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A Proof of Theorem 1

We prove Theorem 1 for the cost-average greedy policy π1 and the cost-insensitive greedy policy π2
below. For each policy, we construct a worst-case adaptive optimization problem that satisfies the
theorem. In this problem, the utility and cost are both modular, i.e., they can be decomposed into the
sum of the utilities (or costs) of the individual items. Besides, all the items have only one state, so it
is essentially a non-adaptive problem.

A.1 Cost-average Greedy Policy π1

Consider the utility function:
f(S, h) =

∑
x∈S

w(x, h(x)), (A.1)

where w : X × Y → R≥0 is the utility function for one item. Intuitively, w(x, y) is the utility
obtained by selecting item x with state y, and f(S, h) is the sum of all the utilities of the items in S
with states according to h. It is easy to see that f is pointwise submodular, pointwise monotone, and
also satisfies minimal dependency.

We also consider the worst-case adaptive optimization problem with two items {x1, x2} and one state
{0} such that w(x1, 0) = 1 and w(x2, 0) = p, for some p > 1. Let the cost function be:
c(∅) = 0, c({x1}) = 1, c({x2}) = p+ 1, c({x1, x2}) = c({x1}) + c({x2}) = p+ 2,

and let the budget be K = p+ 1. With this budget, a policy is only allowed to select at most one item.

For this problem, the policy π1 would select the item x1 because:
δ(x1 | ∅)
c({x1})

=
miny f({x1}, {(x1, y)})

c({x1})
= 1 >

p

p+ 1
=

miny f({x2}, {(x2, y)})
c({x2})

=
δ(x2 | ∅)
c({x2})

.

Thus, fworst(π1) = 1. However, the optimal policy π∗ would select x2 to obtain fworst(π
∗) = p.

Hence, fworst(π1)/fworst(π
∗) = 1/p. By increasing p, we can have fworst(π1)/fworst(π

∗) < α for any
α > 0.

A.2 Cost-insensitive Greedy Policy π2

Consider the worst-case adaptive optimization problem with n+ 1 items {x0, x1, . . . , xn} and one
state {0}. We will also use the utility function f defined by Equation (A.1) above with w(x0, 0) = 2
and w(xi, 0) = 1 for i = 1, . . . , n. This utility satisfies the assumptions in Theorem 1. Let the cost
function be:
c({x0}) = n, c({xi}) = 1 for i = 1, . . . , n and c(S) =

∑
x∈S

c({x}) for other subsets of items S.
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We let the budget be K = n. With this budget, a policy may select exactly one item x0, or it may
ignore x0 and select only the items among {x1, . . . , xn}.
For this problem, the policy π2 would select the item x0 because for any i = 1, . . . , n:

δ(x0 | ∅) = min
y
f({x0}, {(x0, y)}) = 2 > 1 = min

y
f({xi}, {(xi, y)}) = δ(xi | ∅).

Thus, fworst(π2) = 2. However, the optimal policy π∗ would select all the items {x1, . . . , xn}
to obtain fworst(π

∗) = n. Hence, fworst(π2)/fworst(π
∗) = 2/n. By increasing n, we can have

fworst(π2)/fworst(π
∗) < α for any α > 0.

B Proof of Theorems 2, 3, 4, and Discussion on π1 versus π∗
1/2

Theorems 2 and 3 are special cases of Theorems F.1 and F.2 in Section F respectively (see that
section for the general theorem statements and proofs). The proof of Theorem 4 uses the same
counter-example for policy π2 in Section A above.

We now give a discussion on π1 versus π∗1/2. In particular, we show that it is not possible to construct
a counter-example for the policy π1 with full budget compared to π∗1/2 if we use the simple utility and
modular cost functions in the proof of Theorem 1 above. This means we will prove that π1 provides
a constant factor approximation to π∗1/2 for those utility and modular cost functions. We state and
prove this result in the proposition below.
Proposition B.1. For any utility function f(S, h) ,

∑
x∈S w(x, h(x)) where w : X × Y → R≥0,

and any modular cost function c such that c(S) =
∑
x∈S c({x}),

fworst(π1) >
1

2

(
1− 1

e

)
fworst(π

∗
1/2),

where π1 is run with budget K and π∗1/2 is the optimal worst-case policy with budget K/2.

Proof. For this utility, note that the realization h∗(x) , arg miny w(x, y) is always the worst-case
realization of any policy. Besides, δ(x | D) = w(x, h∗(x)), which means the greedy criterion in
policy π1 would always consider the state h∗(x) instead of other states. So, we can fix the realization
h∗ in all of our following arguments.

