . ,M − 1. In small or medium networks, we can rely on well-known numerical methods
to compute matrix exponentials and inverse. However, in large networks, the explicit computation
of Xl, Yl, Wl, and Zl becomes intractable. Fortunately, we can exploit the following key property
of our convex campaigning framework: the average intensity itself and the gradient of the objective
functions only depends on Xl, Yl, Wl, and Zl (and consequently on Υm, and Γm ) through matrix-
vector product operations. Similar to [8] for the computation of the product of matrix exponential
with a vector, one can use the iterative algorithm by Al-Mohy et al. [27], which combines a scaling
and squaring method with a truncated Taylor series approximation to the matrix exponential. For
solving the sparse linear system of equation, we use the well-known GMRES method, which is an
Arnoldi process for constructing an l2-orthogonal basis of Krylov subspaces. The method solves
the linear system by iteratively minimizing the norm of the residual vector over a Krylov subspace.
For details please refer to [8]. Last but not least, we don’t need to explicitly build Xl, Yl, Wl,
and Zl. At each step of gradient computation all the operations involving them are multiplication
ofΥ1, . . . ,ΥM , and Γ1, . . . ,ΓM to vectors such as u0, . . . , uM−1 and µ.

E Temporal Properties
In this section we empirically study the theoretical results of section 3. The empirical mean and
standard deviation of the intensity averaged over multiple number of cascades is compared theoreti-
cal mean. Besides this, the other purpose of the experiment is to advocate verification process in the
synthetic experiments when we used simulation to evaluate the merits of the proposed algorithm and
compare to the baselines. In other words, we show that the empirical activity (and hence the average
exposure) is very close to its theoretical value and it is justifiable to be used for the comparison.

Fig. 4 demonstrates the activity profile of 3 random users picked in a network of 300 ones simulated
100 times to investigate Thm. 2. The setting is similar to synthetic experiment in the main paper.
Piecewise exogenous intensity (interventions) are picked randomly in [0.1, 0.2] with a slight noise.
We consider 5 stages for changing the exogenous intensity. The empirical average and standard
deviation is compared to theoretical average intensity for 3 different number of runs namely, 5,
20, and 100 times. Also, Fig. 5 demonstrate the general case where the exogenous intensity is a
time-varying function in Thm. 3. We take 3 sample functions to investigate this case; a sinusoidal
function; an exponential decaying function with added noise; and a quadratic function.

We observe a couple of interesting facts. Firstly, it’s apparent that by increasing the number of
averages the empirical intensity tends to theoretical one very fast. Secondly, as the mean becomes
more accurate by increasing the number of cascades the standard deviation increases; e.g., compare
the standard deviation in first and third column. Thirdly, the standard deviation is increasing with
time. This is due to the fact that as time passes random elements are aggregated more and this
increases variance.
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Figure 4: Empirical investigation of theoretical results in Thm. 2. blue: theoretical average in-
tensity; red: empirical average intensity and sample standard deviation; orang: piecewise-constant
exogenous intensity (interventions)

F More on experimental setup

In this section we first introduce the baselines to which we have compared the proposed algorithm.

Baselines. In this section, we describe several baselines we compare our approach. Most often,
these baseline methods utilize a property to prioritize users for budget assignment.

For the capped exposure maximization problem, we consider the following four baselines:

• OPL: It allocates the budget according to the solution to the dynamic programming in an
open loop setting, i.e., the decisions on the allocation policy are made once and for all at
the initial intervention points at initial time t = 0. This is very important baseline to which
comparison quantify the so called value of information in the context of dynamic program-
ming and optimal control. As the name suggests it indicates how much knowing what
happened so far helps making decisions for future. For the minimum and capped exposure
maximization creasing n the objective function is normalized by the size of network.

