Adaptive Skills Adaptive Partitions (ASAP)

Daniel J. Mankowitz, Timothy A. Mann* and Shie Mannor
The Technion - Israel Institute of Technology,
Haifa, Israel
danielm @tx.technion.ac.il, mann.timothy @acm.org, shie @ee.technion.ac.il

*Timothy Mann now works at Google Deepmind.

Abstract

We introduce the Adaptive Skills, Adaptive Partitions (ASAP) framework that (1)
learns skills (i.e., temporally extended actions or options) as well as (2) where to
apply them. We believe that both (1) and (2) are necessary for a truly general skill
learning framework, which is a key building block needed to scale up to lifelong
learning agents. The ASAP framework can also solve related new tasks simply by
adapting where it applies its existing learned skills. We prove that ASAP converges
to a local optimum under natural conditions. Finally, our experimental results,
which include a RoboCup domain, demonstrate the ability of ASAP to learn where
to reuse skills as well as solve multiple tasks with considerably less experience
than solving each task from scratch.

1 Introduction

Human-decision making involves decomposing a task into a course of action. The course of action is
typically composed of abstract, high-level actions that may execute over different timescales (e.g.,
walk to the door or make a cup of coffee). The decision-maker chooses actions to execute to solve
the task. These actions may need to be reused at different points in the task. In addition, the actions
may need to be used across multiple, related tasks.

Consider, for example, the task of building a city. The course of action to building a city may involve
building the foundations, laying down sewage pipes as well as building houses and shopping malls.
Each action operates over multiple timescales and certain actions (such as building a house) may need
to be reused if additional units are required. In addition, these actions can be reused if a neighboring
city needs to be developed (multi-task scenario).

Reinforcement Learning (RL) represents actions that last for multiple timescales as Temporally
Extended Actions (TEAs) (Sutton et al.,{1999), also referred to as options, skills (Konidaris & Barto,
2009) or macro-actions (Hauskrecht, |1998)). It has been shown both experimentally (Precup & Sutton,
1997} [Sutton et al., [1999; Silver & Ciosekl 2012; Mankowitz et al.,[2014) and theoretically (Mann &
Mannor, [2014) that TEAs speed up the convergence rates of RL planning algorithms. TEAs are seen
as a potentially viable solution to making RL truly scalable. TEAs in RL have become popular in
many domains including RoboCup soccer (Bai et al.,|2012), video games (Mann et al., 2015) and
Robotics (Fu et al.l [2015). Here, decomposing the domains into temporally extended courses of
action (strategies in RoboCup, move combinations in video games and skill controllers in Robotics
for example) has generated impressive solutions. From here on in, we will refer to TEAs as skills.

A course of action is defined by a policy. A policy is a solution to a Markov Decision Process (MDP)
and is defined as a mapping from states to a probability distribution over actions. That is, it tells the
RL agent which action to perform given the agent’s current state. We will refer to an inter-skill policy
as being a policy that tells the agent which skill to execute, given the current state.

A truly general skill learning framework must (1) learn skills as well as (2) automatically compose
them together (as stated by [Bacon & Precup| (2015)) and determine where each skill should be
executed (the inter-skill policy). This framework should also determine (3) where skills can be reused

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Table 1: Comparison of Approaches to ASAP

Automated Skill Automatic Continuous | Learning Correcting
Learning Skill State Reusable Model
with Policy Composition Multitask Skills Misspecification
Gradient Learning
ASAP (this paper) v v v v v
| |da Silva et al[[2012 v X v X X
| [Konidaris & Barto|2009 X v X X X
| [Bacon & Precup[2015 v X X X X
| [Eaton & Ruvolo|2013 X X v X X

in different parts of the state space and (4) adapt to changes in the task itself. Finally it should also
be able to (5) correct model misspecification (Mankowitz et al., [2014). Whilst different forms of
model misspecification exist in RL, we define it here as having an unsatisfactory set of skills and
inter-skill policy that provide a sub-optimal solution to a given task. This skill learning framework
should be able to correct this misspecification to obtain a near-optimal solution. A number of works
have addressed some of these issues separately as shown in Tablem However, no work, to the best of
our knowledge, has combined all of these elements into a truly general skill-learning framework.