Assume we run π1 with budget K/2 and select x′1, x
′
2, . . . , x

′
t, x
′
t+1, . . . , x

′
T , while at the same time

we run π1 with budget K and select x′1, x
′
2, . . . , x

′
t, xt+1, where xt+1 is the first item selected by π1

with budget K but could not be selected with budget K/2 due to the budget constraint. From the
greedy criterion of π1, it is easy to see that:

w(xt+1, h
∗(xt+1))

c({xt+1})
≥ w(x′i, h

∗(x′i))

c({x′i})
, for i = t+ 1, . . . , T.

Thus,
T∑

i=t+1

w(x′i, h
∗(x′i)) ≤

w(xt+1, h
∗(xt+1))

c({xt+1})

T∑
i=t+1

c({x′i}) ≤ w(xt+1, h
∗(xt+1)), which is due

to the fact that
T∑

i=t+1

c({x′i}) = c({x′i}Ti=t+1) < c({xt+1}). This implies that:

fworst(π1 with budget K) ≥ fworst(π1 with budget K/2).

Now let xπ2
be the first item selected if we run π2 with budget K/2. If xπ2

∈ {x′1, x′2, . . . , x′t, xt+1},
then fworst(π1 with budget K) ≥ w(xπ2

, h∗(xπ2
)). If xπ2

/∈ {x′1, x′2, . . . , x′t, xt+1}, then
w(x′i, h

∗(x′i))

c({x′i})
≥ w(xπ2

, h∗(xπ2
))

c({xπ2})
for i = 1, . . . , t, and

w(xt+1, h
∗(xt+1))

c({xt+1})
≥ w(xπ2

, h∗(xπ2
))

c({xπ2})
.

Thus,
t∑
i=1

w(x′i, h
∗(x′i)) + w(xt+1, h

∗(xt+1)) ≥ w(xπ2
, h∗(xπ2

))

c({xπ2
})

(
t∑
i=1

c({x′i}) + c({xt+1})

)
≥ w(xπ2

, h∗(xπ2
)).
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This is due to the fact that
∑t
i=1 c({x′i}) + c({xt+1}) > K/2 ≥ c({xπ2}). Hence,

fworst(π1 with budget K) ≥ w(xπ2 , h
∗(xπ2)).

Since we always have fworst(π1 with budget K) ≥ max{fworst(π1 with budget K/2), w(xπ2
, h∗(xπ2

))},
from the proof of Theorem F.1, this implies:

fworst(π1 with budget K) >
1

2
(1− 1/e)fworst(π

∗
1/2),

and the proposition holds.

C Proof of Equation (5)

Let YD be the labels of the items in XD. We have:

x∗ = arg max
x

δ(x | D)/∆c(x | XD) (Definition of x∗)

= arg max
x

miny∈Y{f(XD ∪ {x},D ∪ {(x, y)})− f(XD,D)}
∆c(x | XD)

(Definition of δ(x | D))

= arg max
x

miny∈Y{p0[YD;XD]− p0[YD ∪ {y};XD ∪ {x}]}
∆c(x | XD)

(Definition of f )

= arg max
x

miny∈Y{1− p0[YD ∪ {y};XD ∪ {x}]/p0[YD;XD]}
∆c(x | XD)

(Divide numerator by the constant p0[YD;XD])

= arg max
x

miny∈Y{1− pD[y;x]}
∆c(x | XD)

. (Definition of posterior pD[y;x])

D Example of Non-Submodular Cost Satisfying Triangle Inequality

If X = {x1, x2, x3}, we can construct a set function c that is not submodular but satisfies the
triangle inequality such that c(∅) = 0, c({x1}) = c({x2}) = c({x3}) = 1, c({x1, x2}) = 2,
c({x1, x3}) = c({x2, x3}) = 1.5, and c({x1, x2, x3}) = 2.5. This function is not submodular
because c({x3, x2, x1})− c({x3, x2}) > c({x3, x1})− c({x3}).

E Proof of Theorem 5

E.1 Proof of Part (a)

Since g1 and g2 are cost-sensitively submodular w.r.t. c, for A ⊆ B ⊆ X and x ∈ X \B, we have:

g1(A ∪ {x})− g1(A)

∆c(x | A)
≥ g1(B ∪ {x})− g1(B)

∆c(x | B)
, and

g2(A ∪ {x})− g2(A)

∆c(x | A)
≥ g2(B ∪ {x})− g2(B)

∆c(x | B)
.

