
Appendix: Fast Stochastic Optimization on Riemannian Manifolds

A Proofs for Section 3.1

Theorem 1. Assume in (1) each f
i

is L-g-smooth, and f is µ-strongly g-convex, then if we run
Algorithm 1 with Option I and parameters that satisfy
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We use ka + bk2  2kak2 + 2kbk2 twice, in the first and fourth inequalities. The second equality
is due to rf(x⇤

) = 0. The second inequality is due to the L-g-smoothness assumption. The third
inequality is due to triangle inequality.
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The first inequality uses the trigonometric distance lemma, the second one uses previously obtained
bound for Ekv

t

k2, the third and fourth use the µ-strong g-convexity of f(x).
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Corollary 1. With assumptions as in Theorem 1 and properly chosen parameters, after
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where the second inequality is due to (1 � x)1/x  1/e for x 2 (0, 1). Applying Theorem 1 with
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B Proofs for Section 3.2

Theorem 5. Assuming the inverse exponential map is well-defined on X , f : X ! R is
a geodesically L-smooth function, stochastic first-order oracle r ˜f(x) satisfies E[r ˜f(xt
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Lemma 2. Assume in (1) each f
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where the first inequality is due to ka + bk2  2kak2 + 2kbk2, the second due to Ek⇠ � E⇠k2 =

Ek⇠k2 � kE⇠k2  Ek⇠k2 for any random vector ⇠ in any tangent space, the third due to L-g-smooth
assumption. Substituting Equation (9) into Equation (8) we get
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Rearranging terms completes the proof.
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and in turn bound �
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where the last inequality holds for small enough µ
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, as ⇣, n � 1. For example, it holds for µ
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The theorem follows by recursive application of the above inequality.

Corollary 4. With Algorithm 2 and the parameters in Theorem 3, the IFO complexity to compute an
✏-accurate solution for gradient dominated function f is O((n+ L⌧⇣1/2n2/3

) log(1/✏)).

Proof. We need O((n+m)S) = O(n+ L⌧⇣1/2n2/3

) IFO calls in a run of Algorithm 1 to double
the accuracy, thus in Algorithm 2, K = O(log(1/✏)) runs are needed to reach ✏-accuracy.

Corollary 5. With Algorithm 2 and the parameters in Theorem 3, the IFO complexity to compute an
✏-accurate solution for a µ-strongly g-convex function f is O((n+ µ�1L⇣1/2n2/3

) log(1/✏)).

Proof. Assume x⇤ is the minimizer of f and f is µ-strongly g-convex, then we have
f(x⇤

) = min

y

f(y)

� min

y

f(x) + hrf(x),Exp�1

x

(y)i+ µ

2

kExp�1

x

(y)k2

= f(x)� 1

2µ
krf(x)k2 +min

y

1

2µ
krf(x) + µExp�1

x

(y)k2

� f(x)� 1

2µ
krf(x)k2

where we get the first inequality by strong g-convexity, the second equality by completing the squares,
and the second inequality by choosing y = Exp

x

⇣

� 1

µ

rf(x)
⌘

. Thus f(x) is (1/(2µ))-gradient
dominated, and choosing ⌧ = 1/(2µ) in Corollary 4 concludes the proof.

5



C Proof for Section 4.1

Theorem 4. Suppose A has eigenvalues �
1

> �
2

� · · · � �
d

and � = �
1

� �
2

, and x0 is drawn
uniformly randomly on the hypersphere. Then with probability 1� p, x0 falls in a Riemannian ball
of a global optimum of the objective function, within which the objective function is O(

d

p

2
�

)-gradient
dominated.

Proof. We write x in the basis of A’s eigenvectors {v
i

}d
i=1

with corresponding eigenvalues
�
1

> �
2

� · · · � �
d

, i.e. x =

P

d

i=1

↵
i

v
i

. Thus Ax =

P

d

i=1

↵
i

�
i

v
i

and f(x) = �
P

d

i=1

↵2

i

�
i

.
The Riemannian gradient of f(x) is P

x

rf(x) = �2(I � xx>
)Ax = �2(Ax + f(x)x) =

�2

P

d

i=1

↵
i

(�
i

�
P

d

j=1

↵2

j

�
j

)v
i

(see [1, Example 3.6.1]). Now consider a Riemannian ball on
the hypersphere defined by B

✏

, {x : x 2 Sd�1,↵
1

� ✏}, note that the center of B
✏

is the first
eigenvector. We apply a case by case argument with respect to f(x)� f(x⇤

). If f(x)� f(x⇤
) � �

2

,
we can lower bound the gradient by

1

4

kP
x

rf(x)k2 =

X

d

i=1

↵2

i

⇣

�
i

�
X

d

j=1

↵2

j

�
j

⌘

2

� ↵2

1

⇣

�
1

�
X

d

j=1

↵2

j

�
j

⌘

2

= ↵2

1

(f(x)� f(x⇤
))

2

� 1

2

↵2

1

�(f(x)� f(x⇤
)) � 1

2

✏2�(f(x)� f(x⇤
))

The last equality follows from the fact that f(x⇤
) = ��

1

and f(x) = �
P

d

i=1

↵2

i

�
i

. On the other
hand, if f(x) � f(x⇤

) < �

2

, for i = 2, . . . , d, since ��
i

� f(x⇤
) � �, we have ��

i

� f(x) >
1

2

(��
i

� f(x⇤
)) � �/2. We can, again, lower bound the gradient by

kP
x

rf(x)k2 = 4

X

d

i=1

↵2

i

⇣

�
i

�
X

d

j=1

↵2

j

�
j

⌘

2

� 4

X

d

i=2

↵2

i

⇣

�
i

�
X

d

j=1

↵2

j

�
j

⌘

2

�
X

d

i=2

↵2

i

(�
1

� �
i

)

2 � �
X

d

i=2

↵2

i

(�
1

� �
i

) = �(f(x)� f(x⇤
))

Combining the two cases, we have that within B
✏

the objective function (5) is max{ 1

2✏

2
�

, 1

�

}-gradient
dominated. Finally, observe that if x0 is chosen uniformly at random on Sd�1, then with probability
at least 1� p, ↵2

1

= ⌦(

p

2

d

), i.e. there exists some constant c > 0 such that 1

✏

2  cd

p

2 .
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