Our framework entitled ‘Adaptive Skills, Adaptive Partitions (ASAP)’ is the first of its kind to
incorporate all of the above-mentioned elements into a single framework, as shown in Table[I] and
solve continuous state MDPs. It receives as input a misspecified model (a sub-optimal set of skills and
inter-skill policy). The ASAP framework corrects the misspecification by simultaneously learning a
near-optimal skill-set and inter-skill policy which are both stored, in a Bayesian-like manner, within
the ASAP policy. In addition, ASAP automatically composes skills together, learns where to reuse
them and learns skills across multiple tasks.

Main Contributions: (1) The Adaptive Skills, Adaptive Partitions (ASAP) algorithm that automati-
cally corrects a misspecified model. It learns a set of near-optimal skills, automatically composes
skills together and learns an inter-skill policy to solve a given task. (2) Learning skills over multiple
different tasks by automatically adapting both the inter-skill policy and the skill set. (3) ASAP can
determine where skills should be reused in the state space. (4) Theoretical convergence guarantees.

2 Background

Reinforcement Learning Problem: A Markov Decision Process is defined by a 5-tuple
(X, A, R,~, P) where X is the state space, A is the action space, R € [—b,b] is a bounded re-
ward function, v € [0, 1] is the discount factor and P : X x A — [0, 1] is the transition probability
function for the MDP. The solution to an MDP is a policy 7 : X — A4 which is a function
mapping states to a probability distribution over actions. An optimal policy 7* : X — Ay
determines the best actions to take so as to maximize the expected reward. The value function

V() = Eqnn(|a) {R(m, a)} + VB P(|2,a) {V’T (:c’)] defines the expected reward for following

a policy 7 from state . The optimal expected reward V™ (z) is the expected value obtained for
following the optimal policy from state z.

Policy Gradient: Policy Gradient (PG) methods have enjoyed success in recent years especially
in the fields of robotics (Peters & Schaall, [2006| 2008). The goal in PG is to learn a policy 7y that
maximizes the expected return .J(mg) = | P(7)R(7)dr, where T is a set of trajectories, P(7) is
the probability of a trajectory and R(7) is the reward obtained for a particular trajectory. P(7) is
defined as P(7) = P(xo)Ii_P(2ki1|Tk, ax)mo(ar|zy). Here, z; € X is the state at the k"
timestep of the trajectory; aj, € A is the action at the k*" timestep; T is the trajectory length. Only
the policy, in the general formulation of policy gradient, is parameterized with parameters 6. The
idea is then to update the policy parameters using stochastic gradient descent leading to the update
rule 0,1 = 0, + nV J(my), where 6, are the policy parameters at timestep ¢, V.J(7p) is the gradient
of the objective function with respect to the parameters and 7 is the step size.

3 Skills, Skill Partitions and Intra-Skill Policy

Skills: A skill is a parameterized Temporally Extended Action (TEA) (Sutton et al., |1999). The
power of a skill is that it incorporates both generalization (due to the parameterization) and temporal

abstraction. Skills are a special case of options and therefore inherit many of their useful theoretical
properties (Sutton et al.,|1999; Precup et al., |1998)).

Definition 1. A Skill { is a TEA that consists of the two-tuple { = (og,p(x)) where o9 : X — AA
is a parameterized, intra-skill policy with parameters 6 € R% and p : X — [0, 1] is the termination
probability distribution of the skill.

Skill Partitions: A skill, by definition, performs a specialized task on a sub-region of a state space.
We refer to these sub-regions as Skill Partitions (SPs) which are necessary for skills to specialize
during the learning process. A given set of SPs covering a state space effectively define the inter-skill
policy as they determine where each skill should be executed. These partitions are unknown a-priori
and are generated using intersections of hyperplane half-spaces (described below). Hyperplanes
provide a natural way to automatically compose skills together. In addition, once a skill is being
executed, the agent needs to select actions from the skill’s intra-skill policy op. We next utilize SPs
and the intra-skill policy for each skill to construct the ASAP policy, defined in Section[d] We first
define a skill hyperplane.

Definition 2. Skill Hyperplane (SH): Let 1y, € R? be a vector of features that depend on a state

x € X and an MDP environment m. Let 3; € R? be a vector of hyperplane parameters. A skill
hyperplane is defined as w{,mﬁi = L, where L is a constant.

In this work, we interpret hyperplanes to mean that the intersection of skill hyperplane half spaces
form sub-regions in the state space called Skill Partitions (SPs), defining where each skill is executed.
Figure[Tjx contains two example skill hyperplanes hq, ho. Skill ¢; is executed in the SP defined by the
intersection of the positive half-space of h; and the negative half-space of hy. The same argument
applies for (y, (2, (3. From here on in, we will refer to skill ¢; interchangeably with its index <.

