Appendix

1 Proof of theorem 1

Proof. The proof follows from two lemmas. The first is directly from [1]; the
second bounds the difference in densities in terms of the total variation distance.
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Proof. See [1]. |

Lemma 1.2.
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Now we inspect sup, .. [p(z]x) — p(z]2")]. Recall p(z|z) = al{z = z} + (1 —
a)g(z). It follows:
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We use Lemma [[.1] and [[.2] to derive the result.
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1.1 Proof of corollary 1.1

Proof is direct by applying the upper bound on KL divergence stated in Theorem
1 to the usual form of the Le Cam bound presented in (2) in our main text.
1.2 Proof of corollary 1.2

We have a packing V C © such that ||6; — 6,]|3 > 20 for all i # j, and for some
fixed T,
Dy (Fy,||Fy,) <76 Vi, j.

Pinsker’s inequality implies that
9 1
IF: - Filfgy < 57o.

Combining this with Theorem 1 gives an upper bound on the KL divergence
between the observed distributions:

ZZDKL F9||F9 ( 2 )T5V01( )

The result follows from using this in the upper bound on mutual information
(4) and applying the usual Fano inequality (3) from our main text.



2 Proof of lemma 1
Proof.
Dy, (P1||P2)+Dxy(P2||Pr)
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wherey = min[mzin 91(2), mzin 92(2)]-
We note that
1
1P = BPoflrv = 5 /Z la(f1(2) = fa(2)) = (1 = @)(92(2) — g1 (2))|d>=.

For o« < 0.5 we can choose g1(z) = ?‘lfi(j)) +c ga22) = ?{i(;)) + ¢, such that
[|[Pr — P2llry = 0 and v > 0. This choice results in a minimax risk lower

bounded independent of the sample size by
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Intuitively, with a < 0.5 the attacker is free to inject points from a distribution

G4 from the same family F as Fyp but with different parameters, 'mimicing’ a
distribution from F. This makes learning possible only up to permutation. [
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3 Proof of theorem 2

Proof.
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3.1 Proof of corollary 2.1
Proof is direct by applying the upper bound on KL divergence in Theorem 2 to

the usual form of the Le Cam bound presented in (2) in our main text.
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