
Adaptive Skills Adaptive Partitions (ASAP)

Daniel J. Mankowitz, Timothy A. Mann∗ and Shie Mannor
The Technion - Israel Institute of Technology,

Haifa, Israel
danielm@tx.technion.ac.il, mann.timothy@acm.org, shie@ee.technion.ac.il

∗Timothy Mann now works at Google Deepmind.

Abstract

We introduce the Adaptive Skills, Adaptive Partitions (ASAP) framework that (1)
learns skills (i.e., temporally extended actions or options) as well as (2) where to
apply them. We believe that both (1) and (2) are necessary for a truly general skill
learning framework, which is a key building block needed to scale up to lifelong
learning agents. The ASAP framework can also solve related new tasks simply by
adapting where it applies its existing learned skills. We prove that ASAP converges
to a local optimum under natural conditions. Finally, our experimental results,
which include a RoboCup domain, demonstrate the ability of ASAP to learn where
to reuse skills as well as solve multiple tasks with considerably less experience
than solving each task from scratch.

1 Introduction
Human-decision making involves decomposing a task into a course of action. The course of action is
typically composed of abstract, high-level actions that may execute over different timescales (e.g.,
walk to the door or make a cup of coffee). The decision-maker chooses actions to execute to solve
the task. These actions may need to be reused at different points in the task. In addition, the actions
may need to be used across multiple, related tasks.

Consider, for example, the task of building a city. The course of action to building a city may involve
building the foundations, laying down sewage pipes as well as building houses and shopping malls.
Each action operates over multiple timescales and certain actions (such as building a house) may need
to be reused if additional units are required. In addition, these actions can be reused if a neighboring
city needs to be developed (multi-task scenario).

Reinforcement Learning (RL) represents actions that last for multiple timescales as Temporally
Extended Actions (TEAs) (Sutton et al., 1999), also referred to as options, skills (Konidaris & Barto,
2009) or macro-actions (Hauskrecht, 1998). It has been shown both experimentally (Precup & Sutton,
1997; Sutton et al., 1999; Silver & Ciosek, 2012; Mankowitz et al., 2014) and theoretically (Mann &
Mannor, 2014) that TEAs speed up the convergence rates of RL planning algorithms. TEAs are seen
as a potentially viable solution to making RL truly scalable. TEAs in RL have become popular in
many domains including RoboCup soccer (Bai et al., 2012), video games (Mann et al., 2015) and
Robotics (Fu et al., 2015). Here, decomposing the domains into temporally extended courses of
action (strategies in RoboCup, move combinations in video games and skill controllers in Robotics
for example) has generated impressive solutions. From here on in, we will refer to TEAs as skills.

A course of action is defined by a policy. A policy is a solution to a Markov Decision Process (MDP)
and is defined as a mapping from states to a probability distribution over actions. That is, it tells the
RL agent which action to perform given the agent’s current state. We will refer to an inter-skill policy
as being a policy that tells the agent which skill to execute, given the current state.

A truly general skill learning framework must (1) learn skills as well as (2) automatically compose
them together (as stated by Bacon & Precup (2015)) and determine where each skill should be
executed (the inter-skill policy). This framework should also determine (3) where skills can be reused

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Table 1: Comparison of Approaches to ASAP

Automated Skill Automatic Continuous Learning Correcting
Learning Skill State Reusable Model

with Policy Composition Multitask Skills Misspecification
Gradient Learning

ASAP (this paper) X X X X X
da Silva et al. 2012 X × X × ×
Konidaris & Barto 2009 × X × × ×
Bacon & Precup 2015 X × × × ×
Eaton & Ruvolo 2013 × × X × ×

in different parts of the state space and (4) adapt to changes in the task itself. Finally it should also
be able to (5) correct model misspecification (Mankowitz et al., 2014). Whilst different forms of
model misspecification exist in RL, we define it here as having an unsatisfactory set of skills and
inter-skill policy that provide a sub-optimal solution to a given task. This skill learning framework
should be able to correct this misspecification to obtain a near-optimal solution. A number of works
have addressed some of these issues separately as shown in Table 1. However, no work, to the best of
our knowledge, has combined all of these elements into a truly general skill-learning framework.

Our framework entitled ‘Adaptive Skills, Adaptive Partitions (ASAP)’ is the first of its kind to
incorporate all of the above-mentioned elements into a single framework, as shown in Table 1, and
solve continuous state MDPs. It receives as input a misspecified model (a sub-optimal set of skills and
inter-skill policy). The ASAP framework corrects the misspecification by simultaneously learning a
near-optimal skill-set and inter-skill policy which are both stored, in a Bayesian-like manner, within
the ASAP policy. In addition, ASAP automatically composes skills together, learns where to reuse
them and learns skills across multiple tasks.

Main Contributions: (1) The Adaptive Skills, Adaptive Partitions (ASAP) algorithm that automati-
cally corrects a misspecified model. It learns a set of near-optimal skills, automatically composes
skills together and learns an inter-skill policy to solve a given task. (2) Learning skills over multiple
different tasks by automatically adapting both the inter-skill policy and the skill set. (3) ASAP can
determine where skills should be reused in the state space. (4) Theoretical convergence guarantees.

2 Background
Reinforcement Learning Problem: A Markov Decision Process is defined by a 5-tuple
〈X,A,R, γ, P 〉 where X is the state space, A is the action space, R ∈ [−b, b] is a bounded re-
ward function, γ ∈ [0, 1] is the discount factor and P : X ×A→ [0, 1]X is the transition probability
function for the MDP. The solution to an MDP is a policy π : X → ∆A which is a function
mapping states to a probability distribution over actions. An optimal policy π∗ : X → ∆A

determines the best actions to take so as to maximize the expected reward. The value function

V π(x) = Ea∼π(·|a)

[
R(x, a)

]
+ γEx′∼P (·|x,a)

[
V π(x′)

]
defines the expected reward for following

a policy π from state x. The optimal expected reward V π
∗
(x) is the expected value obtained for

following the optimal policy from state x.

Policy Gradient: Policy Gradient (PG) methods have enjoyed success in recent years especially
in the fields of robotics (Peters & Schaal, 2006, 2008). The goal in PG is to learn a policy πθ that
maximizes the expected return J(πθ) =

∫
τ
P (τ)R(τ)dτ , where τ is a set of trajectories, P (τ) is

the probability of a trajectory and R(τ) is the reward obtained for a particular trajectory. P (τ) is
defined as P (τ) = P (x0)ΠT

k=0P (xk+1|xk, ak)πθ(ak|xk). Here, xk ∈ X is the state at the kth

timestep of the trajectory; ak ∈ A is the action at the kth timestep; T is the trajectory length. Only
the policy, in the general formulation of policy gradient, is parameterized with parameters θ. The
idea is then to update the policy parameters using stochastic gradient descent leading to the update
rule θt+1 = θt + η∇J(πθ), where θt are the policy parameters at timestep t, ∇J(πθ) is the gradient
of the objective function with respect to the parameters and η is the step size.

