
A Preliminary lemmas

Lemma 3. 8s 2 S, ut+1(s)  ut(s), lt+1(s) � lt(s), wt+1(s)  wt(s).

Proof. This lemma follows directly from the definitions of ut(s), lt(s), wt(s) and Ct(s).

Lemma 4. 8n � 1, s 2 Rret
n (S, S) =) s 2 S [ S.

Proof. Proof by induction. Consider n = 1, then s 2 Rret
(S, S) =) s 2 S [ S by definition. For

the induction step, assume s 2 Rret
n�1(S, S) =) s 2 S [ S. Now consider s 2 Rret

n (S, S). We
know that

Rret
n (S, S) = Rret

(S,Rret
n�1(S, S)),

= Rret
n�1(S, S) [ {s 2 S | 9a 2 A(s) : f(s, a) 2 Rret

n�1(S, S)}.

Therefore, since s 2 Rret
n�1(S, S) =) s 2 S [ S and S ✓ S [ S, it follows that s 2 S [ S and the

induction step is complete.

Lemma 5. 8n � 1, s 2 Rret
n (S, S) () 9k, 0  k  n and (a1, . . . , ak), a sequence of k actions,

that induces (s0, s1, . . . , sk) starting at s0 = s, such that si 2 S, 8i = 0, . . . , k � 1 and sk 2 S.

Proof. ( =) ). s 2 Rret
n (S, S) means that either s 2 Rret

n�1(S, S) or 9a 2 A(s) : f(s, a) 2
Rret

n�1(S, S). Therefore, we can reach a state in Rret
n�1(S, S) taking at most one action. Repeating

this procedure i times, the system reaches a state in Rret
n�i(S, S) with at most i actions. In particular,

if we choose i = n, we prove the agent reaches S with at most n actions. Therefore there is a
sequence of actions of length k, with 0  k  n, inducing a state trajectory such that: s0 = s,
si 2 Rret

n�i(S, S) ✓ S [ S for every i = 0, . . . , k � 1 and sk 2 S.
( (= ). Consider k = 0. This means that s 2 S ✓ Rret

n (S, S). In case k = 1 we have
that s0 2 S and that f(s0, a1) 2 S. Therefore s 2 Rret

(S, S) ✓ Rret
n (S, S). For k � 2 we

know sk�1 2 S and f(sk�1, ak) 2 S =) sk�1 2 Rret
(S, S). Similarly sk�2 2 S and

f(sk�2, ak�1) = sk�1 2 Rret
(S, S) =) sk�2 2 Rret

2 (S, S). For any 0  k  n we can apply
this reasoning k times and prove that s 2 Rret

k (S, S) ✓ Rret
n (S, S).

Lemma 6. 8S, S ✓ S, 8N � |S|, Rret
N (S, S) = Rret

N+1(S, S) = R
ret

(S, S)

Proof. This is a direct consequence of Lemma 5. In fact, Lemma 5 states that s belongs to Rret
N (S, S)

if and only if there is a path of length at most N starting from s contained in S that drives the system
to a state in S. Since we are dealing with a finite MDP, there are |S| different states. Therefore, if
such a path exists it cannot be longer than |S|.

Lemma 7. Given S ✓ R ✓ S and S ✓ R ✓ S , it holds that R
ret

(S, S) ✓ R
ret

(R,R).

Proof. Let s 2 R
ret

(S, S). It follows from Lemmas 5 and 6 that there exists a sequence of actions,
(a1, . . . , ak), with 0  k  |S|, that induces a state trajectory, (s0, s1, . . . , sk), starting at s0 = s
with si 2 S ✓ R, 8i = 1, . . . , k � 1 and sk 2 S ✓ R. Using the ( (= ) direction of Lemma 5
and Lemma 6, we conclude that s 2 R

ret
(R,R).

Lemma 8. S ✓ R =) Rreach
(S) ✓ Rreach

(R).

Proof. Consider s 2 Rreach
(S). Then either s 2 S ✓ R or 9ŝ 2 S ✓ R, â 2 A(

ˆs) : s = f(

ˆs, â), by
definition. This implies that s 2 Rreach

(R).