Multiplying α and β into both sides of the first and second inequality respectively, then summing the
resulting inequalities, we have:

(αg1(A ∪ {x}) + βg2(A ∪ {x}))− (αg1(A) + βg2(A))

∆c(x | A)

≥ (αg1(B ∪ {x}) + βg2(B ∪ {x}))− (αg1(B) + βg2(B))

∆c(x | B)
.

Thus, αg1 + βg2 is cost-sensitively submodular w.r.t. c.
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E.2 Proof of Part (b)

Since g is cost-sensitively submodular w.r.t. c1, for all A ⊆ B ⊆ X and x ∈ X \B, we have:

g(A ∪ {x})− g(A)

∆c1(x | A)
≥ g(B ∪ {x})− g(B)

∆c1(x | B)
,

which implies:

(g(A ∪ {x})− g(A))(c1(B ∪ {x})− c1(B)) ≥ (g(B ∪ {x})− g(B))(c1(A ∪ {x})− c1(A)).

Multiplying α into both sides of this inequality, we have:

(g(A∪{x})− g(A))(αc1(B∪{x})−αc1(B)) ≥ (g(B∪{x})− g(B))(αc1(A∪{x})−αc1(A)).

Similarly, we also have:

(g(A∪{x})− g(A))(βc2(B ∪{x})−βc2(B)) ≥ (g(B ∪{x})− g(B))(βc2(A∪{x})−βc2(A)).

Summing these inequalities, we have:

(g(A ∪ {x})− g(A))(αc1(B ∪ {x}) + βc2(B ∪ {x})− αc1(B)− βc2(B))

≥(g(B ∪ {x})− g(B))(αc1(A ∪ {x}) + βc2(A ∪ {x})− αc1(A)− βc2(A)).

Thus,
g(A ∪ {x})− g(A)

(αc1(A ∪ {x}) + βc2(A ∪ {x}))− (αc1(A) + βc2(A))

≥ g(B ∪ {x})− g(B)

(αc1(B ∪ {x}) + βc2(B ∪ {x}))− (αc1(B) + βc2(B))
.

Hence, g is cost-sensitively submodular w.r.t. αc1 + βc2.

E.3 Proof of Parts (c) and (d)

First, we prove the following lemma.

Lemma E.1. For any integer k ≥ 1, if c(S) = (g(S))k for all S ⊆ X and g is monotone, then g is
cost-sensitively submodular w.r.t. c.

Proof. If k = 1, this trivially holds. If k ≥ 2, for all A ⊆ B ⊆ X and x ∈ X \B, we have:

g(A ∪ {x})− g(A)

∆c(x | A)
=

g(A ∪ {x})− g(A)

(g(A ∪ {x}))k − (g(A))k
=

1∑k−1
i=0 (g(A ∪ {x}))k−1−i(g(A))i

.

Similarly,
g(B ∪ {x})− g(B)

∆c(x | B)
=

1∑k−1
i=0 (g(B ∪ {x}))k−1−i(g(B))i

.

Since g is monotone, g(A ∪ {x}) ≤ g(B ∪ {x}) and g(A) ≤ g(B). Thus,

k−1∑
i=0

(g(A ∪ {x}))k−1−i(g(A))i ≤
k−1∑
i=0

(g(B ∪ {x}))k−1−i(g(B))i.

Hence,
g(A ∪ {x})− g(A)

∆c(x | A)
≥ g(B ∪ {x})− g(B)

∆c(x | B)
, which implies that g is cost-sensitively sub-

modular w.r.t. c.

Applying part (b) and Lemma E.1, we can easily see that part (c) holds. Furthermore, from parts (b),
(c), and the Taylor approximation of eg(S), part (d) also holds.
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F General Theorems and Proofs for the Non-Modular Cost Setting

First, we state the theorems for the general, possibly non-modular, cost setting.

Theorem F.1. Assume the utility f and the cost c satisfy the assumptions in Section 4. Let π∗ be the
optimal policy for the worst-case adaptive optimization problem with utility f , cost c, and budget K.
The policy π defined by Equation (3) satisfies:

fworst(π) >
1

2
(1− 1/e) fworst(π

∗).

Theorem F.2. Assume the same setting as in Theorem F.1. Let π∗1/2 be the optimal policy for the
worst-case adaptive optimization problem with budget K/2. The policy π1/2 in Section 3.2.3 satisfies:

fworst(π1/2) >
1

2
(1− 1/e) fworst(π

∗
1/2).