3 Skills, Skill Partitions and Intra-Skill Policy

Skills: A skill is a parameterized Temporally Extended Action (TEA) (Sutton et al., 1999). The
power of a skill is that it incorporates both generalization (due to the parameterization) and temporal

2

abstraction. Skills are a special case of options and therefore inherit many of their useful theoretical
properties (Sutton et al., 1999; Precup et al., 1998).
Definition 1. A Skill ζ is a TEA that consists of the two-tuple ζ = 〈σθ, p(x)〉 where σθ : X → ∆A
is a parameterized, intra-skill policy with parameters θ ∈ Rd and p : X → [0, 1] is the termination
probability distribution of the skill.

Skill Partitions: A skill, by definition, performs a specialized task on a sub-region of a state space.
We refer to these sub-regions as Skill Partitions (SPs) which are necessary for skills to specialize
during the learning process. A given set of SPs covering a state space effectively define the inter-skill
policy as they determine where each skill should be executed. These partitions are unknown a-priori
and are generated using intersections of hyperplane half-spaces (described below). Hyperplanes
provide a natural way to automatically compose skills together. In addition, once a skill is being
executed, the agent needs to select actions from the skill’s intra-skill policy σθ. We next utilize SPs
and the intra-skill policy for each skill to construct the ASAP policy, defined in Section 4. We first
define a skill hyperplane.
Definition 2. Skill Hyperplane (SH): Let ψx,m ∈ Rd be a vector of features that depend on a state
x ∈ X and an MDP environment m. Let βi ∈ Rd be a vector of hyperplane parameters. A skill
hyperplane is defined as ψTx,mβi = L, where L is a constant.

In this work, we interpret hyperplanes to mean that the intersection of skill hyperplane half spaces
form sub-regions in the state space called Skill Partitions (SPs), defining where each skill is executed.
Figure 1a contains two example skill hyperplanes h1, h2. Skill ζ1 is executed in the SP defined by the
intersection of the positive half-space of h1 and the negative half-space of h2. The same argument
applies for ζ0, ζ2, ζ3. From here on in, we will refer to skill ζi interchangeably with its index i.

Skill hyperplanes have two functions: (1) They automatically compose skills together, creating
chainable skills as desired by Bacon & Precup (2015). (2) They define SPs which enable us to
derive the probability of executing a skill, given a state x and MDP m. First, we need to be able
to uniquely identify a skill. We define a binary vector B = [b1, b2, · · · , bK] ∈ {0, 1}K where bk is
a Bernoulli random variable and K is the number of skill hyperplanes. We define the skill index
i =

∑K
k=1 2k−1bk as a sum of Bernoulli random variables bk. Note that this is but one approach to

generate skills (and SPs). In principle this setup defines 2K skills, but in practice, far fewer skills
are typically used (see experiments). Furthermore, the complexity of the SP is governed by the
VC-dimension. We can now define the probability of executing skill i as a Bernoulli likelihood in
Equation 1.

P (i|x,m) = P

[
i =

K∑
k=1

2k−1bk

]
=
∏
k

pk(bk = ik|x,m) . (1)

Here, ik ∈ {0, 1} is the value of the kth bit of B, x is the current state and m is a description of the
MDP. The probability pk(bk = 1|x,m) and pk(bk = 0|x,m) are defined in Equation 2.

pk(bk = 1|x,m) =
1

1 + exp(−αψT(x,m)βk)
, pk(bk = 0|x,m) = 1− pk(bk = 1|x,m) . (2)

We have made use of the logistic sigmoid function to ensure valid probabilities where ψTx,mβk is
a skill hyperplane and α > 0 is a temperature parameter. The intuition here is that the kth bit
of a skill, bk = 1, if the skill hyperplane ψTx,mβk > 0 meaning that the skill’s partition is in the
positive half-space of the hyperplane. Similarly, bk = 0 if ψTx,mβk < 0 corresponding to the negative
half-space. Using skill 3 as an example with K = 2 hyperplanes in Figure 1a, we would define the
Bernoulli likelihood of executing ζ3 as p(i = 3|x,m) = p1(b1 = 1|x,m) · p2(b2 = 1|x,m).

Intra-Skill Policy: Now that we can define the probability of executing a skill based on its SP, we
define the intra-skill policy σθ for each skill. The Gibb’s distribution is a commonly used function
to define policies in RL (Sutton et al., 1999). Therefore we define the intra-skill policy for skill i,
parameterized by θi ∈ Rd as

σθi(a|s) =
exp (αφTx,aθi)∑
b∈A exp (αφTx,bθi)

. (3)

3

Here, α > 0 is the temperature, φx,a ∈ Rd is a feature vector that depends on the current state x ∈ X
and action a ∈ A. Now that we have a definition of both the probability of executing a skill and an
intra-skill policy, we need to incorporate these distributions into the policy gradient setting using a
generalized trajectory.

Generalized Trajectory: A generalized trajectory is necessary to derive policy gradient update
rules with respect to the parameters Θ, β as will be shown in Section 4. A typical trajectory is
usually defined as τ = (xt, at, rt, xt+1)Tt=0 where T is the length of the trajectory. For a generalized
trajectory, our algorithm emits a class it at each timestep t ≥ 1, which denotes the skill that was
executed. The generalized trajectory is defined as g = (xt, at, it, rt, xt+1)Tt=0. The probability
of a generalized trajectory, as an extension to the PG trajectory in Section 2, is now, PΘ,β(g) =

P (x0)
∏T
t=0 P (xt+1|xt, at)Pβ(it|xt,m)σθi(at|xt), where Pβ(it|xt,m) is the probability of a skill

being executed, given the state xt ∈ X and environmentm at time t ≥ 1; σθi(at|xt) is the probability
of executing action at ∈ A at time t ≥ 1 given that we are executing skill i. The generalized trajectory
is now a function of two parameter vectors θ and β.

4 Adaptive Skills, Adaptive Partitions (ASAP) Framework

The Adaptive Skills, Adaptive Partitions (ASAP) framework simultaneously learns a near-optimal set
of skills and SPs (inter-skill policy), given an initially misspecified model. ASAP also automatically
composes skills together and allows for a multi-task setting as it incorporates the environment m into
its hyperplane feature set. We have previously defined two important distributions Pβ(it|xt,m) and
σθi(at|xt) respectively. These distributions are used to collectively define the ASAP policy which is
presented below. Using the notion of a generalized trajectory, the ASAP policy can be learned in a
policy gradient setting.