Lemma 9. For any t � 1, S0 ✓ St ✓ St+1 and ˆS0 ✓ ˆSt ✓ ˆSt+1
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Proof. Proof by induction. Consider s 2 S0, S0 =

ˆS0 by initialization. We known that

l1(s) � Ld(s, s) = l1(s) � l0(s) � h,

where the last inequality follows from Lemma 3. This implies that s 2 S1 or, equivalently, that
S0 ✓ S1. Furthermore, we know by initialization that s 2 Rreach

(

ˆS0). Moreover, we can say that
s 2 R

ret
(S1, ˆS0), since S1 ◆ S0 =

ˆS0. We can conclude that s 2 ˆS1. For the induction step assume
that St�1 ✓ St and ˆSt�1 ✓ ˆSt. Let s 2 St. Then,

9s0 2 ˆSt�1 ✓ ˆSt : lt(s
0
) � Ld(s, s0) � h.

Furthermore, it follows from Lemma 3 that lt+1(s0) � Ld(s, s0) � lt(s0) � Ld(s, s0). This implies
that lt+1(s0) � Ld(s, s0) � h. Thus s 2 St+1. Now consider s 2 ˆSt. We known that

s 2 Rreach
(

ˆSt�1) ✓ Rreach
(

ˆSt) by Lemma 8

We also know that s 2 R
ret

(St, ˆSt�1). Since we just proved that St ✓ St+1 and we assumed
ˆSt�1 ✓ ˆSt for the induction step, Lemma 7 allows us to say that s 2 R

ret
(St+1, ˆSt). All together

this allows us to complete the induction step by saying s 2 ˆSt+1.

Lemma 10. S ✓ R =) Rsafe
✏ (S) ✓ Rsafe

✏ (R).

Proof. Consider s 2 Rsafe
✏ (S), we can say that:

9s0 2 S ✓ R : r(z0) � ✏� Ld(z, z0) � h (9)

This means that s 2 Rsafe
✏ (R)

Lemma 11. Given two sets S,R ✓ S such that S ✓ R, it holds that: R✏(S) ✓ R✏(R).

Proof. We have to prove that:

s 2 (Rreach
(S) \R

ret
(Rsafe

✏ (S), S)) =) s 2 (Rreach
(R) \R

ret
(Rsafe

✏ (R), R)) (10)

Let’s start by checking the reachability condition first:

s 2 Rreach
(S) =) s 2 Rreach

(R). by Lemma 8

Now let’s focus on the recovery condition. We use Lemmas 7 and 10 to say that s 2 R
ret

(Rsafe
✏ (S), S)

implies that s 2 R
ret

(Rsafe
✏ (R), R) and this completes the proof.

Lemma 12. Given two sets S,R ✓ S such that S ✓ R, the following holds: R✏(S) ✓ R✏(R).

Proof. The result follows by repeatedly applying Lemma 11.

Lemma 13. Assume that krk2k  B, and that the noise !t is zero-mean conditioned on the history,
as well as uniformly bounded by � for all t > 0. If �t is chosen as in (8), then, for all t > 0 and
all s 2 S , it holds with probability at least 1 � � that |r(s) � µt�1(s)|  �

1
2
t �t�1(s).

Proof. See Theorem 6 in [21].

Lemma 1. Assume that krk2k  B, and that the noise !t is zero-mean conditioned on the history,
as well as uniformly bounded by � for all t > 0. If �t is chosen as in (8), then, for all t > 0 and
all s 2 S , it holds with probability at least 1 � � that r(s) 2 Ct(s).

Proof. See Corollary 1 in [22].
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B Safety

Lemma 14. For all t � 1 and for all s 2 ˆSt, 9s0 2 S0 such that s 2 R
ret

(St, {s0}).

Proof. We use a recursive argument to prove this lemma. Since s 2 ˆSt, we know that s 2
R

ret
(St, ˆSt�1). Because of Lemmas 5 and 6 we know 9(a1, . . . , aj), with j  |S|, inducing

s0, s1, . . . , sj such that s0 = s, si 2 St, 8i = 1, . . . , j � 1 and sj 2 ˆSt�1. Similarly, we can build
another sequence of actions that drives the system to some state in ˆSt�2 passing through St�1 ✓ St

starting from sj 2 ˆSt�1. By applying repeatedly this procedure we can build a finite sequence of
actions that drives the system to a state s0 2 S0 passing through St starting from s. Because of
Lemmas 5 and 6 this is equivalent to s 2 R

ret
(St, {s0}).

