Appendix: Fast Stochastic Optimization on Riemannian Manifolds

A Proofs for Section 3.1

Theorem 1. Assume in (1) each f; is L-g-smooth, and f is p-strongly g-convex, then if we run
Algorithm 1 with Option I and parameters that satisfy
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then with .S outer loops, the Riemannian SVRG algorithm produces an iterate x, that satisfies

Ed?(xq,2%) < od?(2°, z%).
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Proof. We start by bounding the squared norm of the variance reduced gradient. Since v; 1=

s+1
Vi (™) = T3 (Vfi,(#%) — g°1), conditioned on z; 7" and taking expectation with respect
to 7;, we obtain:
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We use ||a + b||? < 2||a|? + 2||b]|? twice, in the first and fourth inequalities. The second equality
is due to V f(z*) = 0. The second inequality is due to the L-g-smoothness assumption. The third
inequality is due to triangle inequality.

Notice that Ev; ! = V f(z™!) and 21} = Exp, .1 (—nui™h), we thus have
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The first inequality uses the trigonometric distance lemma, the second one uses previously obtained
bound for [E||v;||?, the third and fourth use the u-strong g-convexity of f(x).

We now denote u; = Ed?(x5th 2*),q 2 1+4¢n?L? — 2nu, p £ 6¢(n*L?/(1 — q). Hence by taking
expectation with all the history, and noting #* = xSH, we have w41 < qui + p(1 — q)uy, ie.
ugr1 — pup < q(ug — pug). Therefore, u,, — pug < ¢™(uo — pup), hence we get

um < (p+q™ (1 — p))uo,
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where p + ¢"(1 — p) = Higéf?; 4 Gt4en L :_2;’577)]:2(”75(% ) = q. It follows directly from the

algorithm that after S outer loops, Ed?(z,, 2*) = Ed?(3°, 2*) < a®d?(2°, z*). O




Corollary 1. With assumptions as in Theorem 1 and properly chosen parameters, after
O <(n + C}fj ) log(%)) IFO calls, the output z, satisfies

Elf(za) — f(a")] < e

Proof. Assume we choose 7 = pu/(17CL?) and m > 10¢L?/u?, it follows that ¢ = 1 —
30u%/(289¢CL?) <1 — pu?/(10¢L?),p = 1/5 and therefore
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where the second inequality is due to (1 — z)*/* < 1/e for z € (0,1). Applying Theorem 1 with
a = 1/2, we have Ed?(x,,r*) < 279d?(2°, 2*). Note that by using the L-g-smooth assumption,
we also get E[f(z4) — f(2*)] < E [ Ld?*(zq,2*)] < 27571 Ld*(2°,2*). It thus suffices to run
logy (Ld?(x°, 2*) /€) — 1 outer loops to guarantee E[f(z,) — f(2*)] < e.

For the s-th outer loop, we need n IFO calls to evaluate the full gradient at 2°, and 2m IFO calls
when calculating each variance reduced gradient. Hence the total number of IFO calls to reach e

accuracy is O ((n + %) log(%))- -

B Proofs for Section 3.2

Theorem 5. Assuming the inverse exponential map is well-defined on X, f : X — R is
a geodesically L-smooth function, stochastic first-order oracle V f(z) satisfies E[V f(z')] =
V), |[Vf(ah)]|? < o2, then the SGD algorithm z!*! = Exp,.(—nVf(z?!)) with n =

c/NT,c= \/W satisfies
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After rearrangement, we obtain
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Lemma 2. Assume in (1) each f; is L-g-smooth, the sectional curvature in X" is lower bounded by
Kmin, and we run Algorithm 1 with Option II. For ¢, ciy1, 8,m > 0, suppose we have

¢t = cep1 (1+ By + 2¢L%n?) + LPn?
and o
o(t)=n— % — Ln?* — 2¢,41(n° > 0,

then the iterate :CSH satisfies the bound:
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where RS = E[f (2 1) + c¢||Expa. (25T for 0 < s < S — 1.

Proof. Since f is L-smooth we have
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Consider now the Lyapunov function
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For bounding it we will require the following:
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where the first inequality is due to Lemma 1, the second due to 2{a, b) < %||a||2 + f]b]|%. Plugging
Equation (6) and Equation (7) into Rfill, we obtain the following bound:
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It remains to bound E [||vs+1|| |. Denoting ASTE = Vi (x5 — F;f:HVfit (z°), we have
E[AST = V (a5t — rgz Vf(;%s),and thus
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where the first inequality is due to |la + b||? < 2||a||? + 2||b]|?, the second due to E||¢ — E&||2 =
E||€]|? — ||E€]|? < E||£||? for any random vector € in any tangent space, the third due to L-g-smooth
assumption. Substituting Equation (9) into Equation (8) we get
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Rearranging terms completes the proof. O

Theorem 6. With assumptions as in Lemma 2, let ¢, 0, > 0,8 > 0, and ¢; =
cir (1+ Bn+2¢L?n?) 4+ L3n? such that §(¢) > 0 for 0 < ¢ < m — 1. Define the quantity
0, := ming §(t), and let T" = m.S. Then for the output x, from Option II we have
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Proof. Using Lemma 2 and telescoping the sum, we obtain
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Now sum over all epochs to obtain
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Note the definition of x, implies that the left hand side of (12) is exactly E[||V f(z4)||?]- O

Theorem 2. Assume in (1) each f; is L-g-smooth, the sectional curvature in A" is lower bounded by
Kmin, and we run Algorithm 1 with Option II. Then there exist universal constants 1o € (0,1),v >0
such that if we set ) = p1o/(Ln®1(*2?) (0 < o < 1and 0 < ag < 2), m = [n3¥1/2 /(3¢ —202)]
and T = m.S, we have

Ln®1¢o2[f(a%) — f(a*)]

B[V f(za)I] < = ,

where =* is an optimal solution to the problem in (1).