Now we prove the above theorems.

F.1 Proof of Theorem F.1

Without loss of generality, we assume each item can be selected by at least one policy given the
budget K; otherwise, we can simply remove that item from the item set. First, consider the policy π1.
Let h1 = arg minh f(xπ1

h , h) be the worst-case realization of π1. We have fworst(π1) = f(xπ1

h1
, h1).

Note that h1 corresponds to a path from the root to a leaf of the policy tree of π1, and let the items
and states along this path (starting from the root) be:

h1 = {(x1, y1), (x2, y2), . . . , (x|h1|, y|h1|)}.

At any item xi along the path h1, imagine that we run the optimal policy π∗ right after selecting xi
and then follow the paths consistent with {(x1, y1), . . . , (xi, yi)} down to a leaf of the policy tree of
π∗. We consider the following adversary’s path ha = {(xa1 , ya1 ), (xa2 , y

a
2 ), . . . , (xa|ha|, y

a
|ha|)} in the

policy tree of π∗ that satisfies:

yaj = arg min
y
{f({xt}it=1 ∪ {xat }

j−1
t=1 ∪ {xaj }, {yt}it=1 ∪ {yat }

j−1
t=1 ∪ {y})

− f({xt}it=1 ∪ {xat }
j−1
t=1 , {yt}it=1 ∪ {yat }

j−1
t=1 )}

if xaj has not appeared in {x1, . . . , xi}. Otherwise, yaj = yt if xaj = xt for some t = 1, . . . , i. In
the above, since f satisfies minimal dependency, we write f({xt}it=1, {yt}it=1) to denote the utility
obtained after observing {(xt, yt)}it=1.

Assume we follow the path h1 during the execution of π1. Let r be the number of iterations (the repeat
loop) executed in the algorithm for π1 (see Figure 1) until the first time an item in the corresponding
adversary’s path is considered, but not added to D due to the cost budget. Let (x1, y1), . . . , (xl, yl)
be the items selected (i.e., added to D) along the path h1 until iteration r. Furthermore, let xl+1 be
the item in the corresponding adversary’s path (i.e., the adversary’s path right after selecting xl) that
is considered but not added toD. Consider an arbitrary state yl+1 for xl+1. Also let ji be the iteration
where xi (1 ≤ i ≤ l + 1) is considered. For i = 1, 2, . . . , l + 1, define:

ui = f({xt}it=1, {yt}it=1)− f({xt}i−1t=1, {yt}
i−1
t=1), vi =

i∑
t=1

ut, and zi = fworst(π
∗)− vi.

We first prove the following lemma.

Lemma F.1. For i = 1, . . . , l + 1, after each iteration ji, we have ui ≥
∆c(xi | {xt}i−1t=1)

K
zi−1.

Proof. For i = 1, . . . , l + 1 and j = 1, . . . , |ha| (note that ha depends on i), we have:
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ui

∆c(xi | {xt}i−1t=1)

=
f({xt}it=1, {yt}it=1)− f({xt}i−1t=1, {yt}

i−1
t=1)

c({xt}it=1)− c({xt}i−1t=1)

≥ min
y

f({xt}i−1t=1 ∪ {xi}, {yt}
i−1
t=1 ∪ {y})− f({xt}i−1t=1, {yt}

i−1
t=1)

c({xt}it=1)− c({xt}i−1t=1)

≥ min
y

f({xt}i−1t=1 ∪ {xaj }, {yt}
i−1
t=1 ∪ {y})− f({xt}i−1t=1, {yt}

i−1
t=1)

c({xt}i−1t=1 ∪ {xaj })− c({xt}
i−1
t=1)

≥ min
y

f({xt}i−1
t=1∪{x

a
t }

j−1
t=1∪{x

a
j },{yt}

i−1
t=1∪{y

a
t }

j−1
t=1∪{y})−f({xt}i−1

t=1∪{x
a
t }

j−1
t=1 ,{yt}

i−1
t=1∪{y

a
t }

j−1
t=1 )

c({xt}i−1t=1 ∪ {xat }
j−1
t=1 ∪ {xaj })− c({xt}

i−1
t=1 ∪ {xat }

j−1
t=1 )

=
f({xt}i−1t=1 ∪ {xat }

j
t=1, {yt}

i−1
t=1 ∪ {yat }

j
t=1)− f({xt}i−1t=1 ∪ {xat }

j−1
t=1 , {yt}

i−1
t=1 ∪ {yat }

j−1
t=1 )

c({xt}i−1t=1 ∪ {xat }
j
t=1)− c({xt}i−1t=1 ∪ {xat }

j−1
t=1 )

,

where the first equality is from the definition of ui, the second inequality is from the greedy criterion
and assumption of xl+1, the third inequality is from the pointwise cost-sensitive submodularity of f
and c, and the last equality is from the definition of yaj .