Lemma 15. For all t � 1 and for all s 2 ˆSt, 9s0 2 S0 such that s0 2 R
ret

(St, {s}).

Proof. The proof is analogous to the the one we gave for Lemma 14. The only difference is that here
we need to use the reachability property of ˆSt instead of the recovery property of ˆSt.

Lemma 2. Assume that S0 6= ; and that for all states, s, s0 2 S0, s 2 R
ret

(S0, {s0}). Then, when
using Algorithm 1 under the assumptions in Theorem 1, for all t > 0 and for all states, s, s0 2 ˆSt,
s 2 R

ret
(St, {s0}).

Proof. This lemma is a direct consequence of the properties of S0 listed above (that are ensured by
the initialization of the algorithm) and of Lemmas 14 and 15

Lemma 16. For any t � 0, the following holds with probability at least 1 � �: 8s 2 St, r(s) � h.

Proof. Let’s prove this result by induction. By initialization we know that r(s) � h for all s 2 S0.
For the induction step assume that for all s 2 St�1 holds that r(s) � h. For any s 2 St, by definition,
there exists z 2 ˆSt�1 ✓ St�1 such that

h  lt(z) � Ld(s, z),

 r(z) � Ld(s, z), by Lemma 1
 r(s). by Lipschitz continuity

This relation holds with probability at least 1 � � because we used Lemma 1 to prove it.

Theorem 2. For any state s along any state trajectory induced by Algorithm 1 on a MDP with
transition function f(s, a), we have, with probability at least 1 � �, that r(s) � h.

Proof. Let’s denote as (st1, s
t
2, . . . , s

t
k) the state trajectory of the system until the end of iteration

t � 0. We know from Lemma 2 and Algorithm 1 that the sti 2 St, 8i = 1, . . . , k. Lemma 16
completes the proof as it allows us to say that r(sti) � h, 8i = 1, . . . , k with probability at least
1 � �.

C Completeness

Lemma 17. For any t1 � t0 � 1, if ˆSt1 =

ˆSt0 , then, 8t such that t0  t  t1, it holds that
Gt+1 ✓ Gt

Proof. Since ˆSt is not changing we are always computing the enlargement function over the same
points. Therefore we only need to prove that the enlargement function is non increasing. We known
from Lemma 3 that ut(s) is a non increasing function of t for all s 2 S. Furthermore we know that
(S \ St) ◆ (S \ St+1) because of Lemma 9. Hence, the enlargement function is non increasing and
the proof is complete.
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Lemma 18. For any t1 � t0 � 1, if ˆSt1 =

ˆSt0 , C1 = 8/log(1 + ��2
) and st = argmax

s2Gt

wt(s),

then, 8t such that t0  t  t1, it holds that wt(st) 
q

C1�t�t

t�t0
.

Proof. See Lemma 5 in [22].

Lemma 19. For any t � 1, if C1 = 8/log(1 + ��2
) and Tt is the smallest positive integer such that

Tt
�t+Tt�t+Tt

� C1
✏2 and St+Tt = St, then, for any s 2 Gt+Tt it holds that wt+Tt(s)  ✏

Proof. The proof is trivial because Tt was chosen to be the smallest integer for which the right hand
side of the inequality proved in Lemma 18 is smaller or equal to ✏.

Lemma 20. For any t � 1, if R✏(S0) \ ˆSt 6= ;, then, R✏(
ˆSt) \ ˆSt 6= ;.

Proof. For the sake of contradiction assume that R✏(
ˆSt) \ ˆSt = ;. This implies R✏(

ˆSt) ✓ ˆSt. On
the other hand, since ˆSt is included in all the sets whose intersection defines R✏(

ˆSt), we know that,
ˆSt ✓ R✏(

ˆSt). This implies that ˆSt = R✏(
ˆSt).

If we apply repeatedly the one step reachability operator on both sides of the equality we obtain
R✏(

ˆSt) =

ˆSt. By Lemmas 9 and 12 we know that

S0 =

ˆS0 ✓ ˆSt =) R✏(S0) ✓ R✏(
ˆSt) =

ˆSt.

This contradicts the assumption that R✏(S0) \ ˆSt 6= ;.

Lemma 21. For any t � 1, if R✏(S0) \ ˆSt 6= ;, then, with probability at least 1 � � it holds that
ˆSt ⇢ ˆSt+Tt .

