Supplementary Information for Scalable Adaptive Stochastic
Optimization Using Random Projections

A Computational Complexity

Table A.1: Comparison of computational complexity in big O notation between ADA-FULL, ADA-LR
and RADAGRAD.

Operation Line \ ADA-FULL ADA-LR RADAGRAD

Ilg, 3 plog T
G, = gig/ p? p° pT
G, I1 4 p?logT

QR-decomp 5 2p 2p
Q'G, 6 p° °p
SVD 7 3 2p 73
QW 8 %p
Bip1 = 10 P’ P ™
Total \ 3 Tp? 2p

B RADA-VR: RADAGRAD with variance reduction.

Algorithm 3 RADA-VR

Input: 5 > 0,9 > 0, 7, .S number of epochs, m iterations per epoch, initial ﬁ(l)

l: fors=1...5do

2 Hn= VZ?:l fi(83)

3 fort=1...m—1do

4: Compute VR gradient: g = V f,(3]) — V f:(B) + 1
5: Project: gy = Ilg,

6: G, =Gy 1+ &8/

7 Qt, Ry < ar_updare(Qi—1, Ri—1, 8¢, 8t)

8 B=G/Q

9.  U,%, W =B {SVD)

10: V=wqQT

1 Bii =B —nV(ZV? +61)"'VTg — v,
12:  end for

13: ot =Bl

14: end for

Qutput: Bfn

C Analysis

C.1 Regret bound for ADA-LR

The following proof is based on the proof for Theorem 7 in [9]. The key difference is that instead
of having the square root and (pseudo-)inverse of the full matrix Gy : th /2 and SI we have the
approximate square root and inverse based on the randomized SVD [[13])): S, = (QQTGt)l/ 2 and
S! = (QQTG,) /2. Essentially we use the proximal function 1, = (x, S;x) or 1y = (x, H;x)
where we set I:It =01+ St_ Here Q is the approximate basis for the range of the matrix G [15].

We first state the following facts about the relationship between G and G172,



Lemma 3. Defining G='/2 = (QQ" G)~/2 we have
() G™'2G = (G~1(QQ")G?)"/2,
(1) tr((G~HQQT)G?)Y?) = tr(G1/2).

We also require the following Lemma which bounds the sequence of proximal terms by the trace of
the final G~1/2,

Lemma 4 (Based on Lemma 10 in [9]).

T T
Z gt7 Z gt7 - 2tr(G1/2) (3)

t=1

We are now ready to prove Proposition 2}
Proof of Proposition 2] Inspecting Lemma 6}

T
B° 77
R(T) < ~vr(B) 52 [FHCHIEr.

we first bound the term Zthl 1 (B>

From [9] Proof of Theorem 7] we have that the squared dual norm associated with 1/, is
12/;; = (x, (61+ (QQGy)'/?)'x)

b < (g (QQ'G,)"/%g,). Lemmashows that [|g; |17,
(¢, Sig:) as long as & > ||g]|2. Lemmathen implies that

T
Z [FACH]

x|

and thus it is clear that ||g|

2. <2t(Gy7).

We now bound Qtr(f};/z) by 2(tr(G1T/2) + T/e):

tr(G1/?) — tr(GY?) = tr(GY/* — GI/?) (4)

—Z( Gi?) - N (GY?) - ij A (G 5)

Z (MG - n(@i?) ©

since \;(Gr) =0, Vj > 7.

Now, using the reverse triangle inequality and Theorem 5| we obtain

> (MG - n(e) < Z 1G7* - G2 ™

j=1
< Z Ve (8)
j=1

< Ve 9

10



It remains to show that 17 (3°"") in Lemmaﬁls bounded by (5 + e+ tr(G 1/2)) 1871 to get
the statement of Theorem 2k
Yr(B%) = (8,61 +(QQ" Gr)'/*8™)
< IB™*1(QQT Gr)' 2|2 + 4]

<87 (Ve+ IGE]) + 318
< 182 (Ve +m(GY?) + 887

where we again use the reverse triangle inequality and Theorem 5] as above.

Finally, plugging this into the statement of Lemma@and setting 7 = ||3°"||2 (as in Corollary 11 in
[9]) we get the expression for the regret of ADA-LR as stated in Theorem 2] [

C.2 Proofs of supporting results

Proof of Lemma[3] By direct computation we have for (I)
G_l/QG:(QQT )—1/2G
=((QQ'G)'a?)'?
- (G71(QQ )—1G2)1/2
= (G~1(QQ )G2)1/2.
and for (II)
o((GH(QQNGH ) =t((QTGQ)'?)
= tr((QQ'G)"?)
tr(GY/2).

Proof of Lemma4] We set up the following proof by induction. In the base case:

(81, G2 1) = tr(Gy Pgig]) = tr(G/?) < 261(Gy?),
where we have used (II).

Now, assuming that the lemma is true for 7' — 1, we get:
T

S g GV g <2 th, 7P + (gr, G Per).

t=1

Now using that G;i/ 12 does not depend on ¢ and (II):
T-1
> to Gty = (G Gro) = (Gy)).

t=1

Therefore we get
T
S g, G P < 2t0(GY2) + (g, G Pgr). (10)
t=1

‘We can rewrite
1/2

tr((;’1T/21) ((QT 1QT 1Gr — Q7 IQT 1ngT) ) (11)

Now since range(Qr—_1) C range(Qr) and Proposition 8.5 in [15] we can use Lemma[7|with v = 1
and g = g; to obtain:

26r(G1/%)) + (g, G2 gr) < 2tr(GH/?) (12)

O
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D Supporting Results

Theorem 5 (SRFT approximation error (Theorem 11.2 in [15]))). Defining ¢ = \/1+ Tp/7 - 0k41
the following holds with failure probability at most O (kfl)

[G: —QQ G|, <, (13)

2
where o1 is the kth largest singular value of Gy, and 4 {\/E +4/8 log(kn)} <7<p.

Lemma 6 (Proposition 2 from [9]).

—1

T T
)= S8 +p(8) ~ FB™) — P87 < Lurl8™) + S I500)
t=1 Py

2tr((B — vgg " )Y/?) < 2tr(BY/?) — vtr(BY%gg ")
Lemma 8 (Lemma 9 from [9]). Ler § > ||g|2 and A > 0, then

(g, (O + AV 1g) < (g, (A +gg"))!/%g)

Lemma 7 (Lemma 8 from [9]). Let B > 0. For any v such that B — vgg ' > 0 the following holds
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