Thus,

zi−1
= fworst(π

∗)− vi−1
≤ f({xt}i−1t=1 ∪ {xat }

|ha|
t=1 , {yt}

i−1
t=1 ∪ {yat }

|ha|
t=1)− f({xt}i−1t=1, {yt}

i−1
t=1)

=

|ha|∑
j=1

(f({xt}i−1t=1 ∪ {xat }
j
t=1, {yt}

i−1
t=1 ∪ {yat }

j
t=1)− f({xt}i−1t=1 ∪ {xat }

j−1
t=1 , {yt}

i−1
t=1 ∪ {yat }

j−1
t=1 ))

≤
|ha|∑
j=1

ui(c({xt}i−1t=1 ∪ {xat }
j
t=1)− c({xt}i−1t=1 ∪ {xat }

j−1
t=1 ))

∆c(xi | {xt}i−1t=1)

=
ui

∆c(xi | {xt}i−1t=1)

|ha|∑
j=1

(c({xt}i−1t=1 ∪ {xat }
j
t=1)− c({xt}i−1t=1 ∪ {xat }

j−1
t=1 ))

=
ui

∆c(xi | {xt}i−1t=1)
(c({xt}i−1t=1 ∪ {xat }

|ha|
t=1)− c({xt}i−1t=1))

≤ ui

∆c(xi | {xt}i−1t=1)
c({xat }

|ha|
t=1)

≤ ui

∆c(xi | {xt}i−1t=1)
K.

In the above, the first inequality is from the definition of vi−1 and the pointwise monotonicity of
f , the second inequality is from the previous discussion, the third inequality is from the triangle
inequality for c, and the last inequality is from the fact that ha is a path of π∗, whose cost is at most
K. Thus, Lemma F.1 holds.

Using Lemma F.1, we now prove the next lemma.
Lemma F.2. For i = 1, . . . , l + 1, after each iteration ji, we have:

vi ≥

[
1−

i∏
t=1

(
1−

∆c(xt | {xj}t−1j=1)

K

)]
fworst(π

∗).

Proof. We prove this lemma by induction.
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Base case: For i = 1, consider the path hb = {(xb1, yb1), (xb2, y
b
2), . . . , (xb|hb|, y

b
|hb|)} in the policy

tree of π∗ that satisfies ybi = arg miny f({xbi}, {y}). For all i = 1, 2, . . . , |hb|, we have:

f({x1}, {y1})
c({x1})

=
f({x1}, {y1})− f(∅, ∅)

c({x1})− c(∅)
≥ miny{f({x1}, {y})− f(∅, ∅)}

c({x1})− c(∅)

≥ miny{f({xbi}, {y})− f(∅, ∅)}
c({xbi})− c(∅)

=
f({xbi}, {ybi })− f(∅, ∅)

c({xbi})− c(∅)

≥
f({xbj}ij=1, {ybj}ij=1)− f({xbj}

i−1
j=1, {ybj}

i−1
j=1)

c({xbj}ij=1)− c({xbj}
i−1
j=1)

.

In the above, the first equality is due to f(∅, ∅) = 0 and c(∅) = 0, the second inequality is due to the
greedy criterion of π1, the second equality is from the definition of ybi , and the last inequality is from
the cost-sensitive submodularity of f .

Thus, for all i = 1, 2, . . . , |hb|,

f({x1}, {y1})
c({x1})

(c({xbj}ij=1)− c({xbj}i−1j=1)) ≥ f({xbj}ij=1, {ybj}ij=1)− f({xbj}i−1j=1, {y
b
j}i−1j=1).

Summing the above inequality for all i, we have:

f({x1}, {y1})
c({x1})

c({xbj}
|hb|
j=1) ≥ f({xbj}

|hb|
j=1, {y

b
j}
|hb|
j=1).

Since hb is a path of π∗, we have c({xbj}
|hb|
j=1) ≤ K and f({xbj}

|hb|
j=1, {ybj}

|hb|
j=1) ≥ fworst(π

∗). Thus,

v1 = f({x1}, {y1}) ≥ c({x1})
K fworst(π

∗) and the base case holds.