Proof. By Lemma 20 we know that R✏(S0) \ ˆSt 6= ;. This implies that 9s 2 R✏(
ˆSt) \ ˆSt. Therefore

there exists a s0 2 ˆSt such that:
r(s0) � ✏� Ld(s, s0) � h (11)

For the sake of contradiction assume that ˆSt+Tt =

ˆSt. This means that s 2 S \ ˆSt+Tt and s0 2 ˆSt+Tt .
Then we have:

ut+Tt(s
0
) � Ld(s, s0) � r(s0) � Ld(s, s0) by Lemma 13

� r(s0) � ✏� Ld(s, s0) (12)
� h by equation 11

Assume, for the sake of contradiction, that s 2 S \ St+Tt . This means that s0 2 Gt+Tt . We know
that for any t  ˆt  t + Tt holds that ˆSt̂ =

ˆSt, because ˆSt =

ˆSt+Tt and ˆSt ✓ ˆSt+1 for all t � 1.
Therefore we have s0 2 ˆSt+Tt�1 such that:

lt+Tt(s
0
) � Ld(s, s0) � lt+Tt(s

0
) � r(s0) + ✏ + h by equation 11

� �wt+Tt(s
0
) + ✏ + h by Lemma 13

� h by Lemma 19

This implies that s 2 St+Tt , which is a contradiction. Thus we can say that s 2 St+Tt .
Now we want to focus on the recovery and reachability properties of s in order to reach the contradic-
tion that s 2 ˆSt+Tt . Since s 2 R✏(

ˆSt+Tt) \ ˆSt+Tt we know that:

s 2 Rreach
(

ˆSt+Tt) = Rreach
(

ˆSt+Tt�1) (13)

We also know that s 2 R✏(
ˆSt+Tt) \ ˆSt+Tt =) s 2 R

ret
(Rsafe

✏ (

ˆSt+Tt),
ˆSt+Tt). We want to

use this fact to prove that s 2 R
ret

(St+Tt ,
ˆSt+Tt�1). In order to do this, we intend to use the

result from Lemma 7. We already know that ˆSt+Tt�1 =

ˆSt+Tt . Therefore we only need to prove
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that Rsafe
✏ (

ˆSt+Tt) ✓ St+Tt . For the sake of contradiction assume this is not true. This means
9z 2 Rsafe

✏ (

ˆSt+Tt) \ St+Tt . Therefore there exists a z0 2 ˆSt+Tt such that:

r(z0) � ✏� Ld(z0, z) � h (14)

Consequently:

ut+Tt(z
0
) � Ld(z0, z) � r(z0) � Ld(z0, z) by Lemma 13

� r(z0) � ✏� d(z0, z) (15)
� h by equation 14

Hence z0 2 Gt+Tt . Since we proved before that ˆSt+Tt =

ˆSt+Tt�1, we can say that z0 2 ˆSt+Tt�1

and that:

lt+Tt(z
0
) � Ld(z0, z) � lt+Tt(z

0
) � r(z0) + ✏ + h by equation 14

� �wt+Tt(z
0
) + ✏ + h by Lemma 13

� h by Lemma 19

Therefore z 2 St+Tt . This is a contradiction. Thus we can say that Rsafe
✏ (

ˆSt+Tt) ✓ St+Tt . Hence:

s 2 R✏(
ˆSt+Tt) \ ˆSt+Tt =) s 2 R

ret
(St+Tt ,

ˆSt+Tt�1) (16)

In the end the fact that s 2 St+Tt and (13) and (16) allow us to conclude that s 2 ˆSt+Tt . This
contradiction proves the theorem.

Lemma 22. 8t � 0, ˆSt ✓ R0(S0) with probability at least 1 � �.