Skill hyperplanes have two functions: (1) They automatically compose skills together, creating
chainable skills as desired by Bacon & Precup| (2015). (2) They define SPs which enable us to
derive the probability of executing a skill, given a state and MDP m. First, we need to be able
to uniquely identify a skill. We define a binary vector B = [by, by, - -+ ,bx| € {0, 1}X where by, is
a Bernoulli random variable and K is the number of skill hyperplanes. We define the skill index
1= Zle 2F=1p,. as a sum of Bernoulli random variables by,. Note that this is but one approach to
generate skills (and SPs). In principle this setup defines 2% skills, but in practice, far fewer skills
are typically used (see experiments). Furthermore, the complexity of the SP is governed by the
VC-dimension. We can now define the probability of executing skill 7 as a Bernoulli likelihood in
Equation [T]

P(ilx,m) =P

K
i= 22’“—11)4 = [pe(bx = ixlz,m) . (1)
k=1 k

Here, i, € {0,1} is the value of the k" bit of B, z is the current state and m is a description of the
MDP. The probability py (by, = 1|z, m) and py,(by = 0|z, m) are defined in Equation[2]
1

1+ eXp(—Oéw(Tm,m)ﬂk)

pr(by = 1z, m) = ,Pe(br = 0z, m) = 1 — pp(by, = 1z, m) . (2)

We have made use of the logistic sigmoid function to ensure valid probabilities where wg:g m Bk 18

a skill hyperplane and o > 0 is a temperature parameter. The intuition here is that the k" bit
of a skill, by, = 1, if the skill hyperplane wimﬁk > (0 meaning that the skill’s partition is in the

positive half-space of the hyperplane. Similarly, by, = 0 if wg mBr < 0 corresponding to the negative
half-space. Using skill 3 as an example with K = 2 hyperplanes in Figure [Ijz, we would define the
Bernoulli likelihood of executing (3 as p(i = 3|z, m) = p1(by = 1|z, m) - p2(ba = 1|z, m).

Intra-SKkill Policy: Now that we can define the probability of executing a skill based on its SP, we
define the intra-skill policy oy for each skill. The Gibb’s distribution is a commonly used function
to define policies in RL (Sutton et al., |1999). Therefore we define the intra-skill policy for skill ¢,
parameterized by §; € R as

o exp (aqs{aal)
B > bea €XP (O“Zg,bei) '

3)

a,(als)

Here, oo > 0 is the temperature, ¢, , € R4 is a feature vector that depends on the current state x € X
and action a € A. Now that we have a definition of both the probability of executing a skill and an
intra-skill policy, we need to incorporate these distributions into the policy gradient setting using a
generalized trajectory.

Generalized Trajectory: A generalized trajectory is necessary to derive policy gradient update
rules with respect to the parameters ©, 8 as will be shown in Section |4] A typical trajectory is
usually defined as 7 = (x, at, 14, T4 41) 1o where T is the length of the trajectory. For a generalized
trajectory, our algorithm emits a class i; at each timestep ¢ > 1, which denotes the skill that was
executed. The generalized trajectory is defined as g = (w4, at, it,7t, Te1 Tzo. The probability
of a generalized trajectory, as an extension to the PG trajectory in Section is now, Po g(g) =
P(xp) HtT:o P(zy41|xe, ar)Pa(i|ze, m)og, (a]ze), where Pg(i;|x, m) is the probability of a skill
being executed, given the state z; € X and environment m at time ¢t > 1; oy, (a;|x) is the probability
of executing action a; € A attime ¢ > 1 given that we are executing skill . The generalized trajectory

is now a function of two parameter vectors 6 and f3.

4 Adaptive SKkills, Adaptive Partitions (ASAP) Framework

The Adaptive Skills, Adaptive Partitions (ASAP) framework simultaneously learns a near-optimal set
of skills and SPs (inter-skill policy), given an initially misspecified model. ASAP also automatically
composes skills together and allows for a multi-task setting as it incorporates the environment m into
its hyperplane feature set. We have previously defined two important distributions Pg(%|x¢, m) and
09, (at|z+) respectively. These distributions are used to collectively define the ASAP policy which is
presented below. Using the notion of a generalized trajectory, the ASAP policy can be learned in a
policy gradient setting.