ASAP Policy: Assume that we are given a probability distribution µ over MDPs with a d-dimensional
state-action space and a z-dimensional vector describing each MDP. We define β as a (d+ z)×K
matrix where each column βi represents a skill hyperplane, and Θ is a (d× 2K) matrix where each
column θj parameterizes an intra-skill policy. Using the previously defined distributions, we now
define the ASAP policy.
Definition 3. (ASAP Policy). Given K skill hyperplanes, a set of 2K skills Σ = {ζi|i = 1, · · · 2K},
a state space x ∈ X , a set of actions a ∈ A and an MDP m from a hypothesis space of MDPs, the
ASAP policy is defined as,

πΘ,β(a|x,m) =

2K∑
i=1

Pβ(i|x,m)σθi(a|x) , (4)

where Pβ(i|x,m) and σθi(a|s) are the distributions as defined in Equations 1 and 3 respectively.

This is a powerful description for a policy, which resembles a Bayesian approach, as the policy takes
into account the uncertainty of the skills that are executing as well as the actions that each skill’s
intra-skill policy chooses. We now define the ASAP objective with respect to the ASAP policy.

ASAP Objective: We defined the policy with respect to a hypothesis space of m MDPs. We now
need to define an objective function which takes this hypothesis space into account. Since we assume
that we are provided with a distribution µ : M → [0, 1] over possible MDP models m ∈M , with a
d-dimensional state-action space, we can incorporate this into the ASAP objective function:

ρ(πΘ,β) =

∫
µ(m)J (m)(πΘ,β)dm , (5)

where πΘ,β is the ASAP policy and J (m)(πΘ,β) is the expected return for MDP m with respect to
the ASAP policy. To simplify the notation, we group all of the parameters into a single parameter
vector Ω = [vec(Θ), vec(β)]. We define the expected reward for generalized trajectories g as
J(πΩ) =

∫
g
PΩ(g)R(g)dg, where R(g) is reward obtained for a particular trajectory g. This is a

slight variation of the original policy gradient objective defined in Section 2. We then insert J(πΩ)
into Equation 5 and we get the ASAP objective function

ρ(πΩ) =

∫
µ(m)J (m)(πΩ)dm , (6)

4

where J (m)(πΩ) is the expected return for policy πΩ in MDP m. Next, we need to derive gradient
update rules to learn the parameters of the optimal policy π∗Ω that maximizes this objective.

ASAP Gradients: To learn both intra-skill policy parameters matrix Θ as well as the hyperplane
parameters matrix β (and therefore implicitly the SPs), we derive an update rule for the policy
gradient framework with generalized trajectories. The full derivation is in the supplementary material.
The first step involves calculating the gradient of the ASAP objective function yielding the ASAP
gradient (Theorem 1).

Theorem 1. (ASAP Gradient Theorem). Suppose that the ASAP objective function is ρ(πΩ) =∫
µ(m)J (m)(πΩ)dm where µ(m) is a distribution over MDPs m and J (m)(πΩ) is the expected

return for MDP m whilst following policy πΩ, then the gradient of this objective is:

∇Ωρ(πΩ) = Eµ(m)

[
E
P

(m)
Ω (g)

[H(m)∑
i=0

∇ΩZ
(m)
Ω (xt, it, at)R

(m)

]]
,

where Z(m)
Ω (xt, it, at) = logPβ(it|xt,m)σθi(at|xt), H(m) is the length of a trajectory for MDP m;

R(m) =
∑H(m)

i=0 γiri is the discounted cumulative reward for trajectory H(m) 1.

Proof. Define Z(m)
Ω (xt, it, at) = logPβ(it|xt,m)σθi(at|xt). Suppose that ASAP objective function

is ρ(πΩ) =
∫
µ(m)J (m)(πΩ)dm where µ(m) is a distribution over MDPs m and J (m)(πΩ) is the

expected return for MDP m whilst following policy πΩ. Taking the derivative of this objective yields:

∇Ωρ(πΩ)

=

∫
µ(m)∇ΩJ

(m)(πΩ)dm

=

∫
µ(m)∇Ω

(∫
g(m)

P
(m)
Ω (g)R(m)(g)dg

)
dm

=

∫
µ(m)

(∫
g(m)

∇ΩP
(m)
Ω (g)R(m)(g)dg

)
dm

=

∫
µ(m)

(∫
g(m)

P
(m)
Ω (g)∇Ω logP

(m)
Ω (g)R(m)(g)dg

)
dm

=

∫
µ(m)

(∫
g(m)

P
(m)
Ω (g)∇Ω logP

(m)
Ω (g)R(m)(g)dg

)
dm

=

∫
µ(m)E

P
(m)
Ω (g)

[
∇Ω logP

(m)
Ω (g)R(m)(g)

]
dm

=

∫
µ(m)E

P
(m)
Ω (g)

[H(m)∑
t=0

∇Ω logPβ(it|xt,m)σθit (at|xt)
H(m)∑
j=0

γjrj

]
dm

= Eµ(m)

[
E
P

(m)
Ω (g)

[H(m)∑
i=0

∇ΩZ
(m)
Ω (xt, it, at)

H(m)∑
j=0

γjrj

]]

The double expectation can be sampled as follows:

1These expectations can easily be sampled (see supplementary material).

5

∇Ωρ(πΩ)

= Eµ(m)

[〈H(m)∑
t=0

∇ΩZ
(m)
Ω (xt, it, at)

H(m)∑
j=0

γjrj

〉]

= Eµ(m)

[〈H(m)∑
t=0

∇ΩZ
(m)
Ω (xt, it, at)

H(m)∑
j=0

γjrj

〉]

=

〈∑
m

〈H(m)∑
i=0

∇ΩZ
(m)
Ω (xt, it, at)

H(m)∑
j=0

γjrj

〉〉
,

where
〈
·
〉

represent an average over trajectories. If we are able to derive ∇ΩZ
(m)
Ω (xt, it, at), then

we can estimate the gradient ∇Ωρ(πΩ). We will refer to Z(m)
Ω = Z

(m)
Ω (xt, it, at) where it is clear

from context. It turns out that it is possible to derive this term as a result of the generalized trajectory.
This yields the gradients∇ΘZ

(m)
Ω and∇βZ(m)

Ω in Theorems 2 and 3 respectively. The derivations
can be found the supplementary material.