• RND: It assigns a random point in the convex space of feasible solutions.
• PRK: At each stage it subtracts the previous state (xi

m) from the cap (αi
m) and multiply by

the page rank score of the the node (ri) computed with damping factor 0.85 and allocates
the budget proportional to this value, i.e., ui

m ∝ max
(
(αi

m − xi
m)ri, 0

)
. The proposed

solution is then projected to the feasible set of actions in that stage and the extra amount
is redistributed similarly. The process is iterated until all the budget are allocated. This
baseline assumes that more central users can leverage the total activity, therefore, assigns
the budget dynamically to the more connected users proportional to their page rank score.
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Figure 5: Empirical investigation of theoretical results in Thm. 3. blue: theoretical average inten-
sity; red: empirical average intensity and sample standard deviation; orang: general time-varying
intensity (interventions)

• WEI: This baseline uses sum of out-going influence ( qi =
∑

j aji) as a measure of cen-
trality of users. Similar to the previous one it assigns budget dynamically to the users
proportionally to ui

m ∝ max
(
(αi

m − xi
m) qi, 0

)
. This heuristic allows us to understand

the effect of considering the whole network and the propagation layout with respect to only
consider the direct (out-going) influence.

For the max-min exposure shaping problem, we implement the following four baselines:

• OPL: Similar to the previous objective it represents the open loop solution.
• RND: Similar to the previous objective it allocates the budget randomly within the feasible

set.
• WFL: It takes a water filling approach. It sorts the users in ascending order of the exposure

in the previous stage. Then allocates budget to the first users until the the summation of its
previous exposure and the allocated budget reaches the second lowest value or it violates a
constraint. Then, assigns the budget to these two until they reach the third user with lowest
exposure or a constraint is violated. This process is continued until the budget is allocated.

• PRP: It allocates the budget inversely proportional to the the exposure at the previous stage.

For the least-square exposure shaping problem, we compare our method with four baselines:

• OPL: Similar to the previous objective it represents the open loop solution.
• RND: Similar to the previous objective it allocates the budget randomly within the feasible

set.
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Figure 6: Caped exposure maximization results on synthetic data; top row: n varies, M = 6,
T = 40; middle row: M varies, T = 40, n = 200; bottom row: T varies, n = 200, M = 6
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Figure 7: Minimum exposure maximization results on synthetic data; top row: n varies, M = 6,
T = 40; middle row: M varies, T = 40, n = 200; bottom row: T varies, n = 200, M = 6
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Figure 8: Least-squares exposure shaping results on synthetic data; top row: n varies, M = 6,
T = 40; middle row: M varies, T = 40, n = 200; bottom row: T varies, n = 200, M = 6

• GRD: It finds the difference between the exposure at previous stage (xi
m and the target

from v and sorts them decreasingly. Then, allocates budget one at a time until a constraint
is violated. It iterates over the users until the budget is fully allocated.

• REL: Similar to the above finds the difference from the target but allocates the budget
proportionally, i.e., ui

m ∝ max
(
(vi − xi

m), 0
)

for all users. If one allocation violates a
constraint the extra amount is reallocated in the same manner.

Synthetic Data Generation. The network is generated synthetically using varying number of nodes.
Initial exogenous intensity is set uniformly at random, ui

m ∼ U [0, 0.1]. Endogenous intensity coef-
ficients (influence matrix elements) are set similarly, aij ∼ U [0, 0.1]. To mimic sparse real networks
half of the elements are set to 0 randomly. The matrix is scaled appropriately such that the spectral
radius of the coefficient matrix is a random number smaller than one and the stability of the process
is ensured.