ASAP Policy: Assume that we are given a probability distribution 1 over MDPs with a d-dimensional
state-action space and a z-dimensional vector describing each MDP. We define S asa (d + z) x K
matrix where each column 3; represents a skill hyperplane, and © is a (d x 2%) matrix where each
column 6; parameterizes an intra-skill policy. Using the previously defined distributions, we now
define the ASAP policy.

Definition 3. (ASAP Policy). Given K skill hyperplanes, a set of 2¥ skills ¥ = {(;i = 1, - -- 2K},
a state space x € X, a set of actions a € A and an MDP m from a hypothesis space of MDPs, the
ASAP policy is defined as,
2K
me.p(alz,m) =) Ps(ilz,m)op,(alz) | @)

i=1
where Pg(ilx,m) and og,(a|s) are the distributions as defined in Equations|I|and|3|respectively.

This is a powerful description for a policy, which resembles a Bayesian approach, as the policy takes
into account the uncertainty of the skills that are executing as well as the actions that each skill’s
intra-skill policy chooses. We now define the ASAP objective with respect to the ASAP policy.

ASAP Objective: We defined the policy with respect to a hypothesis space of m MDPs. We now
need to define an objective function which takes this hypothesis space into account. Since we assume
that we are provided with a distribution p : M — [0, 1] over possible MDP models m € M, with a
d-dimensional state-action space, we can incorporate this into the ASAP objective function:

prﬁ=/MmNWmeMu)

where Tg g is the ASAP policy and J("™ (g g) is the expected return for MDP m with respect to
the ASAP policy. To simplify the notation, we group all of the parameters into a single parameter
vector Q = [vec(©),vec(3)]. We define the expected reward for generalized trajectories g as
J(mq) = fg Pq(g9)R(g)dg, where R(g) is reward obtained for a particular trajectory g. This is a

slight variation of the original policy gradient objective defined in Section We then insert J(7q)
into Equation [5|and we get the ASAP objective function

Mma:/mmﬂmwmwu ©)

4

where J (™) (1) is the expected return for policy mq in MDP m. Next, we need to derive gradient
update rules to learn the parameters of the optimal policy ¢, that maximizes this objective.

ASAP Gradients: To learn both intra-skill policy parameters matrix © as well as the hyperplane
parameters matrix /3 (and therefore implicitly the SPs), we derive an update rule for the policy
gradient framework with generalized trajectories. The full derivation is in the supplementary material.
The first step involves calculating the gradient of the ASAP objective function yielding the ASAP
gradient (Theorem [I)).

Theorem 1 (ASAP Gradient Theorem). Suppose that the ASAP objective function is p(mg) =

[1(m) I (mq)dm where p(m) is a distribution over MDPs m and J™ (1q) is the expected
return for MDP m whilst following policy mq, then the gradient of this objective is:

()
VQ,O(WQ):E (m [P(m)(l:z VQZ $t7it,at)R(m)]] ;

where Z(m) (x4, 8¢, ar) = log Pa(it]xe, m)og, (ar|zy),), H™) is the length of a trajectory for MDP m;
(n
R(M) = Z —0 1 is the discounted cumulative reward for trajectory H(™)

If we are able to derive VQZg(Zm) (24,1, at), then we can estimate the gradient Vo p(mg). We will
refer to Zg, (m) _ =27y (m)(:vt, it, ay) where it is clear from context. It turns out that it is possible to derive

this term as a result of the generalized trajectory. This yields the gradients Vg Zg ™) and V 3 Zg ™) in
Theorems 2] and [3| respectively. The derivations can be found the supplementary material.

Theorem 2. (© Gradient Theorem). Suppose that © is a (d x 2) matrix where each column 0,
parameterizes an intra-skill policy. Then the gradient Vo, Zgn)

parameters of the it" skill at time t is:

corresponding to the intra-skill

o (Shea o0, explad? ,,01,))
(Creaexpiac? ,0.))

9

veit Zf(zm) = a(bxhat -

. K .
where « > 0 is the temperature parameter and ¢, ., € RI*2" s a feature vector of the current
state x; € X, and the current action a; € Ay.

Theorem 3. (3 Gradient Theorem). Suppose that (is a (d + z) x K matrix where each column By,

represents a skill hyperplane. Then the gradient V g, Zé)m) corresponding to parameters of the k"

hyperplane is:
awx meXP(7/) Bk)
Vg, 20 = Vi Z8 =~y ca T
Br,1 40 Br,04Q) (1—|—exp(th’ Bk))
(7

where o > 0 is the hyperplane temperature parameter, 1/)(7;” m) By, is the k' skill hyperplane for

MDP m, By, 1 corresponds to locations in the binary vector equal to 1 (b, = 1) and Py, o corresponds
to locations in the binary vector equal to 0 (b, = 0).

aw(mt,m) eXp(—m/J;{t,mﬁk)
(1 +exp(—ayl, ,.0k))

Using these gradient updates, we can then order all of the gradients into a vector VQZK({”) =

(Vo, 25 ... Vg Zg(lm) Vs, 25 .. V5, Z5™) and update both the intra-skill policy parameters
and hyperplane parameters for the g1ven task (learning a skill set and SPs). Note that the updates
occur on a single time scale. This is formally stated in the ASAP Algorithm.

S ASAP Algorithm

We present the ASAP algorithm (Algorithm [T]) that dynamically and simultaneously learns skills, the
inter-skill policy and automatically composes skills together by learning SPs. The skills (© matrix)
and SPs (5 matrix) are initially arbitrary and therefore form a misspecified model. Line 2 combines

!These expectations can easily be sampled (see supplementary material).

the skill and hyperplane parameters into a single parameter vector {). Lines 3 — 7 learns the skill
and hyperplane parameters (and therefore implicitly the skill partitions). In line 4 a generalized
trajectory is generated using the current ASAP policy. The gradient Vp(7rq) is then estimated in
line 5 from this trajectory and updates the parameters in line 6. This is repeated until the skill and
hyperplane parameters have converged, thus correcting the misspecified model. Theorem [provides
a convergence guarantee of ASAP to a local optimum (see supplementary material for the proof).

Algorithm 1 ASAP

Require: ¢, , € R% {state-action feature vector}, Vg.m € R(4+2) {skill hyperplane feature vector},

K {The number of hyperplanes}, © € R¥*2" {An arbitrary skill matrix}, 8 € R(@+)xK {Ap
arbitrary skill hyperplane matrix}, u(m) {A distribution over MDP tasks}

Z = (|d||2%] + |(d + z)KQ {Define the number of parameters }

Q = [vec(0),vec(B)] € R

repeat

Perform a trial (which may consist of multiple MDP tasks) and obtain
o.H, 0.5, a0:H, 0.1, Mo.H {states, skills, actions, rewards, task-specific information}

bl

(m)
Vap(rg) = <Em <2f_0 VaZm™) (Q)R(™) >> (T is the task episode length}
Q— Q-+ UVQ,D(TFQ)
until parameters €2 have converged
return {2

Theorem 4. Convergence of ASAP: Given an ASAP policy w(Q2), an ASAP objective over MDP
models p(mq) as well as the ASAP gradient update rules. If (1) the step-size ny, satisfies klim e =0
—00

and), ni = 00; (2) The second derivative of the policy is bounded and we have bounded rewards;

Ip(ma k)
o0

Then, the sequence {p(mq i)} 72, converges such that klim = 0 almost surely.
—00

6 Experiments

The experiments have been performed on four different continuous domains: the Two Rooms (2R)
domain (Figure[Ip), the Flipped 2R domain (Figure[Ik), the Three rooms (3R) domain (Figure[I[) and
RoboCup domains (Figure [Tf) that include a one-on-one scenario between a striker and a goalkeeper
(R1), a two-on-one scenario of a striker against a goalkeeper and a defender (R2), and a striker against
two defenders and a goalkeeper (R3) (see supplementary material). In each experiment, ASAP is
provided with a misspecified model; that is, a set of skills and SPs (the inter-skill policy) that achieve
degenerate, sub-optimal performance. ASAP corrects this misspecified model in each case to learn
a set of near-optimal skills and SPs. For each experiment we implement ASAP using Actor-Critic
Policy Gradient (AC-PG) as the learning algorithmﬂ

The Two-Room and Flipped Room Domains (2R): In both domains, the agent (red ball) needs to
reach the goal location (blue square) in the shortest amount of time. The agent receives constant
negatives rewards and upon reaching the goal, receives a large positive reward. There is a wall
dividing the environment which creates two rooms. The state space is a 4-tuple consisting of the
continuous (Togent, Yagent) location of the agent and the (4041, Ygoar) location of the center of the
goal. The agent can move in each of the four cardinal directions. For each experiment involving the
two room domains, a single hyperplane is learned (resulting in two SPs) with a linear feature vector
representation ¢, = [1, Tagent, Yagent). In addition, a skill is learned in each of the two SPs. The
intra-skill policies are represented as a probability distribution over actions.