Proof. Let 8 = L{'~°2 /n®1/2. From the recurrence relation ¢; = ¢;11 (1 + Bn + 2(L?n?) + L?n?
and ¢, = 0 we have
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and in turn bound §,, by
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where the last inequality holds for small enough 1, as (,» > 1. For example, it holds for pg =
1/10,v = 1/20. Substituting the above bound in Theorem 6 concludes the proof. O

Corollary 2. With assumptions and parameters in Theorem 2, choosing «; = 2/3, the IFO complex-
ity for achieving an e-accurate solution is:
_f O(n+ (n¥312/e)), if ay < 1/2,
IFO calls = { O (nczaz—l + (n2/3<a2/6)) ,ifag > 1/2.
Proof. Note that to reach an e-accurate solution, O(n®1¢2 /(me)) = O(1 +n~1/3¢' =22 /¢) epochs
are required. On the other hand, one epoch takes O (n(1 + ¢2*271)) IFO calls. Thus the total amount
of IFO calls is O (n(1 + ¢2*271) (1 + n=1/3¢1 2 /¢)). Simplify to get the stated result. O

Theorem 3. Suppose that in addition to the assumptions in Theorem 2, f is 7-gradient dominated.
Then there exist universal constants pg € (0,1),~ > 0 such that if we run Algorithm 2 with

0= po/(Ln?3¢H?),m = n/(3po)], S = [(6 + 115) LT 1o/ (vn'/?)], we have
E[|Vf(™)?) < 275V f ()],
E[f(a™) = f(a*)] < 275 [f(2°) - f(a")].
Proof. Apply Theorem 2. Observe that for each run of Algorithm 1 with Option II we now have

T =mS > 2Ltn?/3¢'/2 /v, which implies

%E[f(xk“) = f(@")] S E[IVf("?) < %E[f(ff’“) — f(@")] < SE[IVF ("))

The theorem follows by recursive application of the above inequality. O
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Corollary 4. With Algorithm 2 and the parameters in Theorem 3, the IFO complexity to compute an
e-accurate solution for gradient dominated function f is O((n + L7¢Y/?n2/3) log(1/€)).

Proof. We need O((n +m)S) = O(n + L7¢/?n?/3) IFO calls in a run of Algorithm 1 to double
the accuracy, thus in Algorithm 2, K = O(log(1/¢)) runs are needed to reach e-accuracy. O
Corollary 5. With Algorithm 2 and the parameters in Theorem 3, the IFO complexity to compute an
e-accurate solution for a u-strongly g-convex function f is O((n + p~'L{Y/?12/3) log(1/€)).

Proof. Assume x* is the minimizer of f and f is pu-strongly g-convex, then we have

f(a*) = min f(y)
. _ iz _
> min f(z) + (Vf(x), Exp, ') + 5 1Exps ()]
= 1) = 5V @I + min o[V 7 (@) + uBxp; (o)
2u v 2u 7”
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where we get the first inequality by strong g-convexity, the second equality by completing the squares,

and the second inequality by choosing y = Exp,, (—5v f (x)) Thus f(x) is (1/(24))-gradient
dominated, and choosing 7 = 1/(2u) in Corollary 4 concludes the proof. O



C Proof for Section 4.1

Theorem 4. Suppose A has eigenvalues A\; > Ay > --- > Agand d = A\; — Ay, and 29 is drawn
uniformly randomly on the hypersphere. Then with probability 1 — p, 2° falls in a Riemannian ball
of a global optimum of the objective function, within which the objective function is O( pg 5 )-gradient
dominated.

Proof. We write = in the basis of A’s eigenvectors {v;}&, with corresponding eigenvalues
Al > Ao > - > Ag,le. = Zle o;v;. Thus Az = Z?Zl a;\v; and f(z) = —Zle aZ ).
The Riemannian gradient of f(z) is P,Vf(r) = —2(I — za")Az = —2(Az + f(z)x) =
—2 Z _1 (A Z?Zl a3 \;j)v; (see [1, Example 3.6.1]). Now consider a Riemannian ball on
the hypersphere defined by B. = {z : z € S%~1 a; > ¢}, note that the center of B, is the first
eigenvector. We apply a case by case argument with respect to f(z) — f(z*). If f(z) — f(a*) > g,
we can lower bound the gradient by

d d 2 2

S (n=X ain) zad (=X ady) = el (@) - )
3030(f(2) = f(2")) > 5€%0(f () — f(2"))

The last equality follows from the fact that f(z*) = —A; and f(x) = — Z?:l a?);. On the other
hand, if f(z) — f(z*) < &, fori = 2,...,d, since —\; — f(z*) > &, we have —\; — f(z) >
2(=Xi — f(z*)) > 6/2. We can, again, lower bound the gradient by

illPV (@)
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Combining the two cases, we have that within 3, the objective function (5) is max{ 55+ 3e5 s 6} gradient
dominated. Flnally, observe that if 2° is chosen uniformly at random on S, then with probability
atleast 1 — p, a? = Q(& 7 ) i.e. there exists some constant ¢ > 0 such that 5 < ;d. O
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