Theorem 2. (Θ Gradient Theorem). Suppose that Θ is a (d × 2K) matrix where each column θj
parameterizes an intra-skill policy. Then the gradient ∇θitZ

(m)
Ω corresponding to the intra-skill

parameters of the ith skill at time t is:

∇θitZ
(m)
Ω = αφxt,at −

α
(∑

b∈A φxt,bt exp(αφTxt,bt
Θit)

)
(∑

b∈A exp(αφTxt,bt
Θit)

) ,

where α > 0 is the temperature parameter and φxt,at ∈ Rd×2K

is a feature vector of the current
state xt ∈ Xt and the current action at ∈ At.
Theorem 3. (β Gradient Theorem). Suppose that β is a (d+ z)×K matrix where each column βk
represents a skill hyperplane. Then the gradient ∇βk

Z
(m)
Ω corresponding to parameters of the kth

hyperplane is:

∇βk,1
Z

(m)
Ω =

αψ(xt,m) exp(−αψTxt,mβk)(
1 + exp(−αψTxt,mβk)

) ,∇βk,0
Z

(m)
Ω = −αψxt,m +

αψxt,m exp(−αψTxt,mβk)(
1 + exp(−αψTxt,mβk)

)
(7)

where α > 0 is the hyperplane temperature parameter, ψT(xt,m)βk is the kth skill hyperplane for
MDP m, βk,1 corresponds to locations in the binary vector equal to 1 (bk = 1) and βk,0 corresponds
to locations in the binary vector equal to 0 (bk = 0).

Proof. First let us define a function χ(·). Given a value l ∈ L, the function χ(l)→ j = Loc(Bi(l)) ∈
RQ. Here Bi(l) is a function that maps l to a binary vector of value equal to l and Loc indicates the
Q indices in the binary vector where the corresponding elements are equal to 1.

Since Pβ(it|xt,m) is defined as a Bernoulli likelihood distribution and σθi(at|xt) is defined as a
Gibb’s distribution, the product Pβ(it|xt,m) · σθi(at|xt) can be defined in Equation 8.

Pβ(it|xt,m)σθi(at|xt)

=
exp (αφTxt,atΘit)∑
b∈A exp (αφTxt,bt

Θit)

∏
k

Pk,β(bk = ik|x,m)

=
exp (αφTxt,atΘit)∑
b∈A exp (αφTxt,bt

Θit)

 ∏
l=χ(i)

1

1 + exp(−αψT(xt,m)βl)

(∏
j 6=χ(i)

exp(−αψT(xt,m)βj)

1 + exp(−αψT(xt,m)βj)

)

6

Now, taking the log of both sides, yields:

Z
(m)
Ω (xt, it, at)

= logPβ(it|xt,m) + log σθit (at|st)

= log

(
exp (αφTxt,atΘit)∑
b∈A exp (αφTxt,bt

Θit)

)
+ log

(∏
k

pk(bk = ik|x,m)

)

= log

(
exp (αφTxt,atΘit)∑
b∈A exp (αφTxt,bt

Θit)

)
+ log

[(∏
j=χ(i)

1

1 + exp(−αψT(xt,m)βj)

)
(∏
k 6=χ(i)

exp(−αψT(xt,m)βk)

1 + exp(−αψT(xt,m)βk)

)]

= log

(
exp (αφTxt,atΘit)∑
b∈A exp (αφTxt,bt

Θit)

)
+ log

 ∏
j=χ(i)

1

1 + exp(−αψT(xt,m)βj)

+ log

 ∏
k 6=χ(i)

exp(−αψT(xt,m)βk)

1 + exp(−αψT(xt,m)βk)

= αφTxt,atΘit − log

(∑
b∈A

exp(αφTxt,btΘit)

)
+
∑
j=χ(i)

log

(
1

1 + exp(−αψT(xt,m)βj)

)

+
∑
k 6=χ(i)

log

(
exp(−αψT(xt,m)βk)

1 + exp(−αψT(xt,m)βk)

)

= αφTxt,atΘit − log

(∑
b∈A

exp(αφTxt,btΘit)

)
−
∑
j=χ(i)

log
(

1 + exp(−αψT(xt,m)βj)
)

+
∑
k 6=χ(i)

−αψT(xt,m)βk − log
(

1 + exp(−αψT(xt,m)βk)
)

Using this result, we derive the gradient∇ΩZ
(m)
Ω (xt, it, at) with respect to each of the parameters Ω.

We first start by taking the gradient with respect to θit,1 which corresponds to the first element of
skill i’s intra-skill policy parameter vector at time t. We have,

∂

∂θit,1
Z

(m)
Ω (xt, it, at)

=
∂

∂θit,1

[
αφTxt,atΘit − log

(∑
b∈A

exp(αφTxt,btΘit)

)
−
∑
j=χ(i)

log
(

1 + exp(−αψT(xt,m)βj)
)

+
∑
k 6=χ(i)

−αψT(xt,m)βk − log
(

1 + exp(−αψT(xt,m)βk)
)]

=
∂

∂θit,1

[
αφTxt,atΘit − log

(∑
b∈A

exp(αφTxt,btΘit)

)]

= αφxt,at,1 −
α
(∑

b∈A φxt,bt,1 exp(αφTxt,bt
Θit)

)
(∑

b∈A exp(αφTxt,bt
Θit)

)
So, the derivative with respect to θit is:

7

∇θitZ
(m)
Ω (xt, it, at)

= αφxt,at −
α
(∑

b∈A φxt,bt exp(αφTxt,bt
Θit)

)
(∑

b∈A exp(αφTxt,bt
Θit)

) (8)

The next step is to derive the gradient with respect to the parameters β corresponding to the hyperplane
parameters. We start with βj1,1, the first element of the parameter vector for hyperplane j1. The
location in the binary vector corresponding to j1 is bj1 = 1 meaning that hyperplane j1 generates a
value of 1 when skill it is being executed.

∂

∂βj1,1
Z

(m)
Ω (xt, it, at)

=
∂

∂βj1,1

[
αφTxt,atΘit − log

(∑
b∈A

exp(αφTxt,btΘit)

)
−
∑
j=χ(i)

log
(

1 + exp(−αψT(xt,m)βj)
)

+
∑
k 6=χ(i)

−αψT(xt,m)βk − log
(

1 + exp(−αψT(xt,m)βk)
)]

=
∂

∂βj1,1

[
−
∑
j=χ(i)

log
(

1 + exp(−αψT(xt,m)βj)
)

+
∑
k 6=χ(i)

−αψT(xt,m)βk − log
(

1 + exp(−αψT(xt,m)βk)
)]

=
αψ(xt,m,1) exp(−αψT(xt,m)βj1)(

1 + exp(−αψT(xt,m)βj1)
)

Therefore, the gradient of hyperplane j1 is defined as:

∇βj1,1Z(m)
Ω (xt, it, at) = ∇β(j1,bj1=1)Z

(m)
Ω (xt, it, at)

=
αψ(xt,m) exp(−αψT(xt,m)βj1)(

1 + exp(−αψT(xt,m)βj1)
) (9)

We then also need to derive with respect to the parameters βk1,1, the first element of hyperplane k1.
The location in the binary vector corresponding to k1 is bk1 = 0. Therefore, hyperplane k1 generates
a value of 0 when skill it is being executed.