Automated Hyperplane and Skill Learning: Using ASAP, the agent learned intuitive SPs and skills
as seen in Figure[I]f and g. Each colored region corresponds to a SP. The white arrows have been
superimposed onto the figures to indicate the skills learned for each SP. Since each intra-skill policy
is a probability distribution over actions, each skill is unable to solve the entire task on its own. ASAP
has taken this into account and has positioned the hyperplane accordingly such that the given skill
representation can solve the task. Figure 2z shows that ASAP improves upon the initial misspecified
partitioning to attain near-optimal performance compared to executing ASAP on the fixed initial
misspecified partitioning and on a fixed approximately optimal partitioning.

2AC-PG works well in practice and can be trivially incorporated into ASAP with convergence guarantees

Skill 2: ¢,

e 1

(b) (d)

2R Flipped 2R HEN3R L)
\ \ % A
Skill 0: o m

(a) (e) (f) (9) (h)

Figure 1: (a) The intersection of skill hyperplanes {h;, ho} form four partitions, each of which
defines a skill’s execution region (the inter-skill policy). The (b) 2R, (c) Flipped 2R, (d) 3R and (e)
RoboCup domains (with a varying number of defenders for R1,R2,R3). The learned skills and Skill
Partitions (SPs) for the (f) 2R, (g) thped 2R, (h) 3R and () across multiple tasks.

Two Room hree Room Multi-Task Learning Fllpplng the Hyperplane
100 100 100
- B - e
L 50 © 50 & 50.. S 20
] H
2 2 H v ©
v © 2 — AsAP & 20 Asap
o -~ Misspecified SPs D .40 | === Fiipped ASAP
o -50 -50 —
o 50 — i o -+ Approx. Optimal SPs g T apecifod SPs 2 60| == ~Misspecitied SPs
L100—<= - - 4 Misspecifiod sps | L -100/ o 00— <= — — — — . Approx. Optimal - Task 1 .80/ e Approx. Optimal - Task 2
150 “-== Approx. Optimal SPs .150 .150, =+ = Approx. Optimal - Task 2 -100:
%% 10000 20000 30000 40000 0 10000 20000 30000 40000 0 25000 50000 75000 100000 533fosso00 _ 75000 100000
Episode Episode Episode Episode
(a) (b) (c) (d)
5
R1: ial SPs |[R2: ial SPs °
No Defender c 7
D D 3 3
2 2
@ @ o« 1]
) @ @ S —ASAP
R1: Linear SPs @ O — - Misspecified SPs
5-1 -+~ Approx. Optimal
D S L
! & -2
= &l al B 35000 7000¢
-1500 40000 80000 120000 160000 Episode
Episode . f
(e) (f) (9) (h) (i))}

Figure 2: Average reward of the learned ASAP policy compared to (1) the approximately optimal SPs
and skill set as well as (2) the initial misspecified model. This is for the (a) 2R, (b) 3R, (c) 2R learning
across multiple tasks and the (d) 2R without learning by flipping the hyperplane. (¢) The average
reward of the learned ASAP policy for a varying number of K hyperplanes. (f) The learned SPs and
skill set for the R1 domain. (g) The learned SPs using a polynomial hyperplane (1),(2) and linear
hyperplane (3) representation. (h) The learned SPs using a polynomial hyperplane representation
without the defender’s location as a feature (1) and with the defender’s x location (2), y location
(3), and (z, y) location as a feature (4). (i) The dribbling behavior of the striker when taking the
defender’s y location into account. (j) The average reward for the R1 domain.

Multiple Hyperplanes: We analyzed the ASAP framework when learning multiple hyperplanes
in the two room domain. As seen in Figure 2k, increasing the number of hyperplanes K, does
not have an impact on the final solution in terms of average reward. However, it does increase the
computational complexity of the algorithm since 2% skills need to be learned. The approximate points
of convergence are marked in the figure as K1, K2 and K3, respectively. In addition, two skills
dominate in each case producing similar partitions to those seen in Figure [Tl (see supplementary
material) indicating that ASAP learns that not all skills are necessary to solve the task.

