Appendix

1 Bayesian neural networks (BNNs)

We demonstrate the behavior of a BNN [1-3] when trained on simple regression data. Figure 1 shows
a snapshot of the behavior of the BNN during training. In this figure, the red dots represent the
regression training data, which has a 1-dim input « and a 1-dim output. The input to the BNN is
constructed as x = [z, 22, 3, 2. The green dots represent BNN predictions, each for a differently
sampled 0 value, according to ¢(+; ¢). The color lines represent the output for different, but fixed,

0 samples. The shaded areas represent the sampled output mean plus-minus one and two standard
deviations.

3.0e-03

2.5e-03

2.0e-03

1.5e-03 \

1.0e-03

_

-~ 5.0e-04 J
. : Mttt AN
0.0e+00

0.0e+00 5.0e+03 1.0e+04 1.5e+04 2.0e+04

Figure 1: BNN output on a 1D regression task. Figure 2: Just before iteration 10,000 we in-
Shaded areas: sampled output mean + one/two troduce data outside the training data range to
standard deviations. Red dots: targets; green dots: the BNN. This results in a KL divergence spike,
prediction samples. Colored lines: neural net- showing the model’s surprise.

work functions for different 6 ~ ¢(-; ¢) samples.

The figure shows that the BNN output is very certain in the training data range, while having high
uncertainty otherwise. If we introduce data outside of this training range, or data that is significantly
different from the training data, it will have a high impact on the parameter distribution ¢(6; ¢). This
is tested in Figure 2: previously unseen data is introduced right before training iteration 10,000. The
KL divergence from posterior to prior (y-axis) is set out in function of the training iteration number
(x-axis). We see a sharp spike in the KL divergence curve, which represents the BNN’s surprise about
this novel data. This spike diminishes over time as the BNN learns to fit this new data, becoming less
surprised about it.

2 Experimental setup

In case of the classic tasks CartPole, CartPoleSwingup, DoublePendulum, and MountainCar, as
well as in the case of the hierarchical task SwimmerGather, the dynamics BNN has one hidden
layer of 32 units. For the locomotion tasks Walker2D and HalfCheetah, the dynamics BNN has two
hidden layers of 64 units each. All hidden layers have rectified linear unit (ReLU) nonlinearities,
while no nonlinearity is applied to the output layer. The number of samples drawn to approximate
the variational lower bound expectation term is fixed to 10. The batch size for the policy gradient
methods is set to 5,000 samples, except for the SwimmerGather task, where it is set to 50,000. The
replay pool has a fixed size of 100,000 samples, with a minimum size of 500 samples for all but
the SwimmerGather task. In this latter case, the replay pool has a size of 1,000,000 samples. The

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



dynamics BNN is updated each epoch, using 500 iterations of Adam [4], with a batch size of 10,
except for the SwimmerGather task, in which 5,000 iterations are used. The Adam learning rate is
set to 0.0001 while the batches are drawn randomly with replacement from the replay pool. In the
second-order KL divergence update step, A is set to 0.01. The BNN prior weight distribution is a
fully factorized Gaussian with 1 sampled from a different Gaussian distribution A/(0, I), while p is
fixed to log(1 + €%9).

The classic tasks make use of a neural network policy with one layer of 32 tanh units, while the
locomotion tasks make use of a two-layer neural network of 64 and 32 tanh units. The outputs are
modeled by a fully factorized Gaussian distribution N'(z, 21), in which j is modeled as the network
output, while o is a parameter. The classic tasks make use of a neural network baseline with one
layer of 32 ReLU units, while the locomotion tasks make use linear baseline function.

All tasks are implemented as described in [5]. The tasks have the following state and action
dimensions: CartPole, S C R*, A C R!; CartPoleSwingup, S C R*, A C R!; DoublePendulum,
S C RS A C R!'; MountainCar S C R3, 4 C R!; locomotion tasks HalfCheetah, S C R2°,
A C RS; and Walker2D, S C R?°, A C RSY; and hierarchical task SwimmerGather, S C R33,
A C R2. The time horizon is set to 7" = 500 for all tasks. For the sparse reward experiments, the
tasks have been modified as follows. In MountainCar, the agent receives a reward of +1 when the
goal state is reached, namely escaping the valley from the right side. In CartPoleSwingup, the agent
receives a reward of +1 when cos() > 0.8, with 3 the pole angle. Therefore, the agent has to figure
out how to swing up the pole in the absence of any initial external rewards. In HalfCheetah, the agent
receives a reward of +1 when Zpoqy > 5. As such, it has to figure out how to move forward without
any initial external reward.

References

[1] D. Barber and C. M. Bishop, “Ensemble learning in Bayesian neural networks,” NATO ASI Series. Series F:
Computer and Systems Sciences, vol. 168, pp. 215-238, 1998.

[2] D.J. MacKay, “A practical Bayesian framework for backpropagation networks,” Neural Comput., vol. 4,
no. 3, pp. 448-472, 1992.

[3] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural networks,” in
ICML, 2015.

[4] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in /CLR, 2015.

[5] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforcement learning
for continous control,” in ICML, 2016.



	Bayesian neural networks (BNNs)
	Experimental setup