∂

∂βk1,1
Z

(m)
Ω (xt, it, at)

=
∂

∂βk1,1

[
αφTxt,atΘit − log

(∑
b∈A

exp(αφTxt,btΘit)

)
−
∑
j=χ(i)

log
(

1 + exp(−αψT(xt,m)βj)
)

+
∑
k 6=χ(i)

−αψT(xt,m)βk − log
(

1 + exp(−αψT(xt,m)βk)
)]

=
∂

∂βk1,1

[∑
k 6=χ(i)

−αψT(xt,m)βk − log
(

1 + exp(−αψT(xt,m)βk)
)]

= −αψ(xt,m,1) +
αψ(xt,m,1) exp(−αψT(xt,m)βk1)(

1 + exp(−αψT(xt,m)βk1)
)

The gradient is therefore,

8

∇βk1,0Z
(m)
Ω (xt, it, at) = ∇β(k1,bk1=0)

Z
(m)
Ω (xt, it, at)

= −αψ(xt,m) +
αψ(xt,m) exp(−αψT(xt,m)βk1)(

1 + exp(−αψT(xt,m)βk1)
) (10)

The overall gradient is therefore

∇θitZ
(m)
Ω (xt, it, at)

= αφxt,at −
α
(∑

b∈A φxt,bt exp(αφTxt,bt
Θit)

)
(∑

b∈A exp(αφTxt,bt
Θit)

)

∇βk,1 = ∇β(k,bk=1)Z
(m)
Ω (xt, it, at)

=
αψ(xt,m) exp(−αψT(xt,m)βk)(

1 + exp(−αψT(xt,m)βk)
)

∇βk,0Z(m)
Ω (xt, it, at) = ∇β(k,bK=0)Z

(m)
Ω (xt, it, at)

= −αψ(xt,m) +
αψ(xt,m) exp(−αψT(xt,m)βk)(

1 + exp(−αψT(xt,m)βk)
)

Further simplifications yields:

∇θitZ
(m)
Ω (xt, it, at)

= αφxt,at − αφxt,atπ(xt, at) (11)

∇β(k,bk=1)Z
(m)
Ω (xt, it, at)

=
αψ(xt,m) exp(−αψT(xt,m)βk)(

1 + exp(−αψT(xt,m)βk)
) (12)

∇βk,0Z(m)
Ω (xt, it, at) = ∇β(k,bk=0)Z

(m)
Ω (xt, it, at)

= −αψ(xt,m) +
αψ(xt,m) exp(−αψT(xt,m)βk)(

1 + exp(−αψT(xt,m)βk)
) (13)

Using these gradient updates, we can then order all of the gradients into a vector ∇ΩZ
(m)
Ω =

〈∇θ1Z
(m)
Ω . . .∇θ

2k
Z

(m)
Ω ,∇β1Z

(m)
Ω . . .∇βk

Z
(m)
Ω 〉 and update both the intra-skill policy parameters

and hyperplane parameters for the given task (learning a skill set and SPs). Note that the updates
occur on a single time scale. This is formally stated in the ASAP Algorithm.

9

5 ASAP Algorithm

We present the ASAP algorithm (Algorithm 1) that dynamically and simultaneously learns skills, the
inter-skill policy and automatically composes skills together by learning SPs. The skills (Θ matrix)
and SPs (β matrix) are initially arbitrary and therefore form a misspecified model. Line 2 combines
the skill and hyperplane parameters into a single parameter vector Ω. Lines 3 − 7 learns the skill
and hyperplane parameters (and therefore implicitly the skill partitions). In line 4 a generalized
trajectory is generated using the current ASAP policy. The gradient ∇Ωρ(πΩ) is then estimated in
line 5 from this trajectory and updates the parameters in line 6. This is repeated until the skill and
hyperplane parameters have converged, thus correcting the misspecified model. Theorem 4 provides
a convergence guarantee of ASAP to a local optimum (see supplementary material for the proof).

Algorithm 1 ASAP

Require: φs,a ∈ Rd {state-action feature vector}, ψx,m ∈ R(d+z) {skill hyperplane feature vector},
K {The number of hyperplanes}, Θ ∈ Rd×2K

{An arbitrary skill matrix}, β ∈ R(d+z)×K {An
arbitrary skill hyperplane matrix}, µ(m) {A distribution over MDP tasks}

1: Z = (|d||2K |+ |(d+ z)K|) {Define the number of parameters}
2: Ω = [vec(Θ), vec(β)] ∈ RZ
3: repeat
4: Perform a trial (which may consist of multiple MDP tasks) and obtain
x0:H , i0:H , a0:H , r0:H ,m0:H {states, skills, actions, rewards, task-specific information}

5: ∇Ωρ(πΩ) =

〈∑
m

〈∑T (m)

i=0 ∇ΩZ
(m)(Ω)R(m)

〉〉
{T is the task episode length}

6: Ω→ Ω + η∇Ωρ(πΩ)
7: until parameters Ω have converged
8: return Ω

Theorem 4. Convergence of ASAP: Given an ASAP policy π(Ω), an ASAP objective over MDP
models ρ(πΩ) as well as the ASAP gradient update rules. If (1) the step-size ηk satisfies lim

k→∞
ηk = 0

and
∑
k ηk =∞; (2) The second derivative of the policy is bounded and we have bounded rewards;

Then, the sequence {ρ(πΩ,k)}∞k=0 converges such that lim
k→∞

∂ρ(πΩ,k)
∂Ω = 0 almost surely.

Proof. We will now show convergence of the value function to a local minimum. As shown in Sutton
et al. (2000), the gradient of the objective function can be represented as shown in Equation 14.

∂ρ

∂Ω
=
∑
x

dπ(x)
∑
a

∂πΩ(x, a)

∂Ω
Qπ(x, a) . (14)

This is shown for both the long-term reward formulation for a given starting state x0 and for the
average reward formulation respectively. We will adapt our proof to the starting state formulation
(noting that the average reward formulation can also be derived in a similar manner). Our proof
needs to take the MDP models into account as shown by our objective in Equation 15. The objective
function is defined for a discrete set of models, but can also be adapted to a continuous set.