Proof. Proof by induction. We know that ˆS0 = S0 ✓ R0(S0) by definition. For the induction step
assume that for some t � 1 holds that ˆSt�1 ✓ R0(S0). Our goal is to show that s 2 ˆSt =) s 2
R0(S0). In order to this, we will try to show that s 2 R0(

ˆSt�1). We know that:

s 2 ˆSt =) s 2 Rreach
(

ˆSt�1) (17)

Furthermore we can say that:

s 2 ˆSt =) s 2 R
ret

(St, ˆSt�1) (18)

For any z 2 St, we know that 9z0 2 ˆSt�1 such that:

h  lt(z
0
) � Ld(z, z0), (19)

 r(z0) � Ld(z, z0). by Lemma 1

This means that z 2 St =) z 2 Rsafe
0 (

ˆSt�1), or, equivalently, that St ✓ Rsafe
0 (

ˆSt�1). Hence,
Lemma 7 and (18) allow us to say that R

ret
(St, ˆSt�1) ✓ R

ret
(Rsafe

0 (

ˆSt�1), ˆSt�1). This result,
together with (17), leads us to the conclusion that s 2 R0(

ˆSt�1). We assumed for the induction step
that ˆSt�1 ✓ R0(S0). Applying on both sides the set operator R0(·), we conclude that R0(

ˆSt�1) ✓
R0(S0). This proves that s 2 ˆSt =) s 2 R0(S0) and the induction step is complete.

Lemma 23. Let t⇤ be the smallest integer such that t⇤ � |R0(S0)|Tt⇤ , then there exists a t0  t⇤

such that, with probability at least 1 � � holds that ˆSt0+Tt0
=

ˆSt0 .

Proof. For the sake of contradiction assume that the opposite holds true: 8t  t⇤, ˆSt ⇢ ˆSt+Tt . This
implies that ˆS0 ⇢ ˆST0 . Furthermore we know that Tt is increasing in t. Therefore 0  t⇤ =) T0 
Tt⇤ =) ˆST0 ✓ ˆSTt⇤ . Now if |R0(S0)| � 1 we know that:

t⇤ � Tt⇤

=) Tt⇤ � TTt⇤

=) Tt⇤ + TTt⇤  2Tt⇤

=) ˆSTt⇤+TTt⇤
✓ ˆS2Tt⇤
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This justifies the following chain of inclusions:

ˆS0 ⇢ ˆST0 ✓ ˆSTt⇤ ⇢ ˆSTt⇤+TTt⇤
✓ ˆS2Tt⇤ ⇢ . . .

This means that for any 0  k  |R0(S0)| it holds that | ˆSkTt⇤ | > k. In particular, for k⇤ = |R0(S0)|
we have | ˆSk⇤Tt⇤ | > |R0(S0)|. This contradicts Lemma 22 (which holds true with probability at least
1 � �).

Lemma 24. Let t⇤ be the smallest integer such that t⇤

�t⇤�t⇤
� C1|R0(S0)|

✏2 , then, there is t0  t⇤ such
that ˆSt0+Tt0

=

ˆSt0 with probability at least 1 � �.

Proof. The proof consists in applying the definition of Tt to the condition of Lemma 23.

Theorem 3. Let t⇤ be the smallest integer such that t⇤

�t⇤�t⇤
� C1|R0(S0)|

✏2 , with C1 = 8/log(1+��2
),

then, there is t0  t⇤ such that R✏(S0) ✓ ˆSt0 ✓ R0(S0) with probability at least 1 � �.

Proof. Due to Lemma 24, we know that 9t0  t⇤ such that ˆSt0 =

ˆSt0+Tt0
with probability at least

1 � �. This implies that R✏(S0) \ (

ˆSt) = ; with probability at least 1 � � because of Lemma 21.
Therefore R✏(S0) ✓ ˆSt. Furthermore we know that ˆSt ✓ R0(S0) with probability at least 1 � �
because of Lemma 22 and this completes the proof.

D Main result

Theorem 1. Assume that r(·) is L-Lipschitz continuous and that the assumptions of Lemma 1
hold. Also, assume that S0 6= ;, r(s) � h for all s 2 S0, and that for any two states, s, s0 2 S0,
s0 2 R

ret
(S0, {s}). Choose �t as in (8). Then, with probability at least 1 � �, we have r(s) � h for

any s along any state trajectory induced by Algorithm 1 on an MDP with transition function f(s, a).
Moreover, let t⇤ be the smallest integer such that t⇤

�t⇤�t⇤
� C |R0(S0)|

✏2 , with C = 8/ log(1 + ��2
).

Then there exists a t0  t⇤ such that, with probability at least 1 � �, R✏(S0) ✓ ˆSt0 ✓ R0(S0).

Proof. This is a direct consequence of Theorem 2 and Theorem 3.
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