The upper bound for the intervention intensity is set randomly from interval αi ∼ U [0, 0.1]. The
price of each person is set cim = 1, and the total budget at stage m is randomly generated as Cm ∼
(n/10)U [0, 0.1]. For the capped exposure maximization case the upper bound is set αi

m ∼ U [0, 1]
and target in least-squares exposure shaping is set similarly vim ∼ (n/10)U [0, 1]. Furthermore,
the shaping matrix D is set to I . In all the synthetic experiments ω = 0.01 which roughly means
loosing 63 % of influence after 100 units of time (minutes, hours, etc). Furthermore, the exposing
matrix is set to the unweighted adjacency matrix i.e., Bij = 1 if and only if Aij ≥ 10−4. This way
the results are reported in terms of the exact number of exposures and are easily interpretable. In
general applications any B can be used for example using the influence matrix A yields to a wighted
exposure count. In all the synthetic and real experiments the above settings are assumed unless it is
explicitly mentioned.

Extended synthetic results. For the synthetic case we can freely evaluate the properties of the
proposed algorithm under several conditions. We assess the performance of the algorithm and com-
pare to the baselines in three settings: i) increasing size of the network; ii) increasing number of
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intervention points; iii) increasing the time window (or equivalently the stage duration). The results
are reported while keeping other parameters fixed. To compare it to the others we simulate the net-
work with the prescribed intervention intensity and compute the objective function. The mean and
standard deviation of the objective function out of 10 runs are reported.

Figures 6, 7, and 8 shows the results for CEM, MEM, and LES respectively. In each figure, the first
row is for varying number of nodes, the second row is for varying number of intervention points, and
the third row is for varying duration of stages. The proposed method is consistently better than the
baselines. The trends and facts reported in the main paper are observed in this extended experiment.
Additionally, we want to refer the high variance of baseline methods especially RND and OPL which
is what we expect.

Real data description and network inference. In real data, we use a temporal resolution of one
hour and selected the bandwidth ω = 0.001 by cross validation. Roughly speaking, it corresponds
to loosing almost 50 % of the initial influence after 1 month. The upper bound for intervention
intensity is set uniformly at random with mean equal to empirical intensity learned from data. The
upper bound for the cap and target exposure are set similarly. For the 10 pairs of cascades we used
first 3 months of data to learn the network parameters. We then drop the exogenous intensity µ, and
keep the influence network parameters A. By fixing A we use the next 6 months of data to learn
the exogenous intensity of sites in the two cascades at each of the M stages and name them µc1

m and
µc2
m . Given A we find the optimal intervention intensity uopt

m stage by stage, for each of the three
exposure shaping tasks assuming µ = 0. Then, our prediction is: cascade c1 will reach a better
objective value at stage m if dist(uopt

m , µc1
m) < dist(uopt

m , µc2
m) and vice versa measured by cosine

similarity. The prediction accuracy is then reported as a performance measure.

G Discussion and Future work
The multistage optimal control problem is introduced and an approximate closed-loop dynamic
programming approach is proposed to find the optimal interventions. This linear connection between
exogenous intensity and campaign’s exposure enables developing a convex optimization framework
for exposure shaping, deriving the necessary incentives to reach a global exposure pattern in the
network. The method is evaluated on both synthetic and real-world held-out data and is shown to
outperform several heuristics.

Experiments on synthetic and real world datasets reveal a couple of interesting facts:

• Most notable lesson is the presence of the so-called value of information. We have witnessed, both
in synthetic and real dataset, it is possible to achieve lower cost, essentially by taking advantage of
extra information. If the information was not available the controller couldn’t adapt appropriately
to the unexpected behavior and consequently the cost could have been adversely affected.

• What we have empirically observed is that the performance, measured in achieving the lower cost
and accurate prediction, improves with increasing the number of intervention points. The more
control over social network the better one can steer the campaign towards a goal.

• The performance slightly decreases with increasing the number of nodes. That might be due to
the increased dimensionality of the optimization problem.

We acknowledge that our method has indeed limitations. For the networks at the scale of web or
large social networks faster and scalable methods need to be explored and developed which remains
as future works. There are many other interesting venues for future work too. For example, con-
sidering competing/collaborating campaigns and their equilibria and interactions, a continuous-time
intervention scheme, and exploring other approximate dynamic programming approaches remain as
future work.
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