ρ(πΩ) =
∑
m∈M

µ(m)J (m)(πΩ) , (15)

where Ω is the set of parameters for both the skills and hyperplanes respectively. In order to adapt our
setting to that of Sutton et al. (2000), we start by deriving our objective with respect to the parameters
as shown in Equation 17.

10

ρ(πΩ) =
∑
m∈M

µ(m)J (m)(πΩ) (16)

∂ρ(πΩ)

∂Ω
=

∂

∂Ω

∑
m∈M

µ(m)J (m)(πΩ) (17)

=
∑
m∈M

µ(m)
∂

∂Ω
J (m)(πΩ)

Now, we need to analyze the derivative with respect to the parameters Ω for the value function
J (m)(πΩ) for a model m. As in Sutton et al. (2000), the discounted weighting of states for a
particular model m is given by dπ(m)(x) =

∑∞
t=0 γ

tP (m)(xt → x|x0, π). Using this observation, we
can then derive the gradient ∂

∂ΩJ
(m)(πΩ) as shown in the equation below.

J (m)(πΩ)|x0=x = V πΩ

(m)(x) =
∑
a

π
(m)
Ω (x, a)QπΩ

(m)(x, a)

∂J (m)(πΩ)|x0=x

∂Ω
=
∑
a

∂

∂Ω
π

(m)
Ω (x, a)QπΩ

(m)(x, a)

m

=
∑
y

∞∑
k=0

γkP (m)(s→ y, k, π)
∑
a

∂π
(m)
Ω (x, a)

∂Ω
QπΩ

(m)(x, a)

=
∑
x

dπ(m)(x)
∑
a

∂π
(m)
Ω (x, a)

∂Ω
QπΩ

(m)(x, a)

as derived in Sutton et al. (2000) for MDP model m. Now if we substitute this result into Equation
17, we get ∂ρ(πΩ)

∂Ω defined in Equation 18.

∂ρ(πΩ)

∂Ω
=
∑
m∈M

µ(m)
∂

∂Ω
J (m)(πΩ)

=
∑
m∈M

µ(m)
∑
x

dπ(m)(x)
∑
a

∂π
(m)
Ω (x, a)

∂Ω
QπΩ

(m)(x, a) (18)

Using this result, we can now incorporate function approximation as shown in Sutton et al. (2000)
where we first state that when a process has converged to a local optimum, we have the following
result:

∑
m∈M

µ(m)
∑
x

dπ(m)(x)
∑
a

∂π
(m)
Ω (x, a)

∂Ω
(19)

[
QπΩ

(m)(x, a)− J (m)
w (x, a)

]
∂J

(m)
w (x, a)

∂w
= 0

where Jw(x, a) is the approximation to QπΩ . It then follows that provided J (m)
w (x, a) obeys the

compatibility condition, we can easily incorporate function approximation into the gradient of the
objective function and we get:

∂ρ(πΩ)

∂Ω
=
∑
m∈M

µ(m)
∑
x

dπ(m)(x)
∑
a

∂π
(m)
Ω (x, a)

∂Ω
J (m)
w (x, a)

11

Using this formula, we can converge to a local minimum based on the following conditions. The
step-size αk has two requirements: (1) lim

k→∞
αk = 0 and (2)

∑
k αk =∞. The second derivative of

the policy is bounded and we have bounded rewards. Then, the sequence {ρ(πΩ,k)}∞k=0 converges
such that the limit lim

k→∞
∂ρ(πΩ,k)
∂Ω = 0. This is proven by proposition 3.6 in Bertsekas (1996). The

following update rule results:

Ωk+1 = Ωk + αk
∂ρ(πΩ,k)

∂Ω

= Ωk + αk
∑
m∈M

µ(m)
∑
x

dπ(m)(x)
∑
a

∂π
(m)
Ω (x, a)

∂Ω
J (m)
wk

(s, a)

where wk is obtained from:

wk = w ,

such that,

∑
m∈M

µ(m)
∑
x

dπ(m)(x)
∑
a

∂π
(m)
Ω (x, a)

∂Ω[
QπΩ

(m)(x, a)− J (m)
w (x, a)

]
∂J

(m)
w (x, a)

∂w
= 0

6 Experiments

The experiments have been performed on four different continuous domains: the Two Rooms (2R)
domain (Figure 1b), the Flipped 2R domain (Figure 1c), the Three rooms (3R) domain (Figure 1d) and
RoboCup domains (Figure 1e) that include a one-on-one scenario between a striker and a goalkeeper
(R1), a two-on-one scenario of a striker against a goalkeeper and a defender (R2), and a striker against
two defenders and a goalkeeper (R3) (see supplementary material). In each experiment, ASAP is
provided with a misspecified model; that is, a set of skills and SPs (the inter-skill policy) that achieve
degenerate, sub-optimal performance. ASAP corrects this misspecified model in each case to learn
a set of near-optimal skills and SPs. For each experiment we implement ASAP using Actor-Critic
Policy Gradient (AC-PG) as the learning algorithm 2.

The Two-Room and Flipped Room Domains (2R): In both domains, the agent (red ball) needs to
reach the goal location (blue square) in the shortest amount of time. The agent receives constant
negatives rewards and upon reaching the goal, receives a large positive reward. There is a wall
dividing the environment which creates two rooms. The state space is a 4-tuple consisting of the
continuous 〈xagent, yagent〉 location of the agent and the 〈xgoal, ygoal〉 location of the center of the
goal. The agent can move in each of the four cardinal directions. For each experiment involving the
two room domains, a single hyperplane is learned (resulting in two SPs) with a linear feature vector
representation ψx,m = [1, xagent, yagent]. In addition, a skill is learned in each of the two SPs. The
intra-skill policies are represented as a probability distribution over actions.

The temperature parameter for the intra-skill policy parameters αθ = 1; for the hyperplane parameters,
the temperature αβ = 20. The gradient update stepsize for the hyperplane and intra-skill parameters
is 10.

Automated Hyperplane and Skill Learning: Using ASAP, the agent learned intuitive SPs and skills
as seen in Figure 1f and g. Each colored region corresponds to a SP. The white arrows have been
superimposed onto the figures to indicate the skills learned for each SP. Since each intra-skill policy

2AC-PG works well in practice and can be trivially incorporated into ASAP with convergence guarantees

12

Figure 1: (a) The intersection of skill hyperplanes {h1, h2} form four partitions, each of which
defines a skill’s execution region (the inter-skill policy). The (b) 2R, (c) Flipped 2R, (d) 3R and (e)
RoboCup domains (with a varying number of defenders for R1,R2,R3). The learned skills and Skill
Partitions (SPs) for the (f) 2R, (g) Flipped 2R, (h) 3R and (i) across multiple tasks.

Figure 2: The learned skills and skill partitions for a varying number of hyperplanes: (a) One skill
hyperplane, (b) Two skill hyperplanes and (c) Three skill hyperplanes.

is a probability distribution over actions, each skill is unable to solve the entire task on its own. ASAP
has taken this into account and has positioned the hyperplane accordingly such that the given skill
representation can solve the task. Figure 3a shows that ASAP improves upon the initial misspecified
partitioning to attain near-optimal performance compared to executing ASAP on the fixed initial
misspecified partitioning and on a fixed approximately optimal partitioning.

Multiple Hyperplanes: We analyzed the ASAP framework when learning multiple hyperplanes
in the two room domain. As seen in Figure 3e, increasing the number of hyperplanes K, does
not have an impact on the final solution in terms of average reward. However, it does increase the
computational complexity of the algorithm since 2K skills need to be learned. The approximate points
of convergence are marked in the figure as K1,K2 and K3, respectively. In addition, two skills
dominate in each case producing similar partitions to those seen in Figure 1a (see supplementary
material) indicating that ASAP learns that not all skills are necessary to solve the task.

Multitask Learning: We first applied ASAP to the 2R domain (Task 1) and attained a near optimal
average reward (Figure 3c). It took approximately 35000 episodes to get near-optimal performance
and resulted in the SPs and skill set shown in Figure 1i (top). Using the learned SPs and skills, ASAP
was then able to adapt and learn a new set of SPs and skills to solve a different task (Flipped 2R -
Task 2) in only 5000 episodes (Figure 3c) indicating that the parameters learned from the old task
provided a good initialization for the new task. The knowledge transfer is seen in Figure 1i (bottom)
as the SPs do not significantly change between tasks, yet the skills are completely relearned.

We also wanted to see whether we could flip the SPs; that is, switch the sign of the hyperplane
parameters learned in the 2R domain and see whether ASAP can solve the Flipped 2R domain (Task
2) without any additional learning. Due to the symmetry of the domains, ASAP was indeed able to
solve the new domain and attained near-optimal performance (Figure 3d). This is an exciting result as
many problems, especially navigation tasks, possess symmetrical characteristics. This insight could
dramatically reduce the sample complexity of these problems.

The Three-Room Domain (3R): The 3R domain (Figure 1d), is similar to the 2R domain regarding
the goal, state-space, available actions and rewards. However, in this case, there are two walls,
dividing the state space into three rooms. The hyperplane feature vector ψx,m consists of a single
fourier feature. The intra-skill policy is a probability distribution over actions. The resulting learned

13

Figure 3: Average reward of the learned ASAP policy compared to (1) the approximately optimal SPs
and skill set as well as (2) the initial misspecified model. This is for the (a) 2R, (b) 3R, (c) 2R learning
across multiple tasks and the (d) 2R without learning by flipping the hyperplane. (e) The average
reward of the learned ASAP policy for a varying number of K hyperplanes. (f) The learned SPs and
skill set for the R1 domain. (g) The learned SPs using a polynomial hyperplane (1),(2) and linear
hyperplane (3) representation. (h) The learned SPs using a polynomial hyperplane representation
without the defender’s location as a feature (1) and with the defender’s x location (2), y location
(3), and 〈x, y〉 location as a feature (4). (i) The dribbling behavior of the striker when taking the
defender’s y location into account. (j) The average reward for the R1 domain.

hyperplane partitioning and skill set are shown in Figure 1h. Using this partitioning ASAP achieved
near optimal performance (Figure 3b). This experiment shows an insightful and unexpected result.
Reusable Skills: Using this hyperplane representation, ASAP was able to not only learn the intra-skill
policies and SPs, but also that skill ‘A’ needed to be reused in two different parts of the state space
(Figure 1h). ASAP therefore shows the potential to automatically create reusable skills.

The single fourier feature is ψx,m = [sin(πxTa)] where a = [3, 0], the temperature parameter for the
intra-skill policy parameters αθ = 1; for the hyperplane parameters, the temperature αβ = 20. The
gradient update stepsize for the hyperplane is 1 and intra-skill parameters update stepsize is 10.

RoboCup Domain: The RoboCup 2D soccer simulation domain (Akiyama & Nakashima, 2014) is
a 2D soccer field (Figure 1e) with two opposing teams. We utilized three RoboCup sub-domains
3 R1, R2 and R3 as mentioned previously. In these sub-domains, a striker (the agent) needs to
learn to dribble the ball and try and score goals past the goalkeeper. State space: R1 domain -
the continuous locations of the striker 〈xstriker, ystriker〉 , the ball 〈xball, yball〉, the goalkeeper
〈xgoalkeeper, ygoalkeeper〉 and the constant goal location 〈xgoal, ygoal〉. R2 domain - we have the
addition of the defender’s location 〈xdefender, ydefender〉 to the state space. R3 domain - we add the
locations of two defenders. Features: For the R1 domain, we tested both a linear and degree two
polynomial feature representation for the hyperplanes. For the R2 and R3 domains, we also utilized
a degree two polynomial hyperplane feature representation. Actions: The striker has three actions
which are (1) move to the ball (M), (2) move to the ball and dribble towards the goal (D) (3) move
to the ball and shoot towards the goal (S). Rewards: The reward setup is consistent with logical
football strategies (Hausknecht & Stone, 2015; Bai et al., 2012). Small negative (positive) rewards for
shooting from outside (inside) the box and dribbling when inside (outside) the box. Large negative
rewards for losing possession and kicking the ball out of bounds. Large positive reward for scoring.

For the R1, R2 and R3 RoboCup domains, the temperature parameter for the intra-skill policy
parameters αθ = 2; for the hyperplane parameters, the temperature αβ = 100. The gradient update
stepsize for the hyperplane is 40 and intra-skill parameters update stepsize is 0.5.

Learning Offline: RoboCup’s simulator is not well suited to learning online since actions can only
be broadcast to the players and feedback received from the game every 30 ms (with various speedups).
This is problematic if you wish to learn on tens of thousands of episodes. We therefore wanted to
test the ability of ASAP to learn using offline trajectories. These trajectories are generated by an
approximately optimal hand-coded scoring controller which is provided to the striker. Using this

3https://github.com/mhauskn/HFO.git

14

Figure 4: The RoboCup R1 Domain: The average reward for the R1 domain compared to initial
misspecified model and the approximately optimal controller for polynomial hyperplane features.