Inductive step: Now assume the lemma holds for i− 1. We have:

vi
= vi−1 + ui

≥ vi−1 +
∆c(xi | {xt}i−1t=1)

K
(fworst(π

∗)− vi−1)

= (1− ∆c(xi | {xt}i−1t=1)

K
)vi−1 +

∆c(xi | {xt}i−1t=1)

K
fworst(π

∗)

≥ (1− ∆c(xi|{xt}i−1t=1)

K
)

[
1−

i−1∏
t=1

(
1−

∆c(xt|{xj}t−1j=1)

K

)]
fworst(π

∗) +
∆c(xi|{xt}i−1t=1)

K
fworst(π

∗)

=

[
1−

i∏
t=1

(
1−

∆c(xt | {xj}t−1j=1)

K

)]
fworst(π

∗),

where the first inequality is from Lemma F.1 and the second inequality is from the inductive hypothesis.

Now we prove Theorem F.1. Applying Lemma F.2 to iteration jl+1, we have:

vl+1 ≥

[
1−

l+1∏
t=1

(
1−

∆c(xt | {xj}t−1j=1)

K

)]
fworst(π

∗)

≥

[
1−

l+1∏
t=1

(
1−

∆c(xt | {xj}t−1j=1)∑l+1
i=1 ∆c(xi | {xj}i−1j=1)

)]
fworst(π

∗)

≥

[
1−

(
1− 1

l + 1

)l+1
]
fworst(π

∗)

>

(
1− 1

e

)
fworst(π

∗).

7



The second inequality is due to
∑l+1
i=1 ∆c(xi | {xj}i−1j=1) = c({x1, . . . , xl+1}) > K, and the third

inequality is due to the fact that the function 1−
∏n
t=1

(
1− at∑n

i=1 ai

)
achieves its minimum when

a1 = . . . = an =
∑

i ai
n . Hence,

vl + ul+1 = vl+1 >

(
1− 1

e

)
fworst(π

∗).

Now consider the first item x selected by the policy π2. Let yw be the state of x in the worst-case
path of the policy tree of π2. In the previous arguments, note that yl+1 can be arbitrary, thus without
loss of generality, we can set yl+1 = arg miny f({xl+1}, {y}). Now we have:

fworst(π2) ≥ f({x}, {yw}) ≥ min
y
f({x}, {y})

≥ min
y
f({xl+1}, {y}) = f({xl+1}, {yl+1})

≥ f({xt}l+1
t=1, {yt}

l+1
t=1)− f({xt}lt=1, {yt}lt=1)

c({xt}l+1
t=1)− c({xt}lt=1)

c({xl+1})

≥ ul+1,

where the first inequality is from the pointwise monotonicity of f , the third inequality is from the
greedy criterion of π2, the fourth inequality is from the pointwise cost-sensitive submodularity of f ,
and the last inequality is from the triangle inequality for c.

Furthermore, fworst(π1) ≥ vl due to the pointwise monotonicity of f and vl is computed along the
worst-case path of π1. Hence,

fworst(π1) + fworst(π2) >

(
1− 1

e

)
fworst(π

∗).

Therefore, fworst(π) = max{fworst(π1), fworst(π2)} > 1

2
(1− 1

e
)fworst(π

∗).

From this proof, we can easily see that the theorem still holds if we replace the policy π2 with only
the first item x that it selects. In other words, we can terminate the policy π2 right after it selects the
first item and the near-optimality is still guaranteed.

F.2 Proof of Theorem F.2

Let h1/2 = arg minh f(x
π1/2

h , h) be the worst-case realization of π1/2. We have fworst(π1/2) =

f(x
π1/2

h1/2
, h1/2). Note that x

π1/2

h1/2
= xπ1

h1/2
∪ xπ2

h1/2
, where xπ1

h1/2
and xπ2

h1/2
are the sets selected by π1

and π2 respectively in the policy π1/2 under the realization h1/2. Thus, fworst(π1/2) ≥ f(xπ1

h1/2
, h1/2)

and fworst(π1/2) ≥ f(xπ2

h1/2
, h1/2) due to the pointwise monotonicity of f .

From the definition of fworst, we have f(xπ1

h1/2
, h1/2) ≥ minh f(xπ1

h , h) = fworst(π1). Hence,
fworst(π1/2) ≥ fworst(π1). Similarly, fworst(π1/2) ≥ fworst(π2). From Theorem F.1, either fworst(π1)

or fworst(π2) must be greater than
1

2
(1− 1/e) fworst(π

∗
1/2). Therefore, Theorem F.2 holds.
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