Multitask Learning: We first applied ASAP to the 2R domain (Task 1) and attained a near optimal
average reward (Figure 2f). It took approximately 35000 episodes to get near-optimal performance
and resulted in the SPs and skill set shown in Figure[T}; (top). Using the learned SPs and skills, ASAP
was then able to adapt and learn a new set of SPs and skills to solve a different task (Flipped 2R -
Task 2) in only 5000 episodes (Figure [2f) indicating that the parameters learned from the old task
provided a good initialization for the new task. The knowledge transfer is seen in Figure([T}; (bottom)
as the SPs do not significantly change between tasks, yet the skills are completely relearned.

We also wanted to see whether we could flip the SPs; that is, switch the sign of the hyperplane
parameters learned in the 2R domain and see whether ASAP can solve the Flipped 2R domain (Task
2) without any additional learning. Due to the symmetry of the domains, ASAP was indeed able to
solve the new domain and attained near-optimal performance (Figure2|d). This is an exciting result as
many problems, especially navigation tasks, possess symmetrical characteristics. This insight could
dramatically reduce the sample complexity of these problems.

The Three-Room Domain (3R): The 3R domain (Figure Ekl), is similar to the 2R domain regarding
the goal, state-space, available actions and rewards. However, in this case, there are two walls,
dividing the state space into three rooms. The hyperplane feature vector v, ,,, consists of a single

fourier feature. The intra-skill policy is a probability distribution over actions. The resulting learned
hyperplane partitioning and skill set are shown in Figure[T}». Using this partitioning ASAP achieved
near optimal performance (Figure[2p). This experiment shows an insightful and unexpected result.
Reusable Skills: Using this hyperplane representation, ASAP was able to not only learn the intra-skill
policies and SPs, but also that skill ‘A’ needed to be reused in two different parts of the state space
(Figure[T}r). ASAP therefore shows the potential to automatically create reusable skills.

RoboCup Domain: The RoboCup 2D soccer simulation domain (Akiyama & Nakashima, [2014) is
a 2D soccer field (Figure[Tf) with two opposing teams. We utilized three RoboCup sub-domains
E]Rl, R2 and R3 as mentioned previously. In these sub-domains, a striker (the agent) needs to
learn to dribble the ball and try and score goals past the goalkeeper. State space: R1 domain -
the continuous locations of the striker (Ts¢riker, Ystriker) » the ball {(Zpair, Ypair), the goalkeeper
(Tgoalkeepers Ygoalkeeper) and the constant goal location (Zgoai, Ygoar). R2 domain - we have the
addition of the defender’s location (2 ge fender, Yde fender) to the state space. R3 domain - we add the
locations of two defenders. Features: For the R1 domain, we tested both a linear and degree two
polynomial feature representation for the hyperplanes. For the R2 and R3 domains, we also utilized
a degree two polynomial hyperplane feature representation. Actions: The striker has three actions
which are (1) move to the ball (M), (2) move to the ball and dribble towards the goal (D) (3) move
to the ball and shoot towards the goal (S). Rewards: The reward setup is consistent with logical
football strategies (Hausknecht & Stonel [2015; Bai et al.| | 2012)). Small negative (positive) rewards for
shooting from outside (inside) the box and dribbling when inside (outside) the box. Large negative
rewards for losing possession and kicking the ball out of bounds. Large positive reward for scoring.

Different SP Optimas: Since ASAP attains a locally optimal solution, it may sometimes learn
different SPs. For the polynomial hyperplane feature representation, ASAP attained two different
solutions as shown in Figure[2jg(1) as well as Figure 2ly(2), respectively. Both achieve near optimal
performance compared to the approximately optimal scoring controller (see supplementary material).
For the linear feature representation, the SPs and skill set in Figure[2jg(3) is obtained and achieved
near-optimal performance (Figure [2}j), outperforming the polynomial representation.

SP Sensitivity: In the R2 domain, an additional player (the defender) is added to the game. It is
expected that the presence of the defender will affect the shape of the learned SPs. ASAP again learns
intuitive SPs. However, the shape of the learned SPs change based on the pre-defined hyperplane
feature vector ¥y, . Figure(l) shows the learned SPs when the location of the defender is not used
as a hyperplane feature. When the x location of the defender is utilized, the ‘flatter’ SPs are learned
in Figure [2J4(2). Using the y location of the defender as a hyperplane feature causes the hyperplane
offset shown in Figure [2J(3). This is due to the striker learning to dribble around the defender in
order to score a goal as seen in Figure . Finally, taking the (z,y) location of the defender into
account results in the ‘squashed’” SPs shown in Figure 2Ju(4) clearly showing the sensitivity and
adaptability of ASAP to dynamic factors in the environment.