A OI

A OI

A OI

(a) (b)

(c)

Figure 5: The average goal scoring ratio for 1000 trials for (a) The RoboCup R1 domain, (b) The
R2 domain and, (c) The R3 domain. In each figure I refers to the goal scoring ratio for fixed, initial
misspecified skills and SPs; A refers to ASAP’s performance after learning near-optimal skills and
SPs from the misspecified model; O is the performance of the approximately optimal controller.

speedup, over 100, 000 trajectories can be gathered in an hour. However, it is well known that policy
gradient algorithms struggle with offline learning. ASAP managed to learn near-optimal SPs and
skill sets for both the R1, R2 and R3 domains, using offline trajectories, as seen in Figure 3f and
Figure 5 respectively. These results were consistently attained over five datasets. In each case, the
agent learned that it should D: Dribble in the yellow SP and should S: Shoot in the semi circular SP
near the goal.

Different SP Optimas: Since ASAP attains a locally optimal solution, it may sometimes learn
different SPs. For the polynomial hyperplane feature representation, ASAP attained two different
solutions as shown in Figure 3g(1) as well as Figure 3g(2), respectively. Both achieve near optimal
performance compared to the approximately optimal scoring controller (see supplementary material).
For the linear feature representation, the SPs and skill set in Figure 3g(3) is obtained and achieved
near-optimal performance (Figure 3j), outperforming the polynomial representation.

The average ratio of goals scored over 1000 episodes is 79% for the learned ASAP policy compared
to 91% for the approximately optimal scoring controller and 18% for ASAP evaluated on the initial
misspecified model. SP Sensitivity: In the R2 domain, an additional player (the defender) is added
to the game. It is expected that the presence of the defender will affect the shape of the learned
SPs. ASAP again learns intuitive SPs. However, the shape of the learned SPs change based on the
pre-defined hyperplane feature vector ψm,x. Figure 3h(1) shows the learned SPs when the location
of the defender is not used as a hyperplane feature. When the x location of the defender is utilized,
the ‘flatter’ SPs are learned in Figure 3h(2). Using the y location of the defender as a hyperplane
feature causes the hyperplane offset shown in Figure 3h(3). This is due to the striker learning to
dribble around the defender in order to score a goal as seen in Figure 3i. Finally, taking the 〈x, y〉
location of the defender into account results in the ‘squashed’ SPs shown in Figure 3h(4) clearly
showing the sensitivity and adaptability of ASAP to dynamic factors in the environment.

15

7 Discussion
We have presented the Adaptive Skills, Adaptive Partitions (ASAP) framework that is able to
automatically compose skills together and learns a near-optimal skill set and skill partitions (the
inter-skill policy) simultaneously to correct an initially misspecified model. We derived the gradient
update rules for both skill and skill hyperplane parameters and incorporated them into a policy
gradient framework. This is possible due to our definition of a generalized trajectory. In addition,
ASAP has shown the potential to learn across multiple tasks as well as automatically reuse skills.
These are the necessary requirements for a truly general skill learning framework and can be applied
to lifelong learning problems (Ammar et al., 2015; Thrun & Mitchell, 1995). An exciting extension
of this work is to incorporate it into a Deep Reinforcement Learning framework, where both the skills
and ASAP policy can be represented as deep networks.

Acknowledgements

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n.
306638.

References
Akiyama, Hidehisa and Nakashima, Tomoharu. Helios base: An open source package for the robocup

soccer 2d simulation. In RoboCup 2013: Robot World Cup XVII, pp. 528–535. Springer, 2014.

Ammar, Haitham Bou, Tutunov, Rasul, and Eaton, Eric. Safe policy search for lifelong reinforcement
learning with sublinear regret. arXiv preprint arXiv:1505.05798, 2015.

Bacon, Pierre-Luc and Precup, Doina. The option-critic architecture. In NIPS Deep Reinforcement
Learning Workshop, 2015.

Bai, Aijun, Wu, Feng, and Chen, Xiaoping. Online planning for large mdps with maxq decomposition.
In AAMAS, 2012.

da Silva, B.C., Konidaris, G.D., and Barto, A.G. Learning parameterized skills. In ICML, 2012.

Eaton, Eric and Ruvolo, Paul L. Ella: An efficient lifelong learning algorithm. In Proceedings of the
30th international conference on machine learning (ICML-13), pp. 507–515, 2013.

Fu, Justin, Levine, Sergey, and Abbeel, Pieter. One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors. arXiv preprint arXiv:1509.06841, 2015.

Hausknecht, Matthew and Stone, Peter. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

Hauskrecht, Milos, Meuleau Nicolas et. al. Hierarchical solution of markov decision processes using
macro-actions. In UAI, pp. 220–229, 1998.

Konidaris, George and Barto, Andrew G. Skill discovery in continuous reinforcement learning
domains using skill chaining. In NIPS, 2009.

Mankowitz, Daniel J, Mann, Timothy A, and Mannor, Shie. Time regularized interrupting options.
Internation Conference on Machine Learning, 2014.

Mann, Timothy A and Mannor, Shie. Scaling up approximate value iteration with options: Better
policies with fewer iterations. In Proceedings of the 31 st International Conference on Machine
Learning, 2014.

Mann, Timothy Arthur, Mankowitz, Daniel J, and Mannor, Shie. Learning when to switch between
skills in a high dimensional domain. In AAAI Workshop, 2015.

Masson, Warwick and Konidaris, George. Reinforcement learning with parameterized actions. arXiv
preprint arXiv:1509.01644, 2015.

16

Peters, Jan and Schaal, Stefan. Policy gradient methods for robotics. In Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, pp. 2219–2225. IEEE, 2006.

Peters, Jan and Schaal, Stefan. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21:682–691, 2008.

Precup, Doina and Sutton, Richard S. Multi-time models for temporally abstract planning. In
Advances in Neural Information Processing Systems 10 (Proceedings of NIPS’97), 1997.

Precup, Doina, Sutton, Richard S, and Singh, Satinder. Theoretical results on reinforcement learning
with temporally abstract options. In Machine Learning: ECML-98, pp. 382–393. Springer, 1998.

Silver, David and Ciosek, Kamil. Compositional Planning Using Optimal Option Models. In
Proceedings of the 29th International Conference on Machine Learning, Edinburgh, 2012.

Sutton, Richard S, Precup, Doina, and Singh, Satinder. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 1999.

Sutton, Richard S, McAllester, David, Singh, Satindar, and Mansour, Yishay. Policy gradient methods
for reinforcement learning with function approximation. In NIPS, pp. 1057–1063, 2000.

Thrun, Sebastian and Mitchell, Tom M. Lifelong robot learning. Springer, 1995.

17

	Introduction
	Background
	Skills, Skill Partitions and Intra-Skill Policy
	Adaptive Skills, Adaptive Partitions (ASAP) Framework
	ASAP Algorithm
	Experiments
	Discussion