7 Discussion

We have presented the Adaptive Skills, Adaptive Partitions (ASAP) framework that is able to
automatically compose skills together and learns a near-optimal skill set and skill partitions (the
inter-skill policy) simultaneously to correct an initially misspecified model. We derived the gradient
update rules for both skill and skill hyperplane parameters and incorporated them into a policy
gradient framework. This is possible due to our definition of a generalized trajectory. In addition,
ASAP has shown the potential to learn across multiple tasks as well as automatically reuse skills.
These are the necessary requirements for a truly general skill learning framework and can be applied
to lifelong learning problems (Ammar et al., 2015} | Thrun & Mitchell, |1995). An exciting extension
of this work is to incorporate it into a Deep Reinforcement Learning framework, where both the skills
and ASAP policy can be represented as deep networks.

Acknowledgements

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n.
306638.

3https://github.com/mhauskn/HFO.git

References

Akiyama, Hidehisa and Nakashima, Tomoharu. Helios base: An open source package for the robocup
soccer 2d simulation. In RoboCup 2013: Robot World Cup XVII, pp. 528-535. Springer, 2014.

Ammar, Haitham Bou, Tutunov, Rasul, and Eaton, Eric. Safe policy search for lifelong reinforcement
learning with sublinear regret. arXiv preprint arXiv:1505.05798, 2015.

Bacon, Pierre-Luc and Precup, Doina. The option-critic architecture. In NIPS Deep Reinforcement
Learning Workshop, 2015.

Bai, Aijun, Wu, Feng, and Chen, Xiaoping. Online planning for large mdps with maxq decomposition.
In AAMAS, 2012.

da Silva, B.C., Konidaris, G.D., and Barto, A.G. Learning parameterized skills. In ICML, 2012.

Eaton, Eric and Ruvolo, Paul L. Ella: An efficient lifelong learning algorithm. In Proceedings of the
30th international conference on machine learning (ICML-13), pp. 507-515, 2013.

Fu, Justin, Levine, Sergey, and Abbeel, Pieter. One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors. arXiv preprint arXiv:1509.06841, 2015.

Hausknecht, Matthew and Stone, Peter. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

Hauskrecht, Milos, Meuleau Nicolas et. al. Hierarchical solution of markov decision processes using
macro-actions. In UAI pp. 220-229, 1998.

Konidaris, George and Barto, Andrew G. Skill discovery in continuous reinforcement learning
domains using skill chaining. In NIPS, 2009.

Mankowitz, Daniel J, Mann, Timothy A, and Mannor, Shie. Time regularized interrupting options.
Internation Conference on Machine Learning, 2014.

Mann, Timothy A and Mannor, Shie. Scaling up approximate value iteration with options: Better
policies with fewer iterations. In Proceedings of the 31° International Conference on Machine
Learning, 2014.

Mann, Timothy Arthur, Mankowitz, Daniel J, and Mannor, Shie. Learning when to switch between
skills in a high dimensional domain. In AAAI Workshop, 2015.

Masson, Warwick and Konidaris, George. Reinforcement learning with parameterized actions. arXiv
preprint arXiv:1509.01644, 2015.

Peters, Jan and Schaal, Stefan. Policy gradient methods for robotics. In Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, pp. 2219-2225. IEEE, 2006.

Peters, Jan and Schaal, Stefan. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21:682—691, 2008.

Precup, Doina and Sutton, Richard S. Multi-time models for temporally abstract planning. In
Advances in Neural Information Processing Systems 10 (Proceedings of NIPS’97), 1997.

Precup, Doina, Sutton, Richard S, and Singh, Satinder. Theoretical results on reinforcement learning
with temporally abstract options. In Machine Learning: ECML-98, pp. 382-393. Springer, 1998.

Silver, David and Ciosek, Kamil. Compositional Planning Using Optimal Option Models. In
Proceedings of the 29th International Conference on Machine Learning, Edinburgh, 2012.

Sutton, Richard S, Precup, Doina, and Singh, Satinder. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 1999.

Sutton, Richard S, McAllester, David, Singh, Satindar, and Mansour, Yishay. Policy gradient methods
for reinforcement learning with function approximation. In NIPS, pp. 1057-1063, 2000.

Thrun, Sebastian and Mitchell, Tom M. Lifelong robot learning. Springer